Acute Traumatische Wervelletsels

Initiatief: NOV Aantal modules: 18

Timing operatie bij neurologische uitval

Uitgangsvraag

Wat is de optimale timing van operatie bij patiënten met een acute traumatische wervelkolomschade met neurologische uitval?

Aanbeveling

Opereer een patiënt met acuut traumatisch wervelkolomschade met progressieve neurologische uitval binnen 8 uur na indicatiestelling (categorie 2).

 

Opereer een patiënt met acuut traumatische wervelkolomschade met neurologische uitval (zonder progressie) bij voorkeur op de dag van indicatiestelling, of in ieder geval de volgende kalenderdag (categorie 3).

Overwegingen

Uit de literatuursamenvatting werd over het algemeen een zeer lage bewijskracht gevonden voor de in deze module gekozen uitkomstmaten. In de geïncludeerde studies zagen we veel variatie ten aanzien van de gekozen procedures en uitkomsten. Het effect van een vroege (< 24 uur) of late operatie (> 24 uur en < 72 uur) bij patiënten met traumatische wervelletsel met neurologische uitval blijft daarmee onduidelijk. Het is gezien de ethische bezwaren onwaarschijnlijk dat er in de toekomst gerandomiseerde studies worden uitgevoerd waarin de vergelijking tussen een vroege en late operatie zal worden onderzocht. De bewijskracht zal daarom ook in de toekomst waarschijnlijk laag blijven. Er zijn echter wel een aantal belangrijke overwegingen te noemen die van invloed zijn op de besluitvorming.

 

Verschillende observationele studies (Bourassa-Moreau, 2016; Jug, 2015; Grassner, 2016; Guha, 1987; Dimar, 1999) suggereren dat er mogelijk een positief effect is van een vroege operatie op het aantal patiënten met substantieel neurologisch herstel. Dit bewijs is sterker voor de cervicale dan de thoracolumbale ruggenmergletsel (Fehlings, 2012; Rahimi-Movaghar, 2014). Zo rapporteerde een recente review met meta-analyse dat zelfs patiënten met een complete cervicale dwarslaesie significant sterk neurologisch herstel doormaakten wanneer zij binnen 24 uur werden geopereerd (Ter Wengel, 2018). Los van het potentiële effect op de neurologische uitkomst zou een vroege operatie mogelijk gepaard kunnen gaan met minder complicaties en een kortere opnameduur (Bourassa-Moreau, 2013; Bourassa-Moreau, 2013). Recente internationale richtlijn raden aan om een vroege operatie (< 24h) als optie aan te bieden aan alle patiënten met acuut traumatisch wervelletsel met neurologische uitval, ongeacht het niveau of ernst van het letsel (Fehlings, 2017).

 

Er zijn geen gegevens uit de Nederlandse situatie over de kosteneffectiviteit van de een vroege (< 24 uur) versus een late operatie (> 24 uur) bij patiënten met een acuut traumatisch wervelletsel met neurologische uitval. Vanuit een patiëntenperspectief zal er in de meeste gevallen een voorkeur zijn voor een vroege operatie.

 

In april 2018 - tijdens de ontwikkeling van deze module - is de richtlijn ‘Beleid rondom spoedoperaties’ met daarin de module ‘Classificatiesystemen spoedoperaties’ geautoriseerd. In deze module wordt voorgesteld om vier categorieën voor classificaties van spoedoperaties in te voeren:

  • Categorie 1: minuten (binnen 30 minuten).
  • Categorie 2: uren (binnen acht uur).
  • Categorie 3: dagen (bij voorkeur op de dag van de indicatiestelling of in ieder geval de volgende kalenderdag).
  • Categorie 4: een week.

De genoemde tijden gelden vanaf het moment van indicatiestelling tot het moment waarop de operatie start en gaan niet over de tijdslimieten voor een specifiek ziektebeeld of een specifieke patiënt. In de aanverwante producten (‘Spoedlijsten’) is de ‘trauma wervelkolom met progressieve neurologie’ ingedeeld in categorie 2 en ‘wervelkolomletsel/wervelkolomfractuur met neurologische uitval’ ingedeeld in categorie 3. De werkgroep kiest ervoor om het voorgestelde classificatiesysteem en de gemaakte onderverdeling in progressieve en niet-progressieve neurologische uitval te volgen.

 

Soms is het door een inadequate chirurgische capaciteit of ziekenhuislogistiek lastig om een patiënt tijdig te opereren (Middleton, 2012). Een survey van Fransen (2016) rondom de pre-hospitale zorg voor patiënten met traumatisch neurologische uitval in Nederland wees uit dat het noodzakelijk is om best-practice richtlijnen te ontwikkelen en te implementeren. De werkgroep acht echter dat het in Nederland mogelijk moet zijn om de acute wervelkolom traumazorg zo te organiseren dat operatieve behandeling in het geval van neurologische uitval tijdig wordt uitgevoerd. De werkgroep raadt aan om lokale protocollen rondom de patiëntenzorg en logistiek te evalueren en zo nodig te optimaliseren (zie ook de module Organisatie van zorg).

 

Momenteel is de Surgical Treatment for Spinal Cord Injury (SCI-POEM) studie open (NCT01674764), en de verwachting is dat de datacollectie in 2020 voltooid is. In deze observationele studie (n=300) wordt onderzocht of een vroege operatieve interventie (≤12 uur na trauma) ten opzichte van een late operatieve interventie (> 12 uur en < 14 dagen na trauma) de motorische uitkomsten in patiënten met een acuut traumatische ruggenmergletsel verbeteren. Hopelijk gaat deze studie verdere inzichten geven.

Onderbouwing

Er blijkt nog veel variatie te zijn in de timing van operatie bij patiënten met een acuut traumatisch wervelletsel (Ter Wengel, 2018). Doel van deze module is om te komen tot een evidence-based advies met betrekking tot de optimale timing van de operatie bij patiënten met een traumatische dwarslaesie, en zo ook bij te kunnen dragen aan een zo groot mogelijke kans op herstel van de patiënt.

 

Nb. De indicatie tot een operatieve behandeling zal altijd genomen moeten worden op basis van de operabiliteit van de patiënt. Indien op basis van de lichamelijk conditie van de patiënt een operatie mogelijk is, dan is het advies van de werkgroep om deze richtlijnmodule te volgen.

PICO 1: Surgery within 24 hours after injury versus surgery between 24 and 72 hours

Very Low GRADE

The effectiveness of surgery within 24h after injury when compared to surgery between 24 to 72h after trauma in patients with traumatic spinal cord injury on mortality is unclear.

 

References: (Bourassa-Moreau, 2013; Sohail umerani, 2013; Rahimi-Movaghar, 2014; Fehlings, 2012)

 

-

GRADE

None of the studies did evaluate the effectiveness of early surgery (<24h) when compared with late surgery (24 to 72h) with respect to quality of life in patients with acute traumatic spinal cord injury. Hence no conclusion can be drawn.

 

Very Low GRADE

The effectiveness of early (< 24h) when compared with late (between 24 and 72h) surgery with respect to the number of complications in patients with traumatic spinal cord injury is unclear.

 

References: (Rahimi-Movaghar, 2014; Fehlings, 2012; Bourassa-Moreau, 2012)

 

Very Low GRADE

The effectiveness of early (<24h) when compared with late (between 24 and 72h) surgery with respect to the neurological recovery in patients with traumatic spinal cord injury is unclear.

 

References: (Bourassa-Moreau, 2016; McKinley, 2004; Battistuzzo, 2016; Rahimi-Movaghar, 2014; Fehlings, 2012; Sohail Umerani, 2013)

 

PICO 2: Surgery within 8 hours after injury versus surgery between 8 and 72 hours.

-

GRADE

Due to the small number of cases, no conclusion can be drawn about the effectiveness of early surgery (<8h) compared with late (between 24 and 72h) surgery with respect to mortality in patients with acute traumatic spinal cord injury.

 

References: (Jug, 2015)

 

-

GRADE

Due to absence of data, no conclusion can be drawn about the effectiveness of early surgery (< 8h) compared with late (between 8 and 72h) surgery with respect to quality of life in patients with traumatic spinal cord injury.

 

Very low GRADE

It is unclear whether early surgery (within 8h after the injury) when compared to later surgery (between 8 and 72h) improves or causes a deterioration in length of hospital stay, the number of complications and neurological recovery in patients with traumatic spinal cord injury.

 

References: (Jug, 2015)

PICO 1: Surgery within 24 hours after injury versus surgery between 24 and 72 hours

Description of included studies

Seven studies answered our first research question, one RCT and six observational studies. In total 1168 patients were included.

 

Randomized controlled trials

Rahimi-Movaghar (2014) was a single blind RCT. Thirty-five patients with traumatic thoracolumbar injury (between T1 and L1) were included and the data of 15 patients treated within 24h and of 18 patients treated between 24 and 72h could be analyzed (two patients died). Patient recruitment was still ongoing (target study size of 328 patients). Reported outcome measures included the results of neurological examination, complications, length of hospital stay and mortality. There were slightly more patients with AIS-grade B (26 versus 6%) and less patients with grade C (5 versus 25%) in the late surgery group. Furthermore, more patients from the late group had been involved in an automobile crash (74 versus 25%) and there had been less falls in this group.

 

Observational studies - with adjusted analyses

Bourassa-Moreau (2013) evaluated retrospectively the benefits of an early (< 24h) versus late (> 24h, mean 67.3h) surgical intervention in patients with complete traumatic spinal cord injury with respect to non-neurological complications (total, pneumonia, pressure ulcer and urinary tract infection). Data of 197 patients were included. Multivariate binary logistic regression analyses using a backward elimination method was used to adjust for potential confounding variables.

 

Fehlings (2012; STASCIS) was a prospective multicenter cohort study in which 313 patients with acute cervical spinal cord injury participated. The primary outcome was the change in AIS grade at 6 months follow-up. Patients were treated early (< 24h, n=182) or late (> 24h, mean 48.3±29.3h, n=131), depending on the time elapsed post injury at patients’ hospital arrival, the time required to obtain diagnostic investigations, and the discretion of the attending spinal surgeon. At 6 months, 5 patients had died, 86 patients were lost to follow-up and 222 patients were evaluable. The groups were not comparable: patients in the early surgery cohort were younger and AIS grades A’s and B’s were more present, while C’ and D’s were more present in the late group. The analysis for the outcome ‘AIS grade’ was adjusted for preoperative neurologic status and steroid administration (after eliminators of predictors with p-values >0.05).

 

Observational studies - analyses unadjusted or unclear analyses

Bourassa-Moreau (2016) was a prospective study evaluating the impact of early surgical decompression (< 24h) on neurological recovery in patients with complete cervical or thoracolumbar spinal cord injury (AIS A). In total, 53 consecutive patients could be included in the study, 38 patients were treated within 24h, and 15 between 24 and 72h. Neurological recovery (improvement in AIS) was determined at rehabilitation discharge. The authors mentioned that they constructed a regression model adjusted for potential confounders, but it is not clear whether the final analyses were indeed adjusted, as only p-values and the results of some stratified analyses were provided.

 

McKinley (2004) was a retrospective case series comparing early, late and no surgery. The patient sample consisted of patients with nonpenetrating traumatic SCI who completed an inpatient rehabilitation program. Patients were included based on injury type and completeness of data. For our research question, only the comparisons between the patients who were operated on the same day of the injury (within 24h, n=73), the day hereafter (n=143) and the second day after injury (n=91) were of interest. Loss to follow-up was substantial, ~55% in the patients treated on the day of injury, 37 to 48% in the patients treated on the first day after injury an 37 to 49% in the patients treated on the second day after injury. For these subgroups, only the results on neurologic recovery were reported. The AIS injury level categories were recoded into numeric format to compute changes scores. The authors unfortunately did not present the number of patients that improved one of more Asia grades, but reported the mean change. Here, we present these changes in scores between admission and one-year follow-up.

 

Sohail Umerani (2014) was a prospective study evaluating the effects of early (< 24h) versus late (> 24h, mean 52.7h, range 31 to 124h) decompressive surgery in 98 patients (18 to 65 years) with cervical SCI (grade AIS A to D). The AIS was determined on admission and after 6 months.

 

Battistuzzo (2016) was a retrospective study among patients aged between 15 and 70 years with isolated spinal cord injury (C3-T1). The scope of this article was different from the scope of this literature summary: the main objectives of the study were 1) to determine the time until decompression and 2) to identify the substantial delays until decompression. The authors, however, also report the results of their analyses focusing on the optimal timing of early decompression. No upper limit was defined for the late group, although from figure 2 it is clear that most patients were treated within 72h. Data of 165 patients (86% of complete sample) could be included in the analysis.

 

Results

Mortality

Bourassa-Moreau (2016), McKinley (2004) and Battistuzzo (2016) did not report data on mortality.

 

Rahimi-Movaghar (2014) reported that two patients died, one in each group.

 

Bourassa-Moreau (2013) reported that six patients had died, two (4%) patients in the early group and four (3%) in the late group, p=0.672.

 

Fehlings (2012) reported that in both the early and late surgery group one patient died within 30 days after injury. Three patients from the early group died at a later time point in the study period.

 

Sohail umerani (2014) reported that five patients died during the study period; one patient from the early group and four in the delayed group.

 

In total, the studies reported that eight out of 287 patients in the early surgery groups (2.7%) and ten out of 349 patients in the late surgery groups (2.9%) died. We decided not to pool the data as the number of cases per study was small, and it is not possible to adjust for possible confounders.

 

Quality of life

None of the included studies reported data on quality of life.

 

Start of rehabilitation/length of hospitalization

Bourassa-Moreau (2016), Bourassa-Moreau (2013), McKinley (2004), Battistuzzo (2016), Fehlings (2012) and Sohail Umerani (2014) did not report data on the length of hospitalization.

 

Rahimi-Movaghar (2014) reported that the mean length of hospital stay was 7±7.13 days in the early group and 9.7±8.28 days in the late surgery group, the difference was not statistically significant.

 

Complications (infection, bleeding, exaggeration of neurological complains)

Bourassa-Moreau (2016), McKinley (2004) and Battistuzzo (2016) did not report data on complications.

 

Rahimi-Movaghar (2014) reported that two patients (one in each group) experienced a deep vein thrombosis. Furthermore, in the late group there were two wound infections, one CSF leak, one meningitis and one decubitus ulcer. There was one unilateral T6 revision and one bilateral T9 revision in the early surgery group, and unilateral revisions of T12, T9 and T7 (latter in the same patient). There was also one rod fracture in the late surgery group one year after surgery.

 

Bourassa-Moreau (2013) reported that 42% of the patients treated within 24h and 63% of the patients treated after 24h had at least one non-neurological complication, Adj OR = 2.39, 95% CI=1.24 to 4.63 (model with tetraplegia and ISS). Surgical timing was also a predictor of pneumonia (Adj OR=2.28, 95% CI=1.02 to 5.08) and urinary tract infection (Adj OR= 2.69, 95% CI=1.16 to 6.25), but not for pressure ulcers.

 

Fehlings (2012) reported 48 complications (n=44) in the early group and 49 complications (n=40) in the late group, the between-group difference in the number of patients with at least one complication was not statistically different, p=0.21.

 

Sohail Umerani (2014) reported a complication rate of 11%, four in the early group and seven in the delayed group.

 

Neurologic recovery

Bourassa-Moreau (2013) did not report on the neurological recovery.

 

Rahimi-Movaghar (2014) reported that 53% of the patients with thoracolumbar spinal cord injury in the early surgery group and 44% of the patients in the late surgery group had improved at least one AIS grade. Three patients from the early surgery group and one patient from the late surgery group improved two AIS grades. The ASIA motor scores did not progress in patients with complete spinal cord injury, while patients with incomplete SCI did improve (early: from 77±22 to 92±12; late: from: 68±22 to 82±16). Statistical analyses were not performed.

 

Fehlings (2012) reported that 74 (56.5%) of the patients with cervical spinal cord injury in the early surgery group and 45 (49%) in the late surgery group improved at least one AIS grade, Adj OR =1.4, 95%CI=0.8 to 2.57. Twenty-six (19.8%) of the patients in the early surgery group and eight (8.8%) in the late surgery group improved more than two AIS grades, Adj OR = 2.8, 95%CI=1.1 to 7.28.

 

Battistuzzo (2016) reported that there was no difference between the number of patients in the group decompressed ≤ 24h and the group decompressed > 24h that improved 2 or 3 AIS-grades between surgical hospital admission and rehabilitation discharge, p=0.35. However, the authors mention that “A relationship between the time of spinal decompression and the proportion of patients improving by 2 to 3 AIS-grades was evident when the data were divided by time.” And “A progressive lower proportion of patients improved by 2 to 3 AIS-grades as the time to decompression increased (Fisher’s exact test, p<0.005).

 

Bourassa-Moreau (2016) reported that 13/38 patients (34%) treated <24h post-injury improved from complete spinal cord injury to AIS B, AIS C or AIS D, while only 2/15 patients (13%) treated ≥24h improved. This difference was not significant, p=0.18. In the subgroup analysis, neurological recovery was not associated with surgical delay in thoracolumbar injury, p=0,99 (but only 6 of 33 patients improved). In patients with complete cervical spinal cord injury early surgery (< 24h; 9 of 14 patients (64%) was significantly associated with neurological improvement, when compared with late surgery (≥ 24h; 0 of 6 patients), p=0.008.

 

McKinley (2004) reported that the change scores in ASIA motor index from acute care to 1-year follow-up were not significantly different between the three groups, X2=3.87, p=0.144. There was however a significant difference between groups in change in AIS-score, X2=6.61, p=0.037, mean day 1 =0.74, standard deviation (SD)=0.96, day 2: mean=0.59, SD=1.08; day 3: mean 0.28, SD=0.86.

 

Sohail Umerani (2014) reported that 18/34 (53%) of the patients with cervical spinal cord injury in the early group and 25/64 (39%) of the patients in the late group improved at least one AIS grade, and the difference between these groups was statistical significant: OR=3.12, 95% CI=1.21 to 8.02. An improvement of at least 2 ASIA grades was seen in 7/34 (23%) of the patients in the early group and 5/64 (9%) of the patients in the late group, the differences was not significant: OR=3.05, 95% CI=0.89 to 10.51.

 

We did not pool the data as the studies are quite heterogeneous and most studies did not properly or clearly adjust the analyses for potential confounders.

 

Level of evidence

RCTs start at high level of evidence and observational studies start at a low level of evidence. The level of evidence for the outcome measure ‘mortality’ was downgraded by three levels due to small number of cases (imprecision) and the inability to perform an adjusted analysis. The provided quality of the evidence is very low.

 

The level of evidence for the outcome measure ‘quality of life’ cannot be determined as none of the studies included this outcome measure.

 

The level of evidence for the outcome measure ‘length of hospital stay’ was downgraded by 3 levels due to the inclusion of only one underpowered RCT (imprecision) with incomparable groups with respect to AIS grade (risk of bias). The final level of the quality of the evidence is very low.

 

The level of evidence for the outcome measure ‘complications’ is downgraded to the level ‘very low’. This outcome measure was included in 3 studies (Bourassa-Moreau, 2013; Rahimi-Movaghar, 2014; Fehlings, 2012). Rahimi-Movaghar (2014) was a small underpowered RCT, and no statistical analyses for this specific outcome measure were performed. The results of Bourassa-Moreau (2013) and Fehlings (2012) are heterogeneous and the total number of cases is relatively small (imprecision). In the study of Fehlings (2012) the specific analysis was likely not adjusted for confounders.

 

If we would restrict study inclusion to studies with adjusted analyses (i.e. Bourassa-Moreau, 2013), this would not have changed the level of evidence or the formulation of the conclusion, as we would still have to downgrade for imprecision (inclusion of only one study with a limited sample size).

 

The level of evidence for the outcome measure ‘neurological recovery’ is downgraded to the level ‘very low’. We included a small underpowered RCT, but no statistical analyses for this specific outcome measure were performed in this study. The remaining studies varied in design, the included population and results. Most of these studies did not properly adjust for potential confounders, hence pooling was considered inappropriate.

 

If we would restrict study inclusion to studies with adjusted analyses (i.e. Fehlings, 2011), this would not have changed the level of the evidence or the formulation of the conclusion as we would still have to downgrade for the risk of bias (substantial loss-to-follow-up) and the imprecision (inclusion of only one study with a limited sample size).

 

PICO 2: Surgery within 8 hours after injury versus surgery between 8 and 72 hours.

Description of the included study

Jug (2015) was a prospective study evaluating the impact of early (< 8h) versus late (8 to 24h) surgical decompression in a consecutive sample of 48 patients with a fracture or dislocation between C3 and C7 and an AIS-grade A, B or C. Six patients were lost to follow-up: three patients died (two in early group and one in the late group), in two patients the decompression was inadequate (one in each group), and one patient in the early group was lost to follow-up and no reason was provided. Outcome measures included the neurological outcome (AIS-grade and Asia Motor score) at six months and complications, but length of hospital stay and mortality were also reported. Groups were not completely comparable: More patients from the control condition were transferred from other hospitals (p<0.001) and there were more patients with grade AIS B in the early group (23 versus 5%, not statistically different). The analysis for neurological outcome (at least two-grade AIS improvement) was adjusted for pre-operative AIS-grade and the degree of spinal canal compromise.

 

Results

Mortality

Jug (2015) reported that two patients (8%) in the intervention group and one patient (5%) in the control group had died.

 

Quality of life

Jug (2015) did not report data on quality of life.

 

Start of rehabilitation/length of hospitalization

Jug (2015) reported that the median length of hospital stay did not differ between the patients (< 8h-group: 38.8, 8 to 24h-group: 48.8, p>0.05).

Complications (infection, bleeding, exaggeration of neurological complains)

Jug (2015) reported that they did not found between-group differences for the categories ‘surgical infections’, ‘CSF leak’, ‘Cardiovascular’ or ‘Gastrointestinal’. Ten patients in both groups had pneumonia during the first month after injury (p>0.05).

 

Neurologic recovery

Jug (2015) reported that 10 patients (46%) in the <8h group and 2 patients (10%) in the 8 to 24h group) improved at least two AIS grades. The ‘risk’ on improving was factor 2.08 higher for the early group (95% CI=1.12 to 3.87). When the analyses were adjusted for AIS-grade and degree of spinal compromise, a significant difference was found: Adj odds = 11.08, p=0.004. The median change in ASIA motor score was also significantly larger in the early group (38.5) when compared with the late group (15.0), p=0.047 (one-sided Mann-Whitney U test).

 

Level of evidence

The level of evidence cannot be determined for the outcome measure ‘mortality’ due to a very low number of cases.

 

The level of evidence cannot be determined for the outcome measure ‘quality of life’ due to absence of data.

 

Observational studies start at a low grade. The level of evidence for the outcome measures ‘length of hospital stay’, ‘complications’ and ‘neurologic recovery’ were downgraded by one level due to the inclusion of only one study with a relatively small study population.

A systematic review of the literature was performed to answer the following research question:

What are the favourable and unfavourable effects of early surgery as compared with late surgery in patients with acute traumatic spinal cord injury?

 

PICO 1:

P: patients >16 years of age with a traumatic spinal cord injury;

I: early surgery (within 24 hours after injury);

C: late surgery (between 24 and 72 hours after injury);

O: neurologic recovery, mortality, quality of life, start of the rehabilitation/length of hospitalization, complications (infections, bleeding, exaggeration of neurological complains).

 

PICO 2:

P: patients >16 years of age with a traumatic spinal cord injury;

I: early surgery (within 6 to 12 hours after injury);

C: late surgery (between 6 to 12 and 72 hours after injury);

O: neurologic recovery, mortality, quality of life, start of the rehabilitation/length of hospitalization, complications (infections, bleeding, exaggeration of neurological complains).

 

Relevant outcome measures

The working group considered neurologic recovery, mortality and quality of life as critical outcome measures for decision-making, and complications and rehabilitation/length of hospitalization as important outcome measures for decision-making. The working group defined neurological recovery as a change in ASIA-grade. For quality of life only results determined using validated questionnaires (for examaple the Short-form 36) were considered. The working group did not define the remaining outcome measures a priori, but applied the definitions used in the articles.

 

The working group considered any statistical significant difference in neurological recovery and mortality/survival as clinically important.

Based on Ostelo (2008), a within-group improvement of 20 to 30% relative to baseline can be seen as a clinically important improvement in quality of life. This corresponds roughly with a 15-points difference for the different domains of the SF-36 (0 to 100). In correspondence with the guideline ‘ongeinstrumenteerde wervelkolomchirurgie’ (NVvN, 2018), the working group also applied this percentage as the clinically important between-groups differences.

 

Search and select (Methods)

The databases Medline (via OVID), Embase (via Embase.com) were searched for studies published between 1990 and December 2017 using relevant search terms for systematic reviews, randomized controlled trials (RCTs) and observational studies. The detailed search strategy is depicted under the tab Methods. The literature search resulted in 851 hits.

 

Based on title and abstract, 80 studies were selected. Hereafter, the full-text articles of the selected possible systematic reviews were considered. However, as no suitable recent review could be identified (there were large differences between the reviews with respect to the included studies, without clear explanation), we decided to include RCTs and observational studies based on the following criteria: evaluating the effectiveness of a surgical intervention within 24 (or 8) hours after injury when compared with surgery performed between a mean or median 24 to 72 (or 8 to 72) hours after the injury in patients ≥16 years of age with an acute traumatic spinal cord injury. Furthermore, at least one of the defined outcome measures had to be included.

 

After examination of full-text, a total of 72 studies were excluded, and eight studies were included in this literature summary. Seven studies answered the first part of research question (PICO 1) and one study answered the second part of the research question (PICO 2). Important study characteristics and results are depicted in the evidence tables. The assessment of the risk of bias is depicted in the risk of bias tables.

  1. Battistuzzo CR, Armstrong A, Clark J, et al. Batchelor PE. Early Decompression following Cervical Spinal Cord Injury: Examining the Process of Care from Accident Scene to Surgery. J Neurotrauma. 2016 Jun 15;33(12):1161-9. doi: 10.1089/neu.2015.4207. Epub 2016 Mar 9. PubMed PMID: 26650510.
  2. Bourassa-Moreau É, Mac-Thiong JM, Li A,et al. Do Patients with Complete Spinal Cord Injury Benefit from Early Surgical Decompression? Analysis of Neurological Improvement in a Prospective Cohort Study. J Neurotrauma. 2016 Feb 1;33(3):301-6. doi: 10.1089/neu.2015.3957. Epub 2016 Jan 7. PubMed PMID: 26494114.
  3. Bourassa-Moreau E, Mac-Thiong JM, Feldman DE, et al. Non-neurological outcomes after complete traumatic spinal cord injury: the impact of surgical timing. J Neurotrauma. 2013 Sep 15;30(18):1596-601. doi: 10.1089/neu.2013.2957. Epub 2013 Aug 12. PubMed PMID: 23829420.
  4. Bourassa-Moreau É, Mac-Thiong JM, Ehrmann Feldman D, Thompson C, Parent S. Complications in acute phase hospitalization of traumatic spinal cord injury: does surgical timing matter? J Trauma Acute Care Surg. 2013 Mar;74(3):849-54. doi: 10.1097/TA.0b013e31827e1381. PubMed PMID: 23425747.
  5. Fehlings MG, Tetreault LA, Wilson JR,et al. A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury and Central Cord Syndrome: Recommendations on the Timing (≤24 Hours Versus >24 Hours) of Decompressive Surgery. Global Spine J. 2017;7(3 Suppl):195S-202S. doi: 10.1177/2192568217706367. Epub 2017 Sep 5. PubMed PMID: 29164024; PubMed Central PMCID: PMC5684850.
  6. Fehlings MG, Vaccaro A, Wilson JR, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7(2):e32037. doi: 10.1371/journal.pone.0032037. Epub 2012 Feb 23. PubMed PMID: 22384132; PubMed Central PMCID: PMC3285644.
  7. Jug M, Kejžar N, Vesel M,et al. Neurological Recovery after Traumatic Cervical Spinal Cord Injury Is Superior if Surgical Decompression and Instrumented Fusion Are Performed within 8 Hours versus 8 to 24 Hours after Injury: A Single Center Experience. J Neurotrauma. 2015 Sep 15;32(18):1385-92. doi: 10.1089/neu.2014.3767. Epub 2015 Apr 22. PubMed PMID: 25658291.
  8. McKinley W, Meade MA, Kirshblum S,et al. Outcomes of early surgical management versus late or no surgical intervention after acute spinal cord injury. Arch Phys Med Rehabil. 2004;85(11):1818-25. PubMed PMID: 15520977.
  9. Nederlandse Vereniging voor Neurochirurgie. (2018). Richtlijn Ongeinstrumenteerde wervelkolomchirurgie. Utrecht: NVvN.
  10. Nederlandse Vereniging voor Heelkunde. (2018). Richtlijn Beleid rondom spoedoperaties. Utrecht: NVvH
  11. Rahimi-Movaghar V, Niakan A, Haghnegahdar A, et al. Early versus late surgical decompression for traumatic thoracic/thoracolumbar (T1-L1) spinal cord injured patients. Primary results of a randomized controlled trial at one year follow-up. Neurosciences (Riyadh). 2014 Jul;19(3):183-91. PubMed PMID: 24983279; PubMed Central PMCID: PMC4727651.
  12. Ter Wengel PV, De Witt Hamer PC, Pauptit JC, et al. Early Surgical Decompression Improves Neurological Outcome after Complete Traumatic Cervical Spinal Cord Injury: A Meta-Analysis. J Neurotrauma. 2018 Oct 25. doi: 10.1089/neu.2018.5974. (Epub ahead of print) PubMed PMID:30244639.
  13. Ter Wengel PV, Feller RE, Stadhouder A, et al.Timing of surgery in traumatic spinal cord injury: a national, multidisciplinary survey. Eur Spine J. 2018 Mar 23. doi: 10.1007/s00586-018-5551-y. (Epub ahead of print) PubMed PMID: 29572739.
  14. Umerani MS, Abbas A, Sharif S. Clinical Outcome in Patients with Early versus Delayed Decompression in Cervical Spine Trauma. Asian Spine J. 2014;8(4):427-34. doi: 10.4184/asj.2014.8.4.427. Epub 2014 Aug 19. PubMed PMID:25187859; PubMed Central PMCID: PMC4149985.

Evidence table for intervention studies (randomized controlled trials and non-randomized observational studies (cohort studies, case-control studies, case series))

Study reference

Study characteristics

Patient characteristics

Intervention (I)

Comparison / control (C)

Follow-up

Outcome measures and effect size

Comments

Bourassa-Moreau, 2016

Type of study:

Prospective cohort

 

Setting: level I trauma center specialized in SCT care

 

Country: Canada

 

Source of funding: No competing financial interest exist.

Inclusion criteria:

* minimal age of 16

* AIS A traumatic SCI at initial presentation before surgery

* Vertebral fracture and/or luxation from C1 to L2

 

Exclusion criteria:

* Neurological or cognitive impairment precluding reliable neurological evaluation

* Surgical intervention performed >3 days after the trauma

* Surgical decompression and fusion performed in another center

 

N total at baseline:

Intervention: 38

Control:15

 

Important prognostic factors2:

age ± SD:

I: 39.6 ±16.6

C: 49.6 ±15.4

 

Sex:

I: 11% F

C: 27% F

 

Comorbidity

I: 26%

C:40%

 

Groups comparable at baseline?

Patients in the intervention group were significantly younger.

 

Operation <24h post-trauma (mean 16.1±4.9h)

 

 

Operation ≥24h (mean 39.1±16.3h)

 

 

Length of follow-up:

Follow-up assessments were performed at rehabilitation discharge.

I: 150.6 ± 39.7

C: 156.9 ± 31.2

 

Loss-to-follow-up:

Probably none

 

Incomplete outcome data:

Probably none

 

 

  1. Mortality

Not reported

 

  1. Quality of life

Not reported

 

  1. Start of rehabilitation/length of hospitalization

Not reported

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

Not reported

 

  1. Neurologic recovery

Defined as in improvement in AIS, n (%) with improvements from AIS A to AIS B, AIS C or AIS D.

I: 13 (34)

C: 2 (13)

P=0.18

 

Subgroup analyses:

“A total of six (18%) patients with a thoracolumbar injury had some neurological improvement at discharge from rehabilitation. The surgical delay did not impact on the proportion of patients who improved on the AIS, where 4/24 (17%) had early surgery and 2/9 (22%) were operated later (Table 4) (p=0,99).”

 

“Contrary to patients with a thoracolumbar injury, whose recovery was not linked to the surgical delay, Table 4 shows that 9/14 (64%) patients with cervical SCI operated within 24h showed AIS improvement whereas none of the six patients with cervical SCI operated ≥24h improved (p=0.008).

Confounding variables evaluated: severity of traumatic injuries assessed by Injury Severity Score (ISS), age, pre-existing comorbidity, smoking, body mass index (BMI), Glasgow Coma Scale (GCS) score, and duration of follow-up. The level of neurological lesion was divided into cervical (C1-T1) and thoracolumbar (T2-L5) lesions.

 

The authors conclude: “this study suggests that surgical decompression and stabilization earlier than 24h after a traumatic complete SCI may improve neurological recovery and particularly for those with cervical lesions.

 

 

Jug, 2015

Type of study:

Prospective cohort

 

Setting: level I trauma center

 

Country: Slovenia

 

Source of funding: No competing financial interests

Inclusion criteria:

* age 16-85 years

* Initial AIS grade A-C

* Fracture or dislocation C3-C7

* Neurological level of injury between C3 and C8

* Spinal cord compression confirmed by MRI

* Spinal canal compromise of at least 25 %

* Surgery within 24h of tSCI

 

Exclusion criteria:

*Neurological deficits before injury

*No evidence of fracture of dislocation

*Central cord syndrome

* Life threatening injuries that prevent early decompression of the spinal cord

*Cognitive impairment preventing accurate neurologic assessment

 

N total at baseline:

Intervention: 26

Control: 22

 

(22 and 20 evaluable)

 

Important prognostic factors2:

Age, median (range):

I: 44 (30.5;58.5)

C:52 (25.8;72.8)

 

Sex:

I: 82% M

C: 80% M

 

Groups comparable at baseline? No, more patients from the control condition were transferred from other hospitals (p<0.001). Furthermore, there were more (although not statistically) grade AIS B’s in the <8h group (23 versus 5%).

 

Surgical decompression <8h after injury

 

Surgical decompression between 8-24h after injury

 

 

Length of follow-up:

6 months

 

Loss-to-follow-up:

Intervention: n=4 (15%)

Reasons: 2 patients died from pulmonary failure, 1 was lost during follow-up and one patients in whom the decompression was inadequate.

 

Control: n=2 (9%)

Reasons: 1 patient died from pulmonary failure, 1 patient in whom the decompression was inadequate.

 

Incomplete outcome data:

Not reported

 

 

  1. Mortality

Was not an outcome measure, but the number of patients who died during the study were provided:

I: 2 (8%)

C: 1 (5%)

 

  1. Quality of life

Not reported

 

  1. Start of rehabilitation/length of hospitalization

Defined as the length of hospital stay, median (?)

I: 38.8 (24.0)

C:48.8 (40.3)

p>0.05

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

Defined as perioperative complications (surgical infection, CSF leak, Cardiovascular, gastrointestinal), n (%)

I: 3 (12)

C: 5 (23)

There were no between-group differences for the subcategories (p>0.05).

 

Defined as the occurrence of pneumonia in the month after surgery, n (%)

I: 10 (45)

C: 10 (50)

p>0.05

 

Defined as the number of ventilator-dependent days, median (range)

I: 6.5 (1 to 17 days)

C:5 (1.25 to 12)

p>0.05

 

5. Neurologic recovery

Defined as change in at least 2 AIS grades, n (%)

I: 10 (45.5)

C: 2 (10)

RR=2.08, 95%CI=1.12;3.87.

 

Odds adjusted for severity of t-SCI (complete or incomplete traumatic spinal cord injury) and the degree of spinal canal compromise: 11.08, p=0.004

 

Defined as change in ASIA motor score, median change (range)

I: 38.5 (10.0;61.0)

C: 15.0 (8.8;34.0)

P=0.047

“In our study, no statistically significant differences in the rate of perioperative complications, pneumonia, number of ventilatory dependent days, and mortality was found between the two study groups.”

 

McKinley, 2004

Type of study:

Retrospective case series

 

Setting: 18 Model Spinal Cord Injury Systems

 

Country: US

 

Source of funding: “No commercial party having a direct interest in the results of the research supporting this article has or will confer a benefit on the author(s) or on any organization with which the authors is/are associated.”

Inclusion criteria:

* nonpenetrating traumatic SCI who completed inpatient rehabilitation

 

Exclusion criteria:

* penetrating injuries (i.e. gunshot wounds)

 

N total at baseline:

Intervention: 73

C-1: 143

C-2:91

 

Important prognostic factors2:

Only reported for the whole subgroup of patients operated between 1 and 3 days after injury:

 

age ± SD:

36.72 ± 14.89 years

 

Sex: 74%M

 

Groups comparable at baseline? unknown

 

Surgery <24h (defined as operated on the same day as hospital admission

 

 

 

C-1: Surgery between 1 and 48h, first day after injury

C-2: 24 to 72h second day after injury)

 

 

 

Length of follow-up:

1-year follow-up, 4 time points: acute care, rehabilitation admission, rehabilitation discharge, 1-year follow-up.

 

Loss-to-follow-up:

Unclear

 

Incomplete outcome data:

See outcome measures

 

 

  1. Mortality

Not reported for this subgroup

 

  1. Quality of life

Not reported for this subgroup

 

  1. Start of rehabilitation/length of hospitalization

Not reported for this subgroup

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

Not reported for this subgroup

 

  1. Neurologic recovery

Defined as the ASIA impairment score (AIS), change score from admission to follow-up, mean (SD), n

I: 0.74 (0.96), 34

C-1: 0.59 (1.08), 90

C-2:0.28 (0.86), 57

X2=6.61, p=0.037

 

Defined as the AISA motor index total score,

change score from admission to follow-up, mean (SD), n

I: 20.00 (22.61), 33

C-1: 17.07 (21.23), 75

C-2:12.11 (18.63), 46

X2=3.87, p=.144

Only the results for the comparisons between day 1, 2 and 3 admissions were included.

 

Furthermore, only the scores for the ASIA impairment score (AIS) and the AISA motor index total score are presented here, but the authors mention that “There were no between-group differences in neurologic, motor, or sensory levels or ASIA motor index.”

 

Patients were likely those with spinal instability.

 

 

The AIS injury level categories were recoded into numeric format to compute changes scores. The authors unfortunately don’t present the number of patients that improved one of more Asia grades, but reported the mean change.

Sohail Umerai, 2014

Type of study:

Prospective observational

 

Setting: tertiary care spinal trauma unit

 

Country: Pakistan

 

Source of funding: “no potential conflict of interest relevant to this article was reported”

Inclusion criteria:

* cervical cord injury from C3-T1

* aged between 18 to 65 years

 

Exclusion criteria:

*Glasgow Coma Scale >14 or ASIA AIS grade E at presentation

 

N total at baseline:

Intervention: 34

Control: 64

 

Important prognostic factors2:

age ± range:

I:37.5 (21-65)

C:40.1 (19-61)

 

Sex:

I: 82.35% M

C: 76.56% M

 

Groups comparable at baseline? yes

 

Decompressive surgery within 24h

 

 

 

 

Decompressive surgery after 24h (mean 52.7h, range: 31-124h)

 

Length of follow-up:

6 months

 

Loss-to-follow-up: n (%)

I: 3 (8.8)

C: 3 (4.7)

 

Incomplete outcome data:

Not reported

 

  1. Mortality, n (%)

I: 1 (2.9) (cardiopulmonary arrest during surgery)

C: 4 (6.2) (2 pulmonary embolism, 1 patient developed bedsores and urinary tract infection and died of sepsis).

 

No statistical analyses reported.

 

  1. Quality of life

Not reported

 

  1. Start of rehabilitation/length of hospitalization

Not reported

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

11.2% in total

I: 4

C: 7

(results presented in the discussion)

 

  1. Neurologic recovery

Defined as at least 1 AIS grade, n (%)

I: 18 (52.9)

C:25 (39.1)

Odds=3.12, 95%CI=1.21;8.02

 

Defined as at least 2 AIS grades, n (%)

I: 7 (23.3)

C: 5 (8.7)

Odds=3.05, 95%CI=0.89;10.51

Surgery was sometimes delayed due to for instance medical condition of the patient, late presentation after trauma, delay in consent.

Battistuzzo, 2016

Type of study:

Retrospective

 

Setting: multicenter

 

Country: Australia and New Zealand

 

Source of funding: No conflict of interest

Inclusion criteria:

* 15 to 70 years

*C3-T1 facture, fracture-dislocation, and disc and/or ligamentous injury in association with an acute traumatic SCI with neurological deficits

 

Exclusion criteria:

* time of injury and time of spinal decompression were not available

*multiple traumatic injuries (trauma to at least one other major organ, significant abdominal bleeding or retro-peritoneal hemorrhage likely to require intervention, pelvic fracture likely to require intervention, more than two long bone fractures requiring operative fixation)

* ISS>16

* Significant head injury (GSC score<13)

* penetrating SCI

* traumatic central cord syndrome

* pre-existent major neurological deficits or disease

 

N total at baseline:

Intervention: Not reported (NR)

Control: NR

 

Important prognostic factors2:

NR

 

Groups comparable at baseline? NR

Spinal decompression within 24h

 

 

 

 

Spinal decompression after 24h (largest part of the patients was operated at 72h)

 

Length of follow-up:

Rehabilitation discharge

 

Loss-to-follow-up:

NR, see below

 

Incomplete outcome data:

Of the 192 included patients, 165 had complete AIS scores at both time points (hospital admission – rehabilitation discharge)

 

 

  1. Mortality

Not reported

 

  1. Quality of life

Not reported

 

  1. Start of rehabilitation/length of hospitalization

Not reported

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

Not reported

 

  1. Neurologic recovery

Defined as an improvement of 2 or 3 AIS grades, n (%)

I: 16%

C:11%

Chi-square, p=0.35)

 

 

Although the negative results, there was a relationship between the time of spinal decompression and proportion of patients that improved on the AIS.

Fehlings, 2012

(STASCIS)

Type of study:

Prospective cohort study

 

Setting: multicenter

 

Country: US/Canada

 

Source of funding: “The authors wish to acknowledge the support of the following agencies and granting bodies who contributed to the study: Krembil Foundation;

Christopher and Dana Reeve Foundation; Cervical Spine Research Society; AANS/CNS Section on Disorders of the Spine and Peripheral Nerves and the Rick

Hansen Institute. The logistics of the study were supported by PhDx through an unrestricted grant to the Spine Trauma Study Group by Medtronic Inc. The

funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.”

 

 

Inclusion criteria:

* male or female

* age 16 to 80

* Initial GCS>13

* Initial AIS grade A-D

* Cervical spinal cord compression confirmed by MRI or CT Myelography

* Patient or Proxy willing to provide consent for enrolment

* Neurological Level of injury between C2 and T1

 

Exclusion criteria:

* cognitive impairment preventing accurate neurologic assessment

* Penetrating injuries to the neck

* pregnant females

* Pre-injury major neurologic deficits or disease

* Life threatening injuries which prevent early decompression of the spinal cord

Arrival at health center >24hours after SCI

* Surgery>7days after SCI

 

 

N total at baseline:

Intervention: 182

Control: 131

 

Important prognostic factors2:

age ± SD:

I: 45.0 ±17.25

C:50.7 ±15.9

 

Sex:

I: 76.9% M

C: 73.3% M

 

Groups comparable at baseline? No, patients in the early surgery cohort were younger and the neurological status on admission was different: A’s and B’s were more present in the early group, while C’ and D’s were more present in the late group. More patients also received steroids in the early group.

Decompressive surgery <24h after injury

 

 

Decompressive surgery >24h after injury (mean=48.3 ± 29.3)

 

Length of follow-up:

6 months follow-up

 

Loss-to-follow-up:

Intervention: 51 (28%)

Reasons: 4 deaths, 47 unknown

 

Control: 40 (31%)

Reasons:1 death, 39 unknown.

 

Incomplete outcome data:

Not reported

 

 

  1. Mortality, n (%)

Defined as mortality within 30 days.

I: 1 (secondary to postoperative myocardial infarction)

C: 1 (pulmonary complications)

 

3 more patients died in the early surgery group (cardiorespiratory causes)

 

  1. Quality of life

Not reported

 

  1. Start of rehabilitation/length of hospitalization

Not reported

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

Defined as the number of complications, number of patients (%)

I: 48, n=44 (24.2)

C: 49, n=40 (30.5)

The difference between the number of patients with at least one complication was not statistically different between group, p=0.21.

 

  1. Neurologic recovery

Defined as an improvement of at least 1 AIS grade, n (%)

I: 74 (56.5)

C:45 (49.5)

OR=1.33, 95%CI=0.78;2.27

Adj OR=1.4, 95%CI=0.80;2.57

 

Defined as an improvement of at least 2 AIS grades, n (%)

I: 26 (19.8)

C:8 (8.8)

OR=2.57, 95%CI=1.11;5.97

Adj OR=2.8, 95%CI=1.10;7.28

 

Analyses were adjusted for preoperative neurologic status (complete versus incomplete) and steroid status (after eliminating predictors with p-values>0.05)

Timing of surgery was depending on the time elapsed post injury at patients’ hospital arrival, the time required to obtain diagnostic investigations, and the discretion of the attending spinal surgeon.

 

Bourassa-Moreau, 2013

Type of study:

Retrospective cohort

 

Setting: level I trauma center

 

Country: Canada

 

Source of funding: No competing financial interest exist.

Inclusion criteria:

* spinal fracture, dislocation or fracture-dislocation from C1 to L2

* clinical evidence of complete SCI classified as ASIA grade A at the preoperative assessment

* Minimal age of 16 year

* Spine surgery performed at our center

 

Exclusion criteria:

* Penetrating trauma to the spine

* Nonsurgical management

* Pre-existing or associated neurological disorders (including severe but not mild or moderate traumatic brain injury) that preclude a reliable neurological assessment preoperatively in relationship to the SCI.

 

N total at baseline:

I:55 (28%)

C:142 (72%)

 

Important prognostic factors2:

age ± SD:

I: 36.4±14.6

C:40.4±16.2

 

Sex:

I :89 % M

C: 82% M

 

Groups comparable at baseline? Yes

 

Surgery within 24h

(17.6±5.0h)

 

 

Surgery after 24h following traumatic SCI. (67.3±92.1h)

 

Length of follow-up:

End of acute care hospitalization

 

Loss-to-follow-up:

Not reported

 

Incomplete outcome data:

Not reported

 

  1. Mortality

I: 2 (4%)

C: 4 (3%)

P=0.672

 

  1. Quality of life

Not reported

 

  1. Start of rehabilitation/length of hospitalization

Not reported

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

Here defined as non-neurological complications during acute care hospitalization.

Total, n (%)

I: 23 (42)

C:89 (63)

P=0.01

 

Surgical timing >24h, tetraplegia, and ISS were significant predictors of total number of complications.

Adj OR =2.39, 95%CI= 1.24;4.63.

Adjusted for ISS and tetraplegia

 

Pneumonia, n (%)

I: 11 (20)

C: 51 (36)

P=0.04

Adj OR=2.28, 95%CI=1.02;5.08

Adjusted for tetraplegia, ISS and age.

 

Pressure ulcer, n (%)

I: 9 (16)

C: 35 (25)

P= 0.255

Timing was not a significant correlate of pressure ulcers

 

Urinary tract infection, n (%)

I: 8 (15)

C: 42 (30)

P= 0.06

Adj OR=2.69, 95%CI= 1.16;6.25

Adjusted for surgical invasiveness score.

 

 

  1. Neurologic recovery

Not reported

 

Rahimi-Movaghar, 2004

Type of study:

Prospective RCT

 

Setting: trauma center, neurosurgery department of Shahid Rajaee Hospital

 

Country: Iran

 

Source of funding: Grants from Sina Trauma and Surgery Research Center of Tehran University of Medical Sciences, and Shiraz University of Medical Sciences.

Inclusion criteria:

* age of 18 years or older

* Traumatic SCI between T1 and L1

* hemodynamic stability

* Evidence of spinal cord/conus medullaris compression

MRI signal change

* Hospital admission before 24h of injury.

 

Exclusion criteria:

* major and current psychiatric illness

*significant concurrent traumatic brain injury

* Marjor concurrent medical disease

* pre-injury major neurologic deficits or disease

* ankylosing spondylitis

* penetrating thoracolumbar injuries

* pregnant females

* life threatening injuries preventing early cord decompression

* criminals under indictment or incarceration

* substance abuse

* AIS grade E

* no cord compression on MRI

* spinal shock

* Any cognitive deficit

* inability to provide informed consent

* injury involving more than 2 adjacent vertebral levels.

 

N total at baseline:

Intervention: 16

Control: 19

 

Important prognostic factors2:

age ± SD:

I: 31.7±9.1

C: 37.8±13.70

 

Sex:

I: 69% M

C: 74% M

 

Groups comparable at baseline?

More baseline AIS grade B in late surgery group (26 versus 6% and less grade C (5 versus 25%). Furthermore, more automobile crashes in late surgery group (74 versus 25%).

Decompressive surgery within 24h from injury

 

Five different surgical procedures were used.

 

Decompressive surgery between 24 to 72h from surgery.

 

 

Follow-up assessments:

Performed on admission, preoperatively, immediately after surgery and at 1, 3, 6 and 12 months follow-up.

 

 

Loss-to-follow-up:

n (%), reasons

One month

I: 2 (11), missed visit; dead

C: 5 (26), missed visit (n=4), dead

 

3 months follow-up

I: 7 (44), missed visit (n=6); dead

C: 7 (37), missed visit (n=6), dead

 

12 months follow-up

I: 1 (6), dead

C: 1 (5), dead

 

Incomplete outcome data:

15 patients from the early intervention group and 18 from the late intervention group were included in the analysis.

 

 

  1. Mortality

I: 1 (pulmonary thromboembolism)

C: 1 (aetiology unknown)

No statistical analyses performed.

 

  1. Quality of life

Not reported

 

  1. Start of rehabilitation/length of hospitalization

Defined as length of hospital stay, days

I: 7 ± 7.13

C: 9.7 ± 8.28

p>0.05

 

  1. Complications (infection, bleeding, exaggeration of neurological complains)

I: 1, deep vein thrombosis

C: 6, 1 deep vein thrombosis, 2 wound infection, 1 CSF leak, 1 meningitis, 1 decubitus ulcer.

 

There were six revisions.

There was one unilateral T6 revision and one bilateral T9 revision in the early surgery group, and unilateral revisions of T12, T9 and T7 (latter in the same patient). There was also one rod fracture in the late surgery group one year after surgery.

 

  1. Neurologic recovery

Defined as the ASIA impairment scale (AIS)

I: 53% improved in AIS grade, 5 improved 1 grade, 3 patients (20%) improved 2 grades.

C: 44% improved in AIS grade, 7 improved 1 grade, 1 patient (6%) improved 2 grades.

 

Defined as the mean motor score

Complete TSCI: “no improvement of mean ASIA motor score was observed in either group over 12 months”.

 

Incomplete TSCI:

I: Baseline: 77±22, 12-months: 92±12

C: Baseline: 68±22, 12 months: 82±16

 

No statistical analyses were performed.

Recruitment will continue until sample size of 328 cases is reached.

 

Risk of bias table for intervention studies (observational: non-randomized clinical trials, cohort and case-control studies)

Study reference

 

(first author, year of publication)

Bias due to a non-representative or ill-defined sample of patients?1

 

 

 

(unlikely/likely/unclear)

Bias due to insufficiently long, or incomplete follow-up, or differences in follow-up between treatment groups?2

 

(unlikely/likely/unclear)

Bias due to ill-defined or inadequately measured outcome ?3

 

 

 

(unlikely/likely/unclear)

Bias due to inadequate adjustment for all important prognostic factors?4

 

 

 

(unlikely/likely/unclear)

Bourassa-Moreau, 2016

Unknown, although all patients were included, there might have been a healthcare access bias (timing of operation was for instance dependent on restricted access to the operating room); older and more severely injured patients may have been operated later.

Unlikely, the difference is length of follow-up is not significant

Unclear, blinding not mentioned.

Unclear. In the statistics section it is mentioned that the regression models were adjusted for potential confounders, but the exact method is not described.

Bourassa-Moreau, 2013

Unlikely, patients identified using a trauma register in which all patients who have been treated for a traumatic injury are prospectively registered.

Unlikely (as complications was outcome measure).

Unclear, not blinded, but some seems to be quite hard outcomes. However, due to retrospective nature, some mild complications might have been missed, as they may not have been documented in the medical record.

Potential covariates included adjusted for age, sex, Charlson Comorbidity Index (CCI), neurological level of injury, injury severity score (ISS), the presents of mild or moderate traumatic brain injury and the surgical invasiveness index (SII). A backward eliminating procedure was used. The final analyses for total number of complications were adjusted for ISS and tetraplegia.

Jug, 2005

Unclear, consecutive sample, but more patients in the 8-24h group were transferred from other hospitals

Unlikely

Unlikely

Unclear for analyses for neurological recovery (adjusted for spinal canal compromise and the degree of traumatic spinal cord injury; complete versus incomplete), likely for other outcomes.

McKinley, 2004

Unclear, no demographics and injury characteristics provided for the subgroups of interest. No information about the number of patients with missing data (“People were selected based on injury type and completeness of data”). Patients were likely those with spinal instability (not specified)

Likely, loss to follow-up was quite high, no reasons provided.

Unclear, not clear when exactly the baseline measurements were performed, unclear whether the assessments were performed blinded.

Likely, analyses were not adjusted.

Sohail Umerani, 2014

Unclear, unclear whether all consecutive patients were included

Unlikely, Follow-up time was 6 months, loss to follow-up was small, but no reasons provided.

Unlikely

Likely, it is mentioned that the analyses were not adjusted.

Battistuzzo, 2016

Unclear

Unclear, reasons loss to follow-up not provided. Length of follow-up until discharge.

Unclear

Likely, analyses probably not adjusted.

Fehlings, 2012

Unlikely

 

Likely for outcomes except complications, loss to follow-up was quite large, no reasons provided.

Unlikely, blinded outcome assessment.

Unlikely for AIS grade. The predictive variables age, gender, complete (AIS A) versus incomplete (B-D), neurological status at admission and steroid administration were considered. Only preoperative neurologic status and steroid use were included in the final models (backwards model). Other analyses were likely not adjusted.

 

Risk of bias table for intervention studies (randomized controlled trials)

Study reference

 

 

 

(first author, publication year)

Describe method of randomisation

Bias due to inadequate concealment of allocation?

 

 

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of participants to treatment allocation?

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of care providers to treatment allocation?

 

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of outcome assessors to treatment allocation?

 

(unlikely/likely/unclear)

Bias due to selective outcome reporting on basis of the results?

 

 

 

(unlikely/likely/unclear)

Bias due to loss to follow-up?

 

 

 

 

 

(unlikely/likely/unclear)

Bias due to violation of

intention to treat analysis?6

 

 

 

(unlikely/likely/unclear)

Rahimi-Movaghar

Block randomisation to generate randomisation list, with separate blocked sequences for each of the four sites and for patients with complete or incomplete injuries.

 

“For each patient, an e-mail identifying the treatment was sent to the supervising attending by the principal investigator (PI) of the RCT. Upon patient referral, the supervising attending opened his special e-mail for the first time, printed the treatment protocol, and wrote the patient’s name. The PI supervised commitment to the randomisation process by reviewing the printed e-mails and patients’ files, names and detailed data, which were scanned and sent back confirming that the patient would receive the treatment”

Unlikely

Unlikely

unclear

Unlikely (single blinded) for AIS grade, unclear for other outcome measures.

Unlikely

Unlikely

unlikely

 

Exclusion after reading the full article.

Author, year

Reason

Anderson, 2015

Central cord injury

Bagnall, 2008

Review, published before 2010

Bellabarba, 2010

Focusses on thoracolumbar spine

Bellew, 2007

Case report and review published before 2010

Biglari, 2016

Surgical intervention within 4 hours

Bourassa-Moreau,2013

Timing >72h is taken as reference category, while we are interested in the difference between timing<24h and timing 24-72h

Bravo, 1993

Timing >72h: “the mean time from the moment of sustaining the lesion to surgical operation was 7.5 =/- 1.2 days)”

Bonfield, 2010

Did not focus on the timing of the surgery

Bötel. 1997

No comparison, only descriptive

Cadotte, 2011

Limited presentation of results

Camagnolo, 1997

Surgery in the late group on average after 72h. “In the >24-hour group there was a mean of 15.3 days to surgery (SD=/- 19,5 days) with a large range from two days to 77 days.”

Carreon, 2011

Only three included studies made a comparison between surgery before and after 24h

Celik, 2013

Not available

Cengiz, 2008

No RCT, comparison between treatment within 8 hours or more than 3 days

Chau, 2014

Review, only focus on cauda equina syndrome

Chen, 1997

No comparison? Surgery in most cases performed outside timeframe PICO.

Deng, 2011

Only inclusions of RCTs or guidelines or systematic reviews, not enough data presented

Dimar, 2010

Focusses on patients with polytrauma. Most studies made comparison between surgery before and after 72h

Dvorak, 2015

Timing surgery in the late group not clear. Only clear that neurological status within 72 after injury is determined

El Tecle,

Review, and no RCT/observational study. As the reviews different in included articles, we decided to include only the individual articles

Fehlings, 2010 -20

Comparison between surgery before and after 72h. Not enough individual data presented

Fehlings, 2006

Review, published before 2010

Fehlings, 2005

Review, published before 2010

Fehlings, 1991

Review, published before 2010

Furlan, 2016

Focusses on the cost-effectiveness

Furlan, 2011

Presents the methodology of SRs

Furlan, 2011

Insufficient data of the included articles presented in tables

Gaebler, 1999

Inclusion of patients without neurological deficit. Comparison differs from PICO: “the patients of the follow-up examination were subdivided into three groups according to the time of operation: Group 1: operation within 8h after the accident. Group II: operation after 8 h, but within 10 days. Group III: operation after a time of 10 days”

Grassner, 2016

Mean timing surgery late group >72h (mean 89.27h)

Hadley, 1992

Only descriptive

Hierholzer, 2007

Descriptive article

Kepler, 2015

Timing of surgery in late group not defined

Koksal, 2016

No comparison between early and late surgery

Levi, 1991

Surgery in the late group on average 13 days after injury

Liu, 2016

Review, and no RCT/observational study. As the reviews different in included articles, we decided to include only the individual articles

Joaquim, 2014

Narrative review

La Rosa, 2004

Review, published before 2010

Loibl, 2016

Discussion, no systematic review

Lenehan, 2010

Focusses on central cord injuries

Lukas, 2012

Article in Czech

Ma, 2009 -20

Review, published before 2010

Mouchaty, 2006

No statistical analysis

Murphy, 2016

Not available

Murphy, 1990

No comparison between early (<24) and late (between 24-72h) surgery

Mukerji, 2013

Review, not systematic

Ng, 1999

Feasibility study (how many patients can be operated within 8 hours)

Papadopoulos, 2002

Seems that not all patients were operated on within 24h and not enough information about the reference group provided

Petitjean, 1995

No comparison between early and late (<72h) surgery

Pollard, 2003

Delayed definite surgery on average at 10 days

Radcliff, 2011

Review, not systematic

Rajasekaran, 2015

No systematic review

Rajasekaran, 2010

No systematic review

Randle, 1991

Surgery in the late group on average 14.3 days after injury

Rath, 2005

Quite a large part of the study population had surgery >72h

Sacks, 2011

Patients with spinal injury, only small part with spinal cord injury. Furthermore, no pre-post data available

Stevens, 2008

Mean time to surgery in late group outside time frame PICO (6.4 days)

Schinkel, 2008

Review, published before 2010

Schroeder, 2016

Only central cord, timing late surgery not defined

Sharif-Alhoseini, 2014

Timing of the operation in the late group not defined

Song, 2016

Focus on bladder dysfunction

Srikandarajah, 2015

Cauda equine syndrome, focus on bladder outcome

Tator, 1999

Descriptive, provided information to protocolize a RCT

Van Middeldorp, 2013

Review, and no RCT/observational study. As the reviews different in included articles, we decided to include only the individual articles

Wang, 2015

Mean time after surgery not defined for the late group. “more than 24 hours after injury but during initial admission to the hospital and within 3 weeks from injury”. (mean: 10.2 days)

Wang, 2001

Patients were operated after 24h

Waters, 1999

No comparison between early and late operation

Wilson, 2016

Abstract

Wilson, 2012

Timing of surgery in late group >72h “The mean time to surgery was 12.7 (±4.9) and 155.0 h (±236.7) in the early and late groups”

Wolf, 1991

Surgery in the late group on average 8.7 days after injury

Yamazaki, 2005

Surgery >72: “twenty-three patients underwent surgical treatment, 13 of which were operated on within 2 weeks of injury" The other 10 patients were operated after 2 weeks.

Yilmaz, 2015

No systematic review, RCT or comparative observational study

Yue, 2016

Not retrievable

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 15-11-2019

Laatst geautoriseerd  : 15-11-2019

Module

Regiehouder(s)

Jaar van autorisatie

Eerstvolgende beoordeling actualiteit richtlijn

Frequentie van beoordeling op actualiteit

Wie houdt er toezicht op actualiteit

Relevante factoren voor wijzigingen in aanbeveling

Timing operatie bij neurologische uitval

NOV

2019

2024

Elke 5 jaar

NOV

Mogelijk zou door de resultaten van lopende studies een eerdere revisie wenselijk zijn.

 

Uiterlijk in 2024 bepaalt het bestuur van de Nederlandse Orthopaedische Vereniging of de modules van deze richtlijn nog actueel zijn. Op modulair niveau is een onderhoudsplan beschreven. Bij het opstellen van de richtlijn heeft de werkgroep per module een inschatting gemaakt over de maximale termijn waarop herbeoordeling moet plaatsvinden en eventuele aandachtspunten geformuleerd die van belang zijn bij een toekomstige herziening (update). De geldigheid van de richtlijn komt eerder te vervallen indien nieuwe ontwikkelingen aanleiding zijn een herzieningstraject te starten.

 

De Nederlandse Orthopaedische Vereniging is regiehouder van deze richtlijn en eerstverantwoordelijke op het gebied van de actualiteitsbeoordeling van de richtlijn. De andere aan deze richtlijn deelnemende wetenschappelijke verenigingen of gebruikers van de richtlijn delen de verantwoordelijkheid en informeren de regiehouder over relevante ontwikkelingen binnen hun vakgebied.

Initiatief en autorisatie

Initiatief:
  • Nederlandse Orthopaedische Vereniging
Geautoriseerd door:
  • Nederlandse Orthopaedische Vereniging
  • Nederlandse Vereniging van Revalidatieartsen
  • Nederlandse Vereniging van Spoedeisende Hulp Artsen
  • Nederlandse Vereniging voor Heelkunde
  • Nederlandse Vereniging voor Klinische Geriatrie
  • Nederlandse Vereniging voor Neurochirurgie
  • Nederlandse Vereniging voor Neurologie
  • Nederlandse Vereniging voor Radiologie
  • Nederlandse Vereniging voor Intensive Care
  • Nederlandse Vereniging Spoedeisende Hulp Verpleegkundigen

Algemene gegevens

De richtlijnontwikkeling werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten en werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS). De financier heeft geen enkele invloed gehad op de inhoud van de richtlijn.

 

In samenwerking met:

Ambulancezorg Nederland

Doel en doelgroep

Doel

Doel van deze herziening is om weer een richtlijn te verkrijgen waarin de meeste recente medische kennis en inzichten omtrent de zorg voor patiënten met acute traumatische wervelletsels is meegenomen.

 

Doelgroep

Deze richtlijn is bedoeld voor alle professionele hulpverleners in Nederland die betrokken zijn bij opvang, diagnostiek en behandeling van patiënten met (een verdenking op) een traumatisch letsel aan de wervelkolom met of zonder begeleidend neurologisch letsel. Dit betreft in eerste instantie ambulancezorgverleners, het Mobiel Medisch Team (MMT), spoedeisende hulp verpleegkundigen en -artsen, radiologen, orthopeden, neurologen, neurochirurgen, traumachirurgen, intensivisten, klinisch geriaters en revalidatieartsen.

Samenstelling werkgroep

Voor het ontwikkelen van de richtlijn is in 2016 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen die betrokken zijn bij de zorg voor patiënten verdacht op het hebben van een acuut traumatisch wervelletsel, of bij de zorg voor patiënten waarbij een acuut traumatisch wervelletsel is vastgesteld. De werkgroepleden zijn door hun beroepsverenigingen gemandateerd voor deelname. De werkgroep is verantwoordelijk voor de integrale tekst van deze richtlijn.

 

Werkgroep

  • Prof. dr. F.C. Öner, orthopedisch chirurg, Universitair Medisch Centrum Utrecht, Utrecht, Nederlandse Orthopaedische Vereniging (voorzitter)
  • Prof. dr. F.W. Bloemers, traumachirurg, AmsterdamUMC, locatie VUmc, Amsterdam, Nederlandse Vereniging voor Heelkunde
  • Dhr. G. Brouwer, teammanager SEH, werkzaam in het UMC Utrecht, Utrecht, Nederlandse Vereniging voor Spoedeisende Hulp Verpleegkundigen
  • Drs. G.J.A. Jacobs, spoedeisende hulp arts, Dijklander ziekenhuis, Hoorn en Purmerend, Nederlandse Vereniging van Spoedeisende Hulp Artsen
  • Drs. J.M.R. Meijer, Intensivist, Noordwest Ziekenhuisgroep, Alkmaar, Nederlandse Vereniging voor Intensive Care
  • Dr. D.F.M. Pakvis, orthopedisch chirurg, OCON Orthopedische kliniek, Hengelo, Nederlandse Orthopaedische Vereniging
  • Drs. F. Penninx, patiëntvertegenwoordiger, Dwarslaesie Organisatie Nederland
  • Mevr. M. van Dam, patiëntvertegenwoordiger, Dwarslaesie Organisatie Nederland
  • Dr. S.D. Roosendaal, radioloog, Amsterdam UMC, Amsterdam, Nederlandse Vereniging voor Radiologie
  • Dr. H. van Santbrink, neurochirurg, Maastricht Universitair Medisch Centrum+, Maastricht, Nederlandse Vereniging voor Neurochirurgie (tot maart 2018)
  • Drs. T.A.R. Sluis, Revalidatiearts, Rijndam Revalidatiecentrum, Rotterdam, Nederlandse Vereniging van Revalidatieartsen
  • Drs. R. de Vos, anesthesioloog/Medisch Manager Ambulancezorg, Ambulancezorg Nederland
  • Dr. P.E. Vos, Neuroloog, Slingerland Ziekenhuis, Doetinchem, Nederlandse Vereniging voor Neurologie
  • Drs. P.V. ter Wengel, neurochirurg, Leids Universitair Medisch Centrum, Leiden, Haaglanden Medisch Centrum locaties Den Haag en Leidschendam, en Spaarne Gasthuis locaties Hoofddorp en Haarlem Zuid, Nederlandse Vereniging voor Neurochirurgie

 

Klankbordgroep

  • Dhr. H.H. Wijnen, Klinisch Geriater, Rijnstate, Arnhem, Nederlandse Vereniging voor Klinische Geriatrie

 

Met ondersteuning van

  • Dr. S. Persoon, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
  • Dr. M. Molag, adviseur, Kennisinstituut van de Federatie Medisch Specialisten (tot oktober 2017)
  • S. Wouters, projectsecretaresse, Kennisinstituut van de Federatie Medisch Specialisten
  • M. Wessels, MSc, Medisch informatiespecialist, Kennisinstituut van de Federatie Medisch Specialisten

Belangenverklaringen

De KNMG-code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement, kennisvalorisatie) hebben gehad. Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

F.C. Öner

Orthopedisch chirurg

AOSpine Knowledge Forum Spinal Trauma, Chairman.

Research grants van:

  • DePuy-Synthes
  • AOSpine International

Geen actie.

Research grant DePuy-Synthes heeft geen betrekking op het onderwerp. AO wel, maar is niet commercieel.

D.F.M. Pakvis

Orthopedisch Chirurg

Consultent EIT (betaald), lid bestuur DSS (onbetaald), ATLS docent (betaald).

Geen

Geen actie. Gemelde nevenfuncties hebben geen betrekking tot het onderwerp van de richtlijn

R. de Vos

Anesthesioloog, Medisch Manager Ambulancezorg (tot maart 2017, nog wel lid van vereniging medisch managers)

Docent PHPLS (prehospital paediatric life support) (vrijwilligersbijdrage).
Docent ATLS (Advanced trauma Life Support) (betaald).
Docent APLS (Advanced Paediatric Life Support) (vrijwilligersbijdrage).
Docent MIMMS (Major Incident Medical Management and Support) (vrijwilligersbijdrage).
Lid wetenschappelijke raad van de Nederlandse reanimatieraad (vrijwilligersbijdrage) (tot april 2017).
Bestuurslid Stichting Reanimatie (vrijwilligersbijdrage).

Geen

Geen actie.

G.J.A. Jacobs

SEH-arts KNMG

Vicevoorzitter Stafbestuur Vereniging Medische staf ziekenhuizen Dijklander ziekenhuis

Docent APLS (Advanced Pediatric Life Support)

Docent PHPLS (Prehospital Paediatric Life Support)

Docent EPLS (European Paediatric Life Support) allen bij stichting Spoedeisende Hulp bij Kinderen (SSHK). Vrijwilligersbijdragen.

Geen

Geen actie.

G. Brouwer

Teamleider spoedeisende hulp

Geen

Geen

Geen actie.

P.E. Vos

Neuroloog, Slingeland Ziekenhuis Doetinchem

MediLibra in casu medische expertises (betaald). Dit betreft keuringen/het opstellen medische rapporten voor verzekeringen/rechtbanken in zake letselschade, waaronder soms dwarslaesies door ongevallen en arbeidsongeschiktheidskwesties.

Lid subcommissie visitatiecommissie van de Ned. Ver. voor Neurologie.

Voorzitter stuurgroep Ever Neuro Parma in een Asian-Pacific trial in traumatisch hoofd-hersenletsel (dagvergoeding/reisonkosten/speakers fee; inmiddels afgelopen).

Voorzitter (termijn afgelopen) scientific panel neurotraumatologie van de European Academy of Neurology. Momenteel lid van het panel.

Geen

Geen actie.

 

F.W. Bloemers

Hoofd traumachirurgie VU Medisch Centrum Amsterdam

AO Spine Chairman.

Bestuurslid NVA (Ned Ver voor Arthroscopie) onbetaald.

Voorzitter ROAZ regio Noord west.

Geen

Geen actie.

H. van Santbrink

 

(Belangen zoals opgegeven aan de start van het ontwikkelproces).

Neurochirurg Maastricht UMC

Lid regionaal tuchtcollege Eindhoven (betaald).

Bestuurslid NVvN (onbetaald).

 

 

Bewegingsanalyse cervicale wervelkolom in relatie tot disc arthroplasty
Braun Aecsulap unrestricted financial grant

Geen actie. De gemelde belangen zijn niet relevant voor het onderwerp van de richtlijn.

P. V. Ter Wengel

Neurochirurg

Promotieonderzoek traumatische dwarslaesies (onbetaald).

Lid commissie communicatie NVvN (onbetaald).

Lid commissie perifere zenuwchirurgie (NVvN).

-

Geen actie.

S.D. Roosendaal

Radioloog AMC

Geen

Geen

Geen actie.

T.A.R. Sluis

Revalidatiearts Rijndam Revalidatie

-

Geen

Geen actie.

J.M.R. Meijer

Traumachirurg-intensivist NWZ Alkmaar

Bestuurslid NVIC (onbetaald/ reiskostenvergoeding).

Diverse commissies NVIC (congrescommissie, visitatiecommissie, GIC (opleiding; onbetaald /reiskostenvergoeding).

Geen

Geen actie.

H. Wijnen

Klinisch geriater Rijnstate ziekenhuis Arnhem

Specialist-manager klinische geriatrie Rijnstate (betaald).

Voorzitter special interest groep geriatrische traumatologie NVKG (onbetaald).

Geen

Geen actie.

F. Penninx

Lid bestuur Dwarslaesie Organisatie Nederland tot 22 oktober 2018; onbetaald)

Bestuursadviseur (vanaf 22 oktober 2018)

Lid Raad van Toezicht Libra Revalidatie & Audiologie (betaald), Lid Nationaal Bestuur De Zonnebloem (onbetaald).

Geen

Geen actie

M. van Dam

Voorzitter werkgroep caudalaesie bij Dwarslaesie Organisatie Nederland (onbetaald; tot 1 januari 2018

Stafmedewerker patiëntenvoorlichting van het Ijsselland Ziekenhuis.

Geen

Geen actie

S. Persoon

Adviseur

Gastvrijheidsaanstelling Afdeling Revalidatie Academisch Medisch Centrum, Amsterdam in verband met promotietraject. Project: Physical fitness to improve fitness and combat fatigue in patients with multiple myeloma or lymphoma treated with high dose chemotherapy.

 

April 2018 t/m augustus 2018: Docent Team Technologie, Fontys Paramedische Hogeschool. Begeleiden van studenten bij afstudeerstages. Max 1 dag in de week (betaald).

Geen,

Promotieonderzoek werd gefinancierd door KWF, financier had geen invloed op uitkomsten onderzoek of op huidige werkzaamheden.

Geen actie.

M. Molag

Adviseur

-

Vriend werkt bij zorgverzekeraar VGZ (houdt zich bezig met informatiestromen tussen ICT en management)

Geen actie.

Wessels

Medisch informatiespecialist

Secretaris Stichting Groene Juliana (onbetaald).

Geen

Geen actie.

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief door participatie van twee werkgroepleden namens Dwarslaesie Organisatie Nederland (DON) in de werkgroep. De conceptrichtlijn is tevens voor commentaar voorgelegd aan de DON en de Patiëntenfederatie Nederland.

Methode ontwikkeling

Evidence based

Implementatie

In de verschillende fasen van de richtlijnontwikkeling is rekening gehouden met de implementatie van de richtlijn en de praktische uitvoerbaarheid van de aanbevelingen. Daarbij is uitdrukkelijk gelet op factoren die de invoering van de richtlijn in de praktijk kunnen bevorderen of belemmeren. De implementatietabellen zijn te vinden in de aanverwante producten van de afzonderlijk modules. De werkgroep heeft tevens interne kwaliteitsindicatoren ontwikkeld om het toepassen van de richtlijn in de praktijk te volgen en te versterken (zie Indicatorontwikkeling).

Werkwijze

AGREE

Deze richtlijn is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010), dat een internationaal breed geaccepteerd instrument is. Voor een stap-voor-stap beschrijving hoe een evidence-based richtlijn tot stand komt wordt verwezen naar het stappenplan Ontwikkeling van Medisch Specialistische Richtlijnen van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Knelpuntenanalyse

Tijdens de voorbereidende fase inventariseerden de voorzitter van de werkgroep en de adviseur de knelpunten. Tevens zijn er knelpunten aangedragen door Ambulancezorg Nederland, NVSHA, NVvH, NVvN, NVvR, DON, V&VN-IC, V&VN Ambulancezorg, VRA en ZiNL tijdens een invitational conference. Een verslag hiervan is opgenomen onder aanverwante producten. De werkgroep beoordeelde de aanbevelingen uit de eerdere richtlijn (NOV, 2009) op noodzaak tot revisie en stelde vervolgens een long list met knelpunten op en prioriteerde de knelpunten op basis van: (1) klinische relevantie, (2) de beschikbaarheid van (nieuwe) evidence van hoge kwaliteit, (3) en de te verwachten impact op de kwaliteit van zorg, patiëntveiligheid en (macro)kosten.

 

Uitgangsvragen en uitkomstmaten

Op basis van de uitkomsten van de knelpuntenanalyse zijn door de voorzitter en de adviseur concept-uitgangsvragen opgesteld. Deze zijn met de werkgroep besproken waarna de werkgroep de definitieve uitgangsvragen heeft vastgesteld. Vervolgens inventariseerde de werkgroep per uitgangsvraag welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal, belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Strategie voor zoeken en selecteren van literatuur

Vlak voor de start van het herzieningsproces is een NICE-richtlijn over onder andere de prehospitale zorg bij mensen verdacht voor wervelletsels gepubliceerd (NICE Guideline NG41, National Clinical Guideline Centre, 2016). De resultaten van module ‘Spinal injury assessment risk tools’ uit deze richtlijn zijn gedeeltelijk opgenomen in de literatuursamenvatting van UV1.

 

Voor de vragen naar de operatieve behandeling van patiënten met een acuut traumatisch wervelletsel zonder neurologie is eerst oriënterend gezocht. Deze oriënterende search is opgenomen bij de modules die de operatieve behandeling beschrijven. Daarnaast is er voor elk van de uitgangsvragen aan de hand van specifieke zoektermen gezocht naar gepubliceerde wetenschappelijke studies in (verschillende) elektronische databases. Tevens werd aanvullend gezocht naar studies aan de hand van de literatuurlijsten van de geselecteerde artikelen. In eerste instantie werd gezocht naar studies met de hoogste mate van bewijs. De werkgroepleden selecteerden de via de zoekactie gevonden artikelen op basis van vooraf opgestelde selectiecriteria. De geselecteerde artikelen werden gebruikt om de uitgangsvraag te beantwoorden. De databases waarin is gezocht, de zoekstrategie en de gehanteerde selectiecriteria zijn te vinden in de module met desbetreffende uitgangsvraag.

 

Kwaliteitsbeoordeling individuele studies

Individuele studies werden systematisch beoordeeld, op basis van op voorhand opgestelde methodologische kwaliteitscriteria, om zo het risico op vertekende studieresultaten (risk of bias) te kunnen inschatten. Deze beoordelingen kunt u vinden in de Risk of Bias (RoB) tabellen. De gebruikte RoB instrumenten zijn gevalideerde instrumenten die worden aanbevolen door de Cochrane Collaboration: Cochrane - voor gerandomiseerd gecontroleerd onderzoek; ACROBAT-NRS - voor observationeel onderzoek; QUADAS II - voor diagnostisch onderzoek.

 

Samenvatten van de literatuur

De relevante onderzoeksgegevens van alle geselecteerde artikelen werden overzichtelijk weergegeven in evidencetabellen. De belangrijkste bevindingen uit de literatuur werden beschreven in de samenvatting van de literatuur. Bij een voldoende aantal studies en overeenkomstigheid (homogeniteit) tussen de studies werden de gegevens ook kwantitatief samengevat (meta-analyse) met behulp van Review Manager 5.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

A) Voor interventievragen (vragen over therapie of screening)

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/).

 

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie (Schünemann, 2013).

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • het is mogelijk dat de conclusie verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • er is een reële kans dat de conclusie verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • de literatuurconclusie is zeer onzeker.

 

B) Voor vragen over diagnostische tests, schade of bijwerkingen, etiologie en prognose

De kracht van het wetenschappelijke bewijs werd eveneens bepaald volgens de GRADE-methode: GRADE-diagnostiek voor diagnostische vragen (Schünemann, 2008). In de gehanteerde GRADE-methode werden de basisprincipes van de GRADE-methodiek toegepast: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van bewijskracht op basis van de vijf GRADE-criteria (startpunt hoog; downgraden voor risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias).

 

Formuleren van de conclusies

Voor elke relevante uitkomstmaat werd het wetenschappelijk bewijs samengevat in een of meerdere literatuurconclusies waarbij het niveau van bewijs werd bepaald volgens de GRADE-methodiek. De werkgroepleden maakten de balans op van elke interventie (overall conclusie). Bij het opmaken van de balans werden de gunstige en ongunstige effecten voor de patiënt afgewogen. De overall bewijskracht wordt bepaald door de laagste bewijskracht gevonden bij een van de cruciale uitkomstmaten. Bij complexe besluitvorming waarin naast de conclusies uit de systematische literatuuranalyse vele aanvullende argumenten (overwegingen) een rol spelen, werd afgezien van een overall conclusie. In dat geval werden de gunstige en ongunstige effecten van de interventies samen met alle aanvullende argumenten gewogen onder het kopje 'Overwegingen'.

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals de expertise van de werkgroepleden, de waarden en voorkeuren van de patiënt (patient values and preferences), kosten, beschikbaarheid van voorzieningen en organisatorische zaken. Deze aspecten worden, voor zover geen onderdeel van de literatuursamenvatting, vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk. De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen.

 

Randvoorwaarden (Organisatie van zorg)

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijn is expliciet rekening gehouden met de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, menskracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van een specifieke uitgangsvraag maken onderdeel uit van de overwegingen bij de bewuste uitgangsvraag. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module Randvoorwaarden.

 

Indicatorontwikkeling

Gelijktijdig met het ontwikkelen van de conceptrichtlijn werden er interne kwaliteitsindicatoren ontwikkeld om het toepassen van de richtlijn in de praktijk te volgen en te versterken. Meer informatie over de methode van indicatorontwikkeling is op te vragen bij het Kennisinstituut van de Federatie Medisch Specialisten (secretariaat@kennisinstituut.nl).

 

Kennislacunes

Tijdens de ontwikkeling van deze richtlijn is systematisch gezocht naar onderzoek waarvan de resultaten bijdragen aan een antwoord op de uitgangsvragen. Bij elke uitgangsvraag is door de werkgroep nagegaan of er (aanvullend) wetenschappelijk onderzoek gewenst is om de uitgangsvraag te kunnen beantwoorden. Een overzicht van de onderwerpen waarvoor (aanvullend) wetenschappelijk van belang wordt geacht, is als aanbeveling in de Kennislacunes beschreven (onder aanverwante producten).

 

Commentaar- en autorisatiefase

De conceptrichtlijn werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijn aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijn werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Literatuur

Brouwers MC, Kho ME, Browman GP, et al. AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348.

National Clinical Guideline Centre. (2016) NICE guideline NG41: Spinal injury: assessment and initial management. London: National Institute for Health and Care Excellence.

Nederlandse Orthopaedische Vereniging. (2009). Richtlijn Acute Traumatisch Wervelletsels. ’s-Hertogenbosch: NOV.

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. https://richtlijnendatabase.nl/over_deze_site/richtlijnontwikkeling.html

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Schünemann HJ, Oxman AD, Brozek J, et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008;336(7653):1106-10. doi: 10.1136/bmj.39500.677199.AE. Erratum in: BMJ. 2008;336(7654). doi: 10.1136/bmj.a139. PubMed PMID: 18483053.

Ontwikkeling van Medisch Specialistische Richtlijnen: stappenplan. Kennisinstituut van Medisch Specialisten.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Behandeling van odontoïd (dens) type 2 fracturen