Leidraad Duurzaamheid in richtlijnen

Initiatief: NVVH Aantal modules: 6

Reusables versus disposables

Uitgangsvraag

2.1 Hoe kunnen reusables en disposables op een operatiecomplex op de meest duurzame manier worden gebruikt?

2.2 Hoe kunnen specifieke reusable en disposable medische instrumenten op een operatiecomplex op de meest duurzame manier worden gebruikt?

 

Zie een schematisch overzicht van de module in ‘Samenvatting’.

Aanbeveling

Gebruik bij voorkeur reusables, omdat disposables een grotere (negatieve) impact hebben op het milieu (R4-Reuse).

  • Beoordeel kritisch of het gebruik van een product daadwerkelijk nodig is (R1-Refuse).
  • Indien disposables toch noodzakelijk zijn bij de operatie, probeer dan het gebruik te minimaliseren (R2-Reduce).

Om de milieu-impact van reusables te verlagen:

  • Optimaliseer het reiniging-, desinfectie- en sterilisatieproces
    (bijv. door het gebruik van duurzame energie, energiezuinige apparatuur.
  • Beoordeel of sterilisatie noodzakelijk is naast reiniging en desinfectie. Raadpleeg hiervoor de SRI richtlijnen.
  • Optimaliseer het transport (bijv. door een meer duurzame manier van transport, verkorten van de transport afstand).
  • Geef de voorkeur aan reusables met de langste levensduur, omdat dit de laagste (negatieve) impact heeft op het milieu.

Neem duurzaamheid mee in het (her)ontwerp van producten, instrumenten en apparatuur (R3-Redesign).

  • Wijs de industrie op het belang van het aanbieden van duurzame medische hulpmiddelen.
  • Neem afvalverwerking mee in het herontwerp (bijv. door het gebruik van minder soorten materialen, duidelijke aanduiding afvalscheiding, stimuleren van circulariteit).

Overwegingen

Voor- en nadelen van de interventie en de kwaliteit van het bewijs

Er is literatuuronderzoek verricht naar de milieu-impact van disposables en reusables die worden gebruikt op operatiekamers. Twintig studies zijn gevonden (PICO1 n=9; PICO2 n=11). Hiervan zijn achttien studies een LCA, één studie is een review (Drew, 2021) en één studie behelst een observationeel onderzoek (Namburar, 2022). De studies vergelijken verschillende medische hulpmiddelen, bijvoorbeeld: naaldencontainers, operatiejassen, isolatiejassen, anesthesie medicatietrays, scopes, specula, anesthesieapparatuur, bloeddrukbanden en chirurgisch instrumentarium. Omdat de studies van beide PICO’s medische hulpmiddelen bevatten, worden deze als één groep beschouwd in de overwegingen en aanbevelingen en zullen de PICO’s niet afhankelijk worden behandeld.

De bewijskracht voor de cruciale uitkomstmaten ‘climate change’ en ‘waste’ komt uit op laag. De bewijskracht voor de belangrijke uitkomstmaten komt uit ook uit op laag. Op basis van de GRADE beoordeling van de literatuur kunnen geen sterke conclusies geformuleerd worden over de precieze mate van milieu-impact van reusables en disposables. Echter, ondanks de methodologische verschillen tussen de LCA’s, wijzen de resultaten wel dezelfde richting op. De resultaten van deze LCA’s worden ondersteunt door twee CE Delft studies die zijn uitgevoerd voor de UMC Utrecht (CE Delft, 2022a; CE Delft, 2022b). Gezien deze consequente richting, geïdentificeerde hotspots en de urgentie om de milieu-impact te verminderen, beschouwt de werkgroep dit als afdoende ondersteuning om sterke aanbevelingen te formuleren. De werkgroep hoopt hiermee bewustwording te creëren bij zorgverleners en zo concreet mogelijk handvatten te bieden.

 

De LCA’s (n=18) zijn kritisch beoordeeld op basis van de beoordeling volgens Drew (2021). De kwaliteit van de studies wordt hiermee beoordeeld op basis van de methodologie van een LCA. Dit scoresysteem bestaat uit 16 beoordelingscriteria, die zijn verdeeld over de verschillende fasen van een LCA. Het behandelt een reeks indicatoren voor studiekwaliteit, zoals interne validiteit, externe validiteit, consistentie, transparantie en bias. De procentuele score geeft een indicatie van de algehele studiekwaliteit. Een hogere score duidt op een hogere algehele studiekwaliteit (zie bijlage 2). Een beknopt overzicht van de scores staat weergegeven in tabel 1.

 

 

Indien disposables en reusables met elkaar worden vergeleken, moet de gehele levenscyclus en levensduur van de producten in acht worden genomen. Indien een reusable bijvoorbeeld 75 keer kan worden hergebruikt, wordt dit vergeleken met 75 disposable producten voor eenmalig gebruikt. Hierbij is dus niet de gehele levensduur van de reusable variant meegenomen, wat leidt tot een ongelijke vergelijking. Daarnaast zal men zich bewust moeten zijn dat in de studie van Leiden (2020) de reusable instrument set uit veel meer instrumenten bestaat dan de disposable set. In andere LCA’s wordt aangetoond dat bij meermalig gebruik van de reusable de negatieve milieu-impact afneemt, in vergelijking met de disposable variant (Drew, 2021; Grimmond, 2012; Grimmond, 2021; Hicks, 2016; McGain, 2010; McPherson, 2019; Vozzola, 2018; Vozzola, 2018; Vozzola, 2020; Donahue, 2020; Eckelman, 2012; Ibbotson, 2013; Sanchez, 2020; Sherman, 2018). Deze 14 LCA’s impliceren dat het gebruik van reusables een lagere milieu-impact heeft in vergelijking tot het gebruik van disposables.

McGain (2017) vergeleek reusable en disposable anesthesie apparatuur en concludeerde dat de milieu-impact van hetzelfde type apparatuur (bijvoorbeeld reusable) kan variëren tussen verschillende continenten. Waar de disposables een lagere milieu-impact lijken te hebben in Australië, suggereren de resultaten dat de impact voor reusables lager zijn in de Verenigde Staten (VS), het Verenigd Koninkrijk (VK) en in Europa. Dit komt door het verschil in energiemix. Er zijn verschillende primaire energiebronnen, waaruit secundaire energie voor direct gebruik (zoals elektriciteit) wordt geproduceerd. Steenkool als energiebron voor de energiemix, zoals in Australië, leidt tot een grotere milieu-impact voor de reusables in vergelijking tot het gebruik van een andere energiemix (zoals bijv. energiebronnen van wind- en zonne-energie). De ‘hotspot’ in de levenscyclus van disposables is het productieproces.

 

Geïdentificeerde hotspots uit de studies worden geëvalueerd middels het ‘10R model circulariteit’ (zie Figuur 1, gebaseerd op Cramer, 2014; Hanemaaijer; 2018; Potting, 2016; Reike, 2018). Deze R-ladder laat zien dat de hoogste prioriteit om duurzaam te werken ‘refuse’ is, oftewel, niet gebruiken. Hoe lager het grondstofgebruik, des te hoger op de R-ladder en hoe dichter je bij circulair werken bent.

 

Figuur 1. Prioriteitsvolgorde circulariteit strategieën

 

Refuse (R1) en Reduce (R2)

De werkgroep adviseert om kritisch te beoordelen of het gebruik van een product daadwerkelijk nodig is (R1-Refuse). Kijk hierbij kritisch of de gehele inhoud van steriele (instrument) netten en operatietrays daadwerkelijk gebruikt moeten worden en verminder de inhoud indien mogelijk. Aangezien LCA’s laten zien dat het gebruik van disposables een grote negatieve milieu-impact heeft (met als ‘hotspot’ het productieproces), adviseert de werkgroep daarnaast om zoveel mogelijk met reusables te werken en disposables niet te gebruiken (R1-Refuse).

 

Indien het gebruik van disposables noodzakelijk lijkt te zijn, wees dan bewust van de hogere impact en probeer de hoeveelheid zo laag mogelijk te houden (R2-Reduce). Bepaal van tevoren de mate van inzet van een product of instrument. Bijvoorbeeld of een disposable multifunctioneel instrument (coaguleren en snijden) de voorkeur heeft of dat een reusable bipolaire schaar kan worden gebruikt. Dit scheelt zowel kosten als een minder negatieve milieu-impact. Daarnaast draagt een kleinere verpakking bij aan verlaging van de milieu-impact door minder materiaalgebruik. Indien er minder opslagruimte nodig is, kunnen met minder reisbewegingen ook hetzelfde aantal producten worden getransporteerd.

 

Redesign (R3)

Duurzaamheid zal als standaard moeten worden meegenomen in het (her)ontwerp van producten en instrumenten. De industrie zal leidend moeten zijn, door het aanbieden van producten met een langere levensduur. Hierbij moet worden samengewerkt om tot kwalitatief goede en duurzame producten te komen. De zorgverlener zal hierbij leiding moeten nemen en de industrie moeten wijzen op het belang van het aanbieden van duurzame medische hulpmiddelen.

 

In het ontwerp van disposables liggen ook kansen om de milieu-impact te beperken. Rizan (2021) vergelijkt hybride instrumentarium (deels reusable en deels disposable) met geheel disposable, waarbij het hybride instrumentarium milieuvriendelijker blijkt te zijn. Indien het niet mogelijk is om een chirurgisch instrument geheel reusable te maken en dezelfde functie te laten uitoefenen (bijvoorbeeld vanwege het niet kunnen reinigen en steriliseren door complex ontwerp), zou de ontwikkeling tot een hybride instrument de milieu-impact kunnen verlagen. Hier ligt de uitdaging voor ontwerpers om reusables of hybride instrumenten te ontwikkelen met dezelfde functie als de huidige disposables. Indien het onderdeel weer hergebruikt kan worden, leidt dit uiteindelijk tot minder grondstofverbruik en een lagere impact op het milieu.

 

Daarnaast zal de afvalverwerkingsfase moeten worden meegenomen in het ontwerp. Een product moet gemakkelijk te demonteren zijn (indien het uit meerdere onderdelen bestaat) en het moet duidelijk zijn uit welke materialen het bestaat, zodat afvalscheiding wordt vereenvoudigd.

 

Verder zal bij ontwikkeling van nieuwe producten of herontwerp van bestaande producten infectiepreventie moeten worden meegenomen. Zoek hierbij de samenwerking met infectiepreventie voor een adequate risicoafweging waarbij de risico’s van een infectie/besmetting afgezet wordt tegen verduurzamingsmaatregelen.

Denk bij herontwerp ook aan een andere manier van het gebruik van instrumenten. Een standaard disposable hechting verwijder set wordt steriel verpakt en bestaat geheel uit disposable materialen. De vraag is of het nodig is om met een steriel set te werken, en of het disposable moet zijn. In overleg met de arbeidshygiënist of deskundige infectiepreventie is het mogelijk om alternatieven te exploreren.

 

Re-use (R4)

In de loop van de tijd is binnen de gezondheidszorg een wegwerpcultuur ontstaan en zijn de disposables niet meer weg te denken. Ook de grondstof schaarste zal op den duur problemen kunnen opleveren in de toeleveringsketen van disposables en daarnaast zal dit kunnen leiden tot een toename in kosten.

De meeste studies wijzen erop dat reusables een minder grote negatieve impact hebben op het milieu in vergelijking met disposables. Bij studies waar disposables een lagere milieu-impact hebben, hanteren de studies een andere energiemix dan wij in Europa hebben (Davis, 2018; McGain, 2017) of nemen ze niet de gehele levensduur van de reusables mee (Leiden, 2020; McGain, 2012). Deze laatste studies (Leiden, 2020; McGain, 2012) laten wel dezelfde hotspots zien als studies waarbij de reusables een lagere milieu-impact hebben (Drew, 2021; Grimmond, 2012; Grimmond, 2021; Hicks, 2016; McGain, 2010; McPherson, 2019; Vozzola, 2018; Vozzola, 2018; Vozzola, 2020; Donahue, 2020; Eckelman, 2012; Ibbotson, 2013; Sanchez, 2020; Sherman, 2018), namelijk het productieproces van de disposables. Vanwege het productieproces, is de verwachting dat gebruik van disposables een grotere impact heeft op het milieu dan de reusables. Een ‘schone’ elektrische bron (bijvoorbeeld zonne- of windenergie) kan de impact van het productieproces verlagen (Grimmond, 2012; McPherson, 2019). De overstap van een CO2-intensief naar een minder CO2-intensief elektriciteitsnet resulteert in een reductie van CO2-uitstoot (Donahue, 2020). Ongeacht welk elektriciteitsnet wordt gebruikt, de CO2-uitstoot van reusables blijft lager in vergelijking met disposables.

 

Bij reusables geeft het reiniging en sterilisatieproces de grootste milieubelasting. Daarbij horen de volgende hotspots: energie en stoom voor autoclaven, transport, waterverbruik en de hoeveelheid instrumenten die tegelijkertijd worden gesteriliseerd (Donahue, 2020; Eckelman, 2012; Grimmond, 2012; Grimmond, 2021; McPherson, 2019). De werkgroep acht het belangrijk om nader dit te evalueren. In specifieke gevallen kan desinfectie voldoende zijn en hoeft er geen sterilisatie plaats te vinden. Desinfectie vraagt minder energie en is duurzamer. Hierin kan de Deskundige Steriele Medische Hulpmiddelen (DSMH) adviseren op basis van een risicoafweging. In de richtlijnen van het Samenwerkingsverband Richtlijnen Infectiepreventie (SRI) staat meer informatie over reiniging, desinfectie en sterilisatie van medische hulpmiddelen.

 

Eckelman (2012) vergelijkt het effect van alternatieve vervoerswijzen met spoorweg transport. Het effect van alternatieve vervoerswijzen (vervoer over de weg of door de lucht) ten opzichte van spoorweg transport is vrij klein voor reusables. Daarentegen leidt dit bij disposables tot een groot verschil ten opzichte van spoorweg transport, met name bij het vervoer door de lucht (sterke toename in CO2-uitstoot).

 

Daarnaast rijst de vraag of het mogelijk is om disposable instrumenten opnieuw te gebruiken. Indien de fabrikant aangeeft dat dit niet mogelijk is, wordt hergebruik in de praktijk nagenoeg niet uitgevoerd. Indien dit wel het geval is, dan is de fabrikant niet meer verantwoordelijk, maar de eindgebruiker is dat zelf. Dit weerhoudt eindgebruikers om toch te hergebruiken. Geadviseerd wordt om actief samenwerking op te zoeken met de industrie om de mogelijkheden te onderzoeken en in te zetten op optimalisatie van de wetgeving (Medical Device Regulation – MDR) met als doel de regels rondom hergebruik te verruimen.

 

Repair (R5), Refurbish (R6), Remanufacture (R7)

De factoren R5-Repair, R6-Refurbish en R7-Remanufacture hangen nauw met elkaar samen. Eckelman (2012) stelt dat verkorting van de levensduur van reusables direct effect heeft op de uitstoot van broeikasgassen. Het verlengen van de hergebruikcyclus van reusable laryngeal mask airways (LMA) van 10 naar 100 cycli leidt tot een daling van 58% in CO2-uitstoot. Voordat een product of apparaat wordt afgedankt, is het dus van belang om opnieuw te kijken of de levensduur verlengd kan worden. De werkgroep adviseert om het repareren of opknappen van producten standaard te overwegen.

 

Repurpose (R8), Recycling (R9), Recover (R10)

Indien een instrument of product niet meer gebruikt kan worden waarvoor het is bedoeld, kan worden gekeken naar een nieuw doeleinde (R8-Repurpose). Grimmond (2012) laat zien dat terugwinning van energie en materialen de milieu-impact van het productieproces kan verlagen (R9-Recycling en R10-Recover). Een voorbeeld is het inzamelen van gebruikte middelen met als doel om hoogwaardig gebruikte materialen terug te winnen (zoals bijvoorbeeld het inzamelen van staplers).

 

Waarden en voorkeuren van patiënten (en evt. hun verzorgers)

Voor de patiënt en zorgverlener is het van belang dat instrumenten en producten die worden gebruikt in de zorgverlening veilig en effectief zijn. Daarnaast heeft duurzaamheid van het product ook indirect een positief effect op de gezondheid van de mens. De werkgroep vindt het van belang om duurzaamheid naast andere overwegingen mee te nemen in de keuze tussen reusable en disposable producten.

 

Kosten (middelenbeslag)

Grimmond (2012) berekent een kostenbesparing van 19% bij het overstappen van disposables naar reusables. In de praktijk worden veelal op korte termijn beslissingen gemaakt wat betreft de keuze voor een instrument of product. Op de korte termijn is een disposable vaak goedkoper, echter een reusable zal initieel duurder zijn bij aanschaf maar door het hergebruik zal het zich in de meeste gevallen terugbetalen.

 

Aanvaardbaarheid, haalbaarheid en implementatie

De keuze voor reusables of disposables ligt bij de zorgverlener, wat wordt bepaald door veel verschillende factoren (bijvoorbeeld gebruiksgemak, patiëntvriendelijkheid veiligheid, effectiviteit). Kennisgebrek over de impact van disposables en reusables op het milieu zal een rol spelen in het maken van een beslissing. Het vergt bewustwording over de impact van de verschillende interventies en hun hotspots om duurzaamheid mee te kunnen laten wegen in een beslissing. De werkgroep voorziet geen grote barrières met betrekking tot aanvaardbaarheid, haalbaarheid en implementatie. Het is echter aan de Raad van Bestuur van ziekenhuizen om het verschil te maken door duurzame initiatieven te prioriteren.

 

Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies

Op dit moment is de bewijskracht van LCA’s laag tot zeer laag. Hoewel de literatuur heterogeen is en enkele methodologische beperkingen omvat, heeft de werkgroep een voorkeur voor het gebruik van reusables.

Gezien het feit dat de resultaten van de LCA’s consequent dezelfde richting op wijzen (i.e. hotspots duidelijk zijn), de urgentie om de milieu-impact te verminderen de positieve praktijk ervaring van de werkgroep met reusables, beschouwt de werkgroep dit als afdoende ondersteuning om sterke aanbevelingen te formuleren. Als op basis van de literatuurconclusies en overwegingen geen duidelijke voorkeur is, gebruik dan reusables.

Onderbouwing

De afgelopen decennia is er sprake van een toename in het aantal disposables in de klinische praktijk. Deze toename is te wijten aan de verschuiving van reusables naar disposables vanwege zorgen over steriliteit, gebruiksgemak, complexe apparatuur die niet goed schoon te maken is en het mogelijk falen van reusables (Siu, 2016). Omdat disposables maar eenmalig kunnen worden gebruikt, leidt dit tot hoge productiecijfers en relatief veel afval, wat een extra belasting op het milieu geeft. Het is echter onduidelijk welke impact het gebruik van reusables op het milieu heeft, in vergelijking met disposables. In deze module worden duurzaamheidsuitkomsten van disposables en reusables met elkaar vergeleken. Hierbij is onderscheidt gemaakt tussen algemene disposables/reusables en specifieke disposable/reusable medische instrumenten door twee deelvragen op te stellen.

Given that all comparisons involve the assessment of reusable versus disposable medical devices, conclusions regarding the level of evidence of literature from sub question 2.1 and sub question 2.2 are presented in one overview.

 

1. Climate Change

Low GRADE

The evidence suggests that reusables have less impact on climate change when compared to disposables in the operating room for patients who undergo surgery.

 

Sources: Grimmond, 2012; Grimmond, 2021; McPherson, 2019; Hicks, 2016; McGain, 2010; Vozzola, 2018; Vozzola, 2018; Vozzola, 2020; Davis, 2019; Donahue, 2020; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; McGain, 2012; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018

 

2. Waste

Low GRADE

The evidence suggests that reusables decrease waste when compared to disposables in the operating room for patients who undergo surgery.

 

Sources: Grimmond, 2012; Grimmond, 2021; McPherson, 2019; Vozzola, 2018; Vozzola, 2020; Davis, 2018; McGain, 2017; Namburar, 2022

 

3. Acidification

Low GRADE

The evidence suggests that reusables have less impact on acidification when compared to disposables in the operating room for patients who undergo surgery.

 

Sources: Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018

 

4. Eutrophication

Low GRADE

The evidence suggests that reusables have less impact on eutrophication when compared to disposables in the operating room for patients who undergo surgery.

 

Sources: Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018

 

5. Human toxicity

Low GRADE

The evidence suggests that reusables have less impact on human toxicity when compared to disposables in the operating room for patients who undergo surgery.

 

Sources: Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018

 

6. Ecotoxicity

Low GRADE

The evidence suggests that reusables have less impact on ecotoxicity when compared to disposables in the operating room for patients who undergo surgery.

 

Sources: Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018

 

7. Ozone depletion

Low GRADE

The evidence suggests that reusables have less impact on ozone depletion when compared to disposables in the operating room for patients who undergo surgery.

 

Sources: Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Rizan, 2021; Sanchez, 2020; Sherman, 2018

Summary of literature – Sub-question 2.1 reusables versus disposables

Description of studies

Drew (2021) describes a systematic review of life cycle assessments (LCAs) in anaesthetic and surgical care. It aims to summarize the state of LCA practice via review of literature assessing the environmental impact of related services, procedures, equipment and pharmaceuticals. The review was guided by using STARR-LCA, which is a PRISMA-based framework. Studies were included if they assessed the environmental impact(s) of (1) an operating room(s) using LCA, (2) a specific surgical procedure(s) using LCA or (3) equipment or pharmaceuticals used in surgical settings. In total 44 studies were included. Of these studies, one study examined the impact contributions from ORs generally, 10 studies from specific surgical procedures and 33 assessed the environmental impact from provision and use of surgical or anaesthetic equipment or pharmaceuticals. Eligible studies varied in terms of quality, completeness and risk of bias, with critical appraisal scores varying between 44% and 89%. Relevant outcome measures included climate change, waste, acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion.

 

Grimmond (2012) compared the environmental impact of a reusable sharps container system with a single-use one. A life cycle assessment (LCA) framework was used to assess the climate impact of the two different sharps container systems. The single use sharps containers (SSC) were evaluated for over a 12-month period prior to Northwestern Memorial Hospital's transition to a reusable-based system. The reusable sharps containers (RSC) (certified for 500 applications) were assessed over the following 12-month period, excluding the transition month from the analysis to avoid data overlap. Data was collected regarding the size, type, and number of reusable sharps containers used, as well as protocols with information about the changeout when the containers were full. Data was extracted from a variety of industry and government sources and combined with a Life Cycle Inventory (LCI)/LCA tool developed by the Waterman Group UK, which included all the energy dependent processes required for any needle collection system. The outcome measures were climate change and waste. A limitation was that this study is conducted in the USA with all processes related to 1 hospital, which might limit the generalizability.

 

Grimmond (2021) compared the global warming potential (GWP) of hospitals converting from single-use sharps containers (SSC) to reusable sharps containers (RSC) by using an attributional LCA model. The intervention was the conversion from SSC to RSC in 40 NHS hospitals in the United Kingdom. A 12-month period of usage of SSC was compared with a 12-month usage of RSC. The functional unit was total fill line litres (FLL) of sharps containers needed to dispose of sharps for a 1-year period. SSC and RSC usage details in 17 baseline hospitals immediately prior to 2018 were applied to the RSC usage details of the 40 trusts using RSC in 2019. The outcome measures were climate change and waste. A limitation could be that the results of SSC has been extrapolated from 17 hospitals to 40 and therefore the representativeness of data might not be accurate.

 

Hicks (2016) conducted an LCA to compare the environmental impact of reusable patient hospital gowns coated with nanoscale silver (nAg) product compared to the use of nAg-coated disposable gowns in a case study. First, the environmental impact of 4600 ug nAg was determined (the amount added to a hospital gown). Second, the life cycle impacts of nAg-enabled reusable hospital gowns per one wear are modelled and midpoint environmental data are compared. The outcome measures were climate change acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion. Limitations were that only one attachment and synthesis process was analyzed, the environmental impact of excess silver during synthesis and the silver lost was not explored, and that the comparisons of reusable and disposable gowns relied on prior work and utilizes only one impact category.

 

McGain (2010) modelled the financial and environmental costs of two commonly used anaesthetic drug trays using LCA. This study was performed at a single-centre in Australia. Three trays were compared: 1) reusable tray, 2) single-use tray, and 3) single-use tray with cotton and paper. Data was collected directly from measurements and from databases (EcoInvent). The single-use trays were plastic Chinese-made trays (group 2, 3), and the reusable trays (group 1) were Australian-made nylon trays. The outcome measure was climate change. Since not all data was available, a European energy mix was used, although the Chinese energy mix might be more coal reliant and thus have a higher environmental impact.

 

McPherson (2019) examined the life cycle carbon footprint of disposable sharps containers (DSC) and reusable sharps containers (RSC) over a 12-month period of facility-wide usage at a hospital geographically distant from manufacturing and processing plants, and include all unit processes in manufacture, transport, washing and treatment and disposal stages. A cradle to-grave life cycle inventory (LCI) and a product-system assessment tool were utilized. This study was perfect in a multi-centre setting in the US. The outcome measures were climate change and waste. A few limitations were considered. First, the assumption was made regarding the location of the polymer manufacturer for DSC, since there was no actual data available. Second, a UK database was used to measure the impact of transport.

 

Vozzola (2018) conducted an LCA to assess the environmental impacts of two different isolation gowns: reusable and disposable. The functional unit was 1000 isolation gowns uses. This study is an analysis from cradle to grave including manufacturing, use and end-of-life stages of the gown systems. The Environmental Clarity, Inc. LCA database was used to evaluate the life cycles of both isolation gown systems. Sixteen disposable isolations gowns from 5 suppliers were studied, composed primarily of nonwoven polypropylene fabric. Eight reusable isolation gowns were studied, composed of primarily woven polyester fabric. The outcome measures were climate change and waste.

 

Vozzola (2018) conducted an LCA to assess the environmental impacts of two different cleanroom coveralls: reusable and disposable. This study is an analysis from cradle to crave, quantifying parameters such as energy use and GHG emissions, including different phases: raw material extraction, production, packaging, transport, reuse and disposal in the USA. The outcome measures were climate change and waste. Although Vozzola did compare the packaging material between the reusable and disposable cleanroom coveralls, it was not exactly quantified. The packaging materials vary between the supply companies, and in this study representative materials are used for the different companies, which are therefore not precisely defined per company. This means the data used may deviate from the actual data.

 

Vozzola (2020) analysed the life cycle of reusable versus disposable gowns to assess the environmental impact of these surgical gowns in the USA. An LCA was conducted according to the standards from the International Organization for Standardization. The Environmental Clarity, Inc. LCA database was used to evaluate the life cycles of both surgical gown systems. The outcome measures were climate change and waste.

 

Summary of literature – Sub-question 2.2 specific reusable medical instruments versus disposable medical instruments

Description of studies

Davis (2018) compared the environmental impact of single-use flexible ureteroscopes with reusable flexible ureteroscopes. An LCA of the LithoVue single-use digital flexible ureteroscope and Olympus Flexible Video Ureteroscope (URV-F) was performed. Data on raw material extraction, manufacturing, reuse and disposal of the instruments was obtained. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and used to calculate the CO2 footprint. The outcome measures were climate change and waste. It should be mentioned that data are compared per case, while reusable ureteroscopes can be used multiple times. This might underestimate the actual environmental impact.

 

Donahue (2020) applied life cycle assessment methods to evaluate the carbon footprints of 3 vaginal specula: a single-use acrylic model and two reusable stainless steel models (grade 304 speculum and grade 316 speculum). Data were obtained regarding packaging composition and weight. As there were no data available on production processes, assumptions were made. For the acrylic specula injection molding was assumed and for the reusable specula a combination of hot extrusion, milling/turning, deformation and heat treatment was assumed, based on literature. The transportation was based on manufacturer and general industry data. Reuse for the steel reusable specula was estimated based on autoclave manufacturer specifications. Disposal was modelled with the use of the EPA WARM model, which estimates the average greenhouse gas (GHG) emissions that are associated with disposal of various materials in the USA. Outcome measure was climate change.

 

Eckelman (2012) assessed the environmental impacts of two types of laryngeal mask airways (LMAs): single-use and reusable (40 lifetime uses) by an LCA. The functional unit was 40 cycles, which meant 40 disposable LMA uses or 40 uses of 1 reusable LMA in the Yale New Haven Hospital, USA. Raw material extraction, production, packaging, transport, reuse and disposal were included in the analysis. The material composition and weights were established on the basis of manufacturer information and density testing. Materials were matched with the most appropriate Life Cycle Inventory (LCI) records from EcoInvent (database). Production processes for hard and soft plastics were assumed to be injection molding and thermoforming, respectively. Data was obtained from distributors to estimate distances and mode of transport. Reprocessing of reusable LMAs was estimated using data from Yale New Haven Hospital and autoclave specifications. Disposal was modelled using US average statistics for solid waste. Outcome measures were climate change, acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion.

 

Ibbotson (2013) The environmental and financial impacts of three surgical scissors which are (1) disposable scissors made of plastic (fibre reinforced), (2) disposable scissors made of stainless steel, and (3) reusable scissors made of stainless steel were assessed using an LCA and life cycle costing method. Data was compared for the use of 4,500 cycles in Germany. The data on raw material, manufacturing (including electricity consumption), transport, and disposal process were obtained from a medical company in Europe. Missing data (e.g. sterilization processes for reusable scissors) were obtained from the literature or expert opinion. Electricity data that was missing was adjusted from the International Energy Agency (IEA). Incineration of plastics, cardboard and municipal solid waste were assumed based on Swiss plants in 2000 (from EcoInvent). The outcome measures were climate change, acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion. Due to missing data another energy mix and recycling data was used. Data sources were not comparable between the scissors, since the plastic disposable and stainless steel reusable data was obtained from company data and the stainless steel disposable scissor data was obtained from literature.

 

Leiden (2020) compared a reusable and a disposable instrument set for one single surgery lumbar fusion in Germany. Data on manufacturing was based on weight, material and form of instruments, data of transportation on mode and calculated distances between producer, distributor, and hospital and washing and steam sterilization data was specific to a German hospital. Disposal was modelled using EcoInvent waste incineration processes. Outcome measures were climate change and acidification. An important limitation could be that only one surgery is compared, which seems invalid for the reusable set. In the sensitivity analysis the impact of the reusable set for 300 use cycles is quantified, however this is compared to one use cycle of the disposable set, and therefore not accurate. Furthermore, the comparison was made between a reusable set comprising six boxes with eleven trays (weight 45.5 kg) with a very lean disposable set (2 kg). For comparison purposes it is also important to note that sterilisation was performed outside the hospital, which increases the environmental impact because of transportation. The study was funded by Neomedical S.A., the producer of the disposable instrument set.

 

McGain (2012) assessed the environmental and financial impacts of a single-use and a reusable venous catheter insertion kit at the Western Health group of hospitals in Australia. They also investigated the effect of the source of electricity on CO2 emissions. The functional unit was the use of one central venous catheter kit to aid insertion of a single-use, central venous catheter in an operating room. Data on the components was obtained by weighing and manufacturer data. Direct data regarding materials and energy were collected using a "time-in-motion" study. Other inputs were acquired from LCI databases or industry data. Electricity and hot and cold water used by the washer and sterilizer were measured. Data on waste disposal processes were obtained indirectly from industry data. The outcome measure was climate change. A limitation of the study was that the reusable insertion kit is compared to the disposable for one use of inserting the single-use central venous catheter. Calculating the difference between the outcomes when reusing this kit is not taken into account and could yet obtain more accurate results.

 

McGain (2017) assessed the environmental and financial impact of reusable and single-use anaesthetic equipment through a consequential LCA approach. Five scenarios were assessed and included: (1) "all reusable anaesthetic equipment", (2) "all disposable anaesthetic equipment except for reusable handles for direct laryngoscopes", (3) "all disposable/single-

use anaesthetic equipment (including single-use direct laryngoscope handles; modelled practice)", (4) "replace only reusable face masks with single-use face masks", (5) "replace only direct laryngoscope reusable blades with single-use blades". Data on equipment were obtained from two hospitals in Melbourne, Australia in 2015 and each piece of equipment was weighed with an electronic balance. Sterilization records and input from one hospital were used to define sterilization mode and load information. Washer and steam sterilizer utility usage data were taken from a previous study by the same authors, while electricity consumption of a standard H2O2 sterilizer was directly measured over several days. All other data were sourced from inventory databases based on average industry inputs. Outcome measures were climate change, eutrophication, waste, human toxicity and ecotoxicity.

 

Namburar (2022) performed an audit of waste generated during endoscopic procedures at a low and high endoscopy volume academic medical centre in the USA over a 5-day work period in 2020. Colonoscopies, upper endoscopies, and endoscopic retrograde cholangiopancreatography were included. The waste from the pre-procedure area, examination room and post-procedure area was collected. In the high volume hospital the waste from endoscope reprocessing was also obtained. An estimation of the contribution of single-use (compared to reusable) waste was made in the following three scenarios: (1) all reusable endoscopes, (2) colonoscopies and ERCPs were performed with single-use endoscopes (colonoscopes/duodenoscopes) and (3) all single-use endoscopes. Outcome measure was waste. The study aims to estimate the environmental impact of an endoscopic procedure, however, only describes the amount of waste and does not calculate the actual environmental impact.

 

Rizan (2021) assessed environmental and financial impacts of hybrid and single-use instruments in laparoscopic cholecystectomy using an LCA. The number of three types of instruments (clip appliers, laparoscopic scissors, ports) were included in the analysis (two small diameter ports, two large diameter ports, one laparoscopic scissor and one laparoscopic clip applier). The stages of raw material extraction, manufacture, transport, disposal and decontamination for reusable components of hybrid instruments were included. Data was obtained from manufacturers and databases. Outcomes were climate change, acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion.

 

Sanchez (2020) assessed the environmental and economic impacts of reusable and disposable blood pressure cuffs by using LCA. Data on materials and manufacturing was gathered through manufacturer information and physical testing (by weighing component on a scale), components were identified and matched with information from inventory databases (US-EI LCI database), and the US EPA database was used for transport packaging information. Multiple cleaning scenarios were developed to represent a diversity of clinical settings in using and cleaning. For disposal data landfill and incineration were included. The lifespan of the reusable cuff is taken to be three years, as described in the manufacturer’s specifications. Outcome measures were climate change, acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion. There is data uncertainty associated with some of the modelling parameters (e.g. energy, blood pressure cuff materials).

 

Sherman (2018) assessed the environmental and financial impacts of three different types of rigid laryngoscope handle and tongue blade: plastic single-use, metal single-use, and stainless steel reusable by using LCA and life cycle costing. To determine the material composition of handles and blades a combination of manufacturer specifications, deconstruction, and density testing were used, and after each material was weighed. Foreground data were collected, including transportation mode and distance; washer and autoclave-related energy, water, and chemical use. Reusable components were assumed to have a lifespan of 4000 uses and require refurbishment every 40 uses, according to rated lifetimes of each component. For disposal data recycling, incineration and landfill were included. Outcome measures were climate change, acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion.

 

Results

In this module the results and environmental hotspots are presented in a separate table per outcome measure to provide an overview. A more detailed summary of the methods, results, and interpretation is depicted in the evidence table. The results could not be pooled due to different functional units, assumptions, methods, and comparison. Given that all comparisons involve the assessment of reusable versus disposable medical devices, the results from sub question 2.1 (n=9: Grimmond, 2012; Grimmond, 2021; Hicks, 2016; McGain, 2010; McPherson, 2019; Vozzola, 2018; Vozzola, 2018; Vozzola, 2020) and sub question 2.2 (n= 11: Davis, 2018; Donahue, 2020; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; McGain, 2012; McGain, 2017; Rizan, 2021; Sanchez, 2020; Scherman, 2018) are presented in one overview.

 

1. Climate Change

Eighteen out of twenty studies reported on the outcome climate change (Grimmond, 2012; Grimmond, 2021; McPherson, 2019; Hicks, 2016; McGain, 2010; Vozzola, 2018; Vozzola, 2018; Vozzola, 2020; Davis, 2019; Donahue, 2020; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; McGain, 2012; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The 18 studies contained 16 comparisons. A summary of the results is presented in Table 1. Most studies resulted in a difference in favour of reusables.

 

*Read from figure (Ibbotson, 2013)

 

2. Waste

Eight out of twenty studies reported on the outcome waste (Grimmond, 2012; Grimmond, 2021; McPherson, 2019; Vozzola, 2018; Vozzola, 2020; Davis, 2018; McGain, 2017; Namburar, 2022). The eight studies contained 6 comparisons. A summary of the results is presented in Table 2. All studies resulted in a difference in favour of reusables.

 

 

3. Acidification

Seven out of twenty studies reported on the outcome acidification (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The seven studies contained seven comparisons. A summary of the results is presented in Table 3. Most studies resulted in a difference in favour of reusables.

 

 

4. Eutrophication

Seven out of twenty studies reported on the outcome eutrophication (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The seven studies contained seven comparisons. A summary of the results is presented in Table 4. The majority of the studies resulted in favour of reusables.

 

 

5. Human toxicity

Seven out of twenty studies reported on the outcome human toxicity (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018). A summary of the results is presented in Table 5. Most studies resulted in favour of reusables.

 

 

6. Ecotoxicity

Seven out of twenty studies reported on the outcome ecotoxicity (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018). A summary of the results is presented in Table 5. Most studies resulted in favour of reusables.

 

 

7. Ozone depletion

Seven out of twenty studies reported on the outcome ozone depletion (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018). A summary of the results is presented in Table 7. Most studies resulted in favour of reusables.

 

 

Level of evidence of the literature

The working group assessed the level of evidence of LCAs using GRADE and used the critical appraisal of LCAs (Drew, 2021) to provide an indication of the study quality. See module 'operatietechnieken' for more details. As mentioned before, given that all comparisons involve the assessment of reusable versus disposable medical devices, the level of evidence of literature from sub question 2.1 and sub question 2.2 are presented in one overview.

 

1. Climate Change

Eighteen studies reported on the outcome ´climate change´ (Grimmond, 2012; Grimmond, 2021; McPherson, 2019; Hicks, 2016; McGain, 2010; Vozzola, 2018; Vozzola, 2018; Vozzola, 2020; Davis, 2019; Donahue, 2020; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; McGain, 2012; McGain, 2017; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The 18 studies contained 16 comparisons. The level of evidence starts at grade high. The level of evidence was downgraded with 2 levels to low because of risk of bias (-1; limitations on functional unit, limited transparency on characterization, sensitivity/uncertainty analyses were lacking, limitations inadequately critically appraised) and indirectness (-1; heterogeneity of interventions, limited representativeness of data).

 

2. Waste

Eight studies reported on the outcome ´waste´ (Grimmond, 2012; Grimmond, 2021; McPherson, 2019; Vozzola, 2018; Vozzola, 2020; Davis, 2018; McGain, 2017; Namburar, 2022). As seven out of eight studies contain LCAs, the level of evidence starts at grade high. The level of evidence was downgraded with 2 levels to low because of risk of bias (-1; unclear rational, limitations on functional unit, unclear system boundaries or stages, limited transparency on characterization, sensitivity/uncertainty analyses were lacking, limitations inadequately critically appraised) and indirectness (-1; heterogeneity of interventions, limited representativeness of data).

 

3. Acidification

Seven studies reported on the outcome acidification (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The level of evidence starts at grade high. The level of evidence was downgraded with 2 levels to low because of risk of bias (-1; unclear system boundaries or stages, sensitivity/uncertainty analyses were lacking, limitations inadequately critically appraised) and indirectness (-1; heterogeneity of interventions, limited representativeness of data).

 

4. Eutrophication

Seven studies reported on the outcome ´eutrophication´ (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The level of evidence starts at grade high. The level of evidence was downgraded with 2 levels to low because of risk of bias (-1; unclear system boundaries or stages, sensitivity/uncertainty analyses were lacking, limitations inadequately critically appraised) and indirectness (-1; heterogeneity of interventions, limited representativeness of data).

 

5. Human toxicity

Seven studies reported on ´human toxicity´ (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The level of evidence starts at grade high. The level of evidence was downgraded with 2 levels to low because of risk of bias (-1; unclear system boundaries or stages, sensitivity/uncertainty analyses were lacking, limitations inadequately critically appraised) and indirectness (-1; heterogeneity of interventions, limited representativeness of data).

 

6. Ecotoxicity

Seven studies reported on the outcome ecotoxicity (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The level of evidence starts at grade high. The level of evidence was downgraded with 2 levels to low because of risk of bias (-1; unclear system boundaries or stages, sensitivity/uncertainty analyses were lacking, limitations inadequately critically appraised) and indirectness (-1; heterogeneity of interventions, limited representativeness of data).

 

7. Ozone depletion

Seven studies reported on the outcome ozone depletion (Hicks, 2016; Eckelman, 2012; Ibbotson, 2013; Leiden, 2020; Rizan, 2021; Sanchez, 2020; Sherman, 2018). The level of evidence starts at grade high. The level of evidence was downgraded with 2 levels to low because of risk of bias (-1; unclear system boundaries or stages, sensitivity/uncertainty analyses were lacking, limitations inadequately critically appraised) and indirectness (-1; heterogeneity of interventions, limited representativeness of data).

A systematic review of the literature was performed to answer the following questions:

 

PICO1: What is the difference in sustainability of reusables compared to disposables in the operating room for patients who undergo surgery?

P = Patients who undergo a surgical procedure

I = Reusables, such as: surgical gowns, scrub caps, gloves, glasses, perioperative textiles (i.e. blue drapes, band aids), packing materials, or laryngeal masks                       

C = Disposables, such as: surgical gowns, scrub caps, gloves, glasses, perioperative textiles (blue drapes, band aids), packing materials or laryngeal masks     

O = Climate change (CO2 footprint/Global Warming Potential (GWP)), waste, acidification, eutrophication, human toxicity, ecotoxicity, ozone depletion

 

PICO2: What is the difference in sustainability of specific reusable medical instruments compared to disposable medical instruments in the operating room for patients who undergo surgery?

P = Patients who undergo a surgical procedure                                                                       

I = Reusable medical instruments, such as: specula, instruments, scopes

(e.g reusable instruments in a surgical tool kit: scissor, Kocher, tweezer, scalpel, needle driver, ligasure, harmonic, stapler, surgical drill; reusable scopes: duodenoscope, ureterorenoscope, bronchoscope, cystoscope, laryngeal scope; reusable meniscal sutures; reusable suture anchors).

C = Disposable medical instruments, such as: specula, instruments, scopes

(e.g disposable instruments in a surgical tool kit: scissor, Kocher, tweezer, scalpel, needle driver, vessel sealer, stapler, surgical drill; disposable scopes: duodenoscope, ureterorenoscope, bronchoscope, cystoscope, laryngeal scope; disposable meniscal sutures; disposable suture anchors).          

O = Climate change (CO2 footprint/Global Warming Potential (GWP)), waste, acidification, eutrophication, human toxicity, ecotoxicity, ozone depletion

 

Relevant outcome measures

Life cycle assessment (LCA) is a methodological tool used to quantitatively analyse the life cycle of products/activities within the context of environmental impact. The assessment comprises all stages needed to produce and use a product, from the initial development to the treatment of waste (the total life cycle). An LCA is mainly based on four phases: 1) goal and scope definition, 2) inventory analysis, 3) impact assessment, and 4) interpretation. The third phase is the life cycle impact assessment (LCIA), in which emissions and resource extractions are translated into a limited number of environmental impact scores by means of so-called characterisation factors. The ReCiPe model is a method for the impact assessment in an LCA (Huijbregts, 2016, Huijbregts, 2017). To determine the outcome measures regarding environmental impact, the ReCiPe model of the National Institute for Public Health and the Environment (in Dutch: Rijksinstituut voor Volksgezondheid en Milieu, RIVM) was used.

 

The outcomes determined by the working group are based on the ReCiPe framework. The working group considered climate change (CO2 footprint/Global Warming Potential) and waste as a critical outcome measure for decision making; and acidification, eutrophication, human toxicity, ecotoxicity and ozone depletion as an important outcome measure for decision making.

 

A priori, the working group did not define the outcome measures listed above but used the definitions used in the studies.

 

Outcomes focused on environmental life cycle assessment (LCA) impact categories are relatively new in healthcare. Given the variety in scopes and methods of performing and reporting LCAs, the working group did not define a priori the minimal important difference. Differences between the disposables and reusables were evaluated by the working group after data extraction.

 

A glossary including the outcome measures is found in module ‘operatietechnieken’.

 

Search and select (Methods)

The databases Pubmed (via NCBI), Embase (via OVID), Web of Science (via Webofscience), Cochrane (via Cochrane library) and Emcare (via OVID) were searched with relevant search terms from 2000 until 7 December 2021. The detailed search strategy is depicted under the tab Methods. The systematic literature search resulted in 694 hits in total. Studies for this module were selected based on the following criteria:

  • Systematic reviews (searched in at least two databases, with a detailed search strategy, risk of bias assessment and results of individual studies available), randomized controlled trials, (observational) comparative studies, life cycle assessments, CO2 footprint studies and environmental impact studies;
  • Full-text English language publication; and
  • Studies according to the PICO. Studies that compared disposables with reusables related to the OR and included at least one of the following outcomes: climate change, waste, acidification, eutrophication, human toxicity, ecotoxicity, ozone depletion.

After reading the full text, 20 studies were included in the literature summary of this module.

 

Results

Twenty studies were included in the analysis of the literature (sub question 2.1: 9, sub question 2.2: 11). Important study characteristics and results are summarized in the evidence tables (Appendix 1). The quality assessment of the studies is summarized in Appendix 2.

  1. Acero, 2015. Greendelta, LCIA methods: Impact assessment methods in Life Cycle Assessment and their impact categories. Version: 1.5.4. Date: 16 March 2015. Accessed at: https://www.openlca.org/wp-content/uploads/2015/11/LCIA-METHODS-v.1.5.4.pdf
  2. Aiolfi A, Lombardo F, Matsushima K, Sozzi A, Cavalli M, Panizzo V, Bonitta G, Bona D. Systematic review and updated network meta-analysis of randomized controlled trials comparing open, laparoscopic-assisted, and robotic distal gastrectomy for early and locally advanced gastric cancer. Surgery. 2021 Sep;170(3):942-951. doi: 10.1016/j.surg.2021.04.014. Epub 2021 May 20. PMID: 34023140.
  3. Berners-Lee M. How Bad are Bananas; the Carbon Footprint of Everything. London: Profile Books; 2010.
  4. CE Delft, 2022a. Klimaatimpact herbruikbare en eenmalige specula - Screening LCA voor het UMC Utrecht. Delft, CE Delft, oktober 2022. Publicatienummer: 22.210358.128. Link: https://ce.nl/wp-content/uploads/2022/11/CE_Delft_210358_Klimaatimpact_herbruikbare_en_eenmalige_specula_DEF.pdf
  5. CE Delft, 2022b. Eenmalige of herbruikbare partusen hechtsets? Milieukundige vergelijking voor het UMC Utrecht – Update 2022. Delft, CE Delft, november 2022. Publicatienummer: 22.220162.176. Link: https://ce.nl/wp-content/uploads/2022/11/CE_Delft_220162_Eenmalige_of_herbruikbare_partus-_en_hechtsets_Def.pdf
  6. Davis NF, McGrath S, Quinlan M, Jack G, Lawrentschuk N, Bolton DM. Carbon Footprint in Flexible Ureteroscopy: A Comparative Study on the Environmental Impact of Reusable and Single-Use Ureteroscopes. J Endourol. 2018 Mar;32(3):214-217. doi: 10.1089/end.2018.0001. Epub 2018 Feb 21. PMID: 29373918.
  7. Donahue LM, Hilton S, Bell SG, Williams BC, Keoleian GA. A comparative carbon footprint analysis of disposable and reusable vaginal specula. Am J Obstet Gynecol. 2020 Aug;223(2):225.e1-225.e7. doi: 10.1016/j.ajog.2020.02.007. Epub 2020 Feb 15. PMID: 32067971.
  8. Drew J, Christie SD, Tyedmers P, Smith-Forrester J, Rainham D. Operating in a Climate Crisis: A State-of-the-Science Review of Life Cycle Assessment within Surgical and Anesthetic Care. Environ Health Perspect. 2021 Jul;129(7):76001.
  9. Eckelman M, Mosher M, Gonzalez A, Sherman J. Comparative life cycle assessment of disposable and reusable laryngeal mask airways. Anesth Analg. 2012 May;114(5):1067-72. doi: 10.1213/ANE.0b013e31824f6959. Epub 2012 Apr 4. PMID: 22492190.
  10. Grimmond T, Reiner S. Impact on carbon footprint: a life cycle assessment of disposable versus reusable sharps containers in a large US hospital. Waste Manag Res. 2012 Jun;30(6):639-42. doi: 10.1177/0734242X12450602. Epub 2012 May 23. PMID: 22627643.
  11. Grimmond TR, Bright A, Cadman J, Dixon J, Ludditt S, Robinson C, Topping C. Before/after intervention study to determine impact on life-cycle carbon footprint of converting from single-use to reusable sharps containers in 40 UK NHS trusts. BMJ Open. 2021 Sep 27;11(9):e046200. doi: 10.1136/bmjopen-2020-046200. PMID: 34580089; PMCID: PMC8477330.
  12. Hicks, A. L., et al. "Environmental impacts of reusable nanoscale silver-coated hospital gowns compared to single-use, disposable gowns." Environmental Science: Nano 3.5 (2016): 1124-1132.
  13. Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M., ... & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147.
  14. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira MDMManagement Duurzame Melkveehouderij, Hollander A, Van Zelm R, 2016. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. RIVM Rapport 2016-0104. Bilthoven, The Netherlands.
  15. Ibbotson, S., Dettmer, T., Kara, S. et al. Eco-efficiency of disposable and reusable surgical instruments—a scissors case. Int J Life Cycle Assess 18, 1137–1148 (2013). https://doi.org/10.1007/s11367-013-0547-7Muaddi H, Hafid ME, Choi WJ, Lillie E, de Mestral C, Nathens A, Stukel TA, Karanicolas PJ. Clinical Outcomes of Robotic Surgery Compared to Conventional Surgical Approaches (Laparoscopic or Open): A Systematic Overview of Reviews. Ann Surg. 2021 Mar 1;273(3):467-473. doi: 10.1097/SLA.0000000000003915. PMID: 32398482.
  16. Leiden, Alexander, et al. "Life cycle assessment of a disposable and a reusable surgery instrument set for spinal fusion surgeries." Resources, Conservation and Recycling 156 (2020): 104704.
  17. McGain F, McAlister S, McGavin A, Story D. The financial and environmental costs of reusable and single-use plastic anaesthetic drug trays. Anaesth Intensive Care. 2010 May;38(3):538-44. doi: 10.1177/0310057X1003800320. PMID: 20514965.
  18. McGain F, Muret J, Lawson C, Sherman JD. Environmental sustainability in anaesthesia and critical care. Br J Anaesth. 2020 Nov;125(5):680-692. doi: 10.1016/j.bja.2020.06.055. Epub 2020 Aug 12. PMID: 32798068; PMCID: PMC7421303.
  19. McGain F, McAlister S, McGavin A, Story D. A life cycle assessment of reusable and single-use central venous catheter insertion kits. Anesth Analg. 2012 May;114(5):1073-80. doi: 10.1213/ANE.0b013e31824e9b69. Epub 2012 Apr 4. PMID: 22492185.
  20. McGain F, Story D, Lim T, McAlister S. Financial and environmental costs of reusable and single-use anaesthetic equipment. Br J Anaesth. 2017 Jun 1;118(6):862-869. doi: 10.1093/bja/aex098. PMID: 28505289.
  21. McPherson B, Sharip M, Grimmond T. The impact on life cycle carbon footprint of converting from disposable to reusable sharps containers in a large US hospital geographically distant from manufacturing and processing facilities. PeerJ. 2019 Feb 22;7:e6204. doi: 10.7717/peerj.6204. PMID: 30809428; PMCID: PMC6388662.
  22. Namburar S, von Renteln D, Damianos J, Bradish L, Barrett J, Aguilera-Fish A, Cushman-Roisin B, Pohl H. Estimating the environmental impact of disposable endoscopic equipment and endoscopes. Gut. 2022 Jul;71(7):1326-1331.
  23. Rizan C, Bhutta MF. Environmental impact and life cycle financial cost of hybrid (reusable/single-use) instruments versus single-use equivalents in laparoscopic cholecystectomy. Surg Endosc. 2022 Jun;36(6):4067-4078. doi: 10.1007/s00464-021-08728-z. Epub 2021 Sep 24. PMID: 34559257; PMCID: PMC9085686.
  24. Sanchez A., Eckelman M.J., Sherman J.D. Environmental and economic comparison of reusable and disposable blood pressure cuffs in multiple clinical settings. Resources, Conservation and Recycling Vol. 155, Pages 104643 (2020). https://doi.org/10.1016/j.resconrec.2019.104643
  25. Siu J, Hill AG, MacCormick AD. Systematic review of reusable versus disposable laparoscopic instruments: costs and safety. ANZ J Surg. 2017 Jan;87(1-2):28-33. doi: 10.1111/ans.13856. Epub 2016 Nov 23. PMID: 27878921.
  26. Sherman JD, Raibley LA 4th, Eckelman MJ. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes. Anesth Analg. 2018 Aug;127(2):434-443. doi: 10.1213/ANE.0000000000002683. PMID: 29324492.
  27. The Carbon Trust (2018) Carbon Footprinting. https://www.carbontrust.com/resources/carbon-footprinting-guide
  28. Vozzola E, Overcash M, Griffing E. Life Cycle Assessment of Reusable and Disposable Cleanroom Coveralls. PDA J Pharm Sci Technol. 2018 May-Jun;72(3):236-248. doi: 10.5731/pdajpst.2017.007864. Epub 2018 Feb 14. PMID: 29444994.
  29. Vozzola E, Overcash M, Griffing E. Environmental considerations in the selection of isolation gowns: A life cycle assessment of reusable and disposable alternatives. Am J Infect Control. 2018 Aug;46(8):881-886.
  30. Vozzola E, Overcash M, Griffing E. An Environmental Analysis of Reusable and Disposable Surgical Gowns. AORN J. 2020 Mar;111(3):315-325. doi: 10.1002/aorn.12885. PMID: 32128776.

Appendix 1. Evidence tables

Evidence table for systematic reviews

Study reference

Study characteristics

Product/service characteristics

Intervention (I) and Comparison / control (C)

Follow-up

Outcome measures and effect size

Comments

Drew (2021)

 

 

SR of LCAs in anaesthetic and surgical care. It aims to summarize the state of LCA practice via review of literature assessing the environmental impact of related services, procedures, equipment and pharmaceuticals.

 

Literature search up to may 2020

 

The review was guided by using STARR-LCA, which is a PRISMA-based framework.

 

Study design: LCA

 

Setting and Country: Anaesthetic and surgical care, Canada.

 

Source of funding and conflicts of interest:

None stated.

 

Inclusion criteria SR: Studies which assessed the environmental impact(s) of

(1) an operating room(s) using LCA, (2) a specific surgical procedure(s) using LCA or

(3) equipment or pharmaceuticals used in surgical settings.

 

Exclusion criteria SR: No access, no English language, no research in relation to healthcare, healthcare related but not related to surgery or anaesthesiology, no use of LCAs.

 

44 included studies

These studies examined the impact contributions from

(A) ORs generally (n=1)

(B) specific surgical procedures (n=10)

(C) provision and use of surgical or anaesthetic equipment or pharmaceuticals (n=33)

End-point of follow-up:

N/A

 

For how many participants were no complete outcome data available?

N/A

 

 

 

(A) Operating rooms

The climate impact of the hospitals’ surgical suites ranged from 3,200,000 to 5,200,000 kg CO2e per year and between 146 and 232 kg CO2e per operation (when compared on a caseload basis).

 

(B) Surgical procedures

The outcomes on climate change were found to vary considerably (6-1,007 kg CO2e). See figure 2 (Drew, 2021).

 

(C) Equipment and materials and pharmaceuticals

Most disposable equipments/materials were more harmful for the environment compared to reusables. Figure 4 (Drew, 2021) includes the other outcome measures for provision and use of disposables relative to functionally equivalent reusables. For use of pharmaceuticals, GHG emissions from propofol were considerably lower than inhalational agents (i.e., desflurane, isoflurane and sevoflurane).

 

 

 

Authors conclusion:

LCA data indicates the environmental burden attributable to the services is substantial and effective mitigation strategies are already available.

Eligible studies varied in terms of quality, completeness and risk of bias, with critical appraisal scores varying between 44% and 89%.

 

(A) Only one study is found comparing different ORs on environmental impact and identifying hotpots. Results could not be pooled.

(B) The studies varied considerably in their system boundaries and functional units, which leads to heterogeneity of the studies. Results could not be pooled.

(C) Functional units varied considerably between the studies. There is a high degree of heterogeneity, in terms of studied items and methodology.

 

Interpretation of results

(A) For the OR certain emission hotspots were identified: use of anaesthetic gases and use of HVAC.

(B) OR energy was a great hotspot, mainly due to HVAC. Next to that provision and use of anaesthetic gases and production of equipment and consumables contribute mainly.

(C) Considering the life cycle of single-use items, the most contributing phase is the production phase. Single-use items are more often worse for the environment compared to reusables. When using reusables the energy source has to be taken into account, since the reuse phase is the biggest contributor, which requires energy.

 

Evidence table for LCA studies

Study

Journal

Study characteristics

Methods

Data collection

Outcomes

Interpretation

Comments

Grimmond (2012)

Waste Management & Research

 

Journal information

The journal for a sustainable circular economy. Fully peer-reviewed international journal that publishes original review articles relating to both the theory and practice of waste management and research. Mass flow analyses, life cycle assessments, policy planning and system administration, innovative processes and technologies and their engineering features and cost effectiveness are among the key issues that WM&R seeks to cover through well documented reports on new concepts, systems, practical experience (including case studies), and theoretical and experimental research work.

 

Critical review:

Peer reviewed journal. Not a specific LCA journal, however inclusion of LCA studies in scope of the journal.

Type of study:

LCA

 

Objective:

To assess the climate impacts of two different sharps container systems (disposable and reusable) over a 12 month period.

 

LCA-method:

Attributional LCA

 

Setting and country:

Hospital US


Facility:

Northwestern Memorial Hospital (NMH, Chicago)

 

Years of data collection:

-

 

Surgical discipline(s):

Nonspecific

Funding and conflict of interest:

None

Goal and scope1:

Comparison of contribution of disposable (DSC) or reusable sharps containers (RSC) to the global warming potential (GWP).

Functional unit(s)2:

Provision for 100 occupied hospital beds over one year

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components: Infrastructure and assets were excluded from both systems ("in accordance with product LCA principles")

Inventory database: GaBi

 

Allocation: No

Normalization & Weighting: Results normalized to 100 occupied beds/year

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis: Yes; tests impact of distribution distances by assuming RSCs were made at the DSC facility, and vice versa; tests impact of equal sized container volumes; tests impact of alternative electricity grids; tests transport vehicle load capacity; tests alternate disposal methods, e.g. shredding.

Uncertainty analysis:

No

Variance analysis:

Yes

An LCA framework was used to assess the climate impacts of two different sharps container systems (disposable and reusable) over a 12-month period. Data was collected regarding the size, type, and number of containers used, as well as modification protocols. Both systems were taken into account from cradle to grave. The data comes from a variety of industry and government sources and combined with an LCI/LCA tool developed by the Waterman Group UK.

 

Characterization methods:

IPCC

  1. Climate Change

Annual greenhouse gas (GHG) emissions resulted in a Global Warming Potential (GWP) of 139.1 metric tons of (MT) CO2 equivalents for DSC and 25.1 MTCO2 equivalents for reusable sharps containers (RSC). Stratified to 100 hospital beds over one year this resulted in 24.2 MTCO2 equivalents GWP per 100 OB-year for DSC and 4.0 MTCO2 equivalents GWP per 100 OB-year for RSC. Use of RSC reduces GWP by 83.5%.

 

  1. Waste

Annual waste for DSC resulted in 30,920 kg landfilled plastic and 5020 kg of cardboard boxes for 34,396 manufactured and 33, 759 landfilled DSC (chemotherapy DSC were incinerated). Whereas RSC only caused 123 kg of plastic waste (calculated for the end of life of the RSC, during the study no RSC were landfilled) and 116 kg of waste from carboard boxes (this were the chemotherapy DSC, which were used in both systems if there was an indication for chemotherapy). In total 2481 RSC were manufactured and 47 containers were landfilled.

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

Use of RSC leads to reduction of GWP and waste.

 

The manufacturing process is the biggest contributor in GWP for DSC, and thereby gives the largest difference between the two containment systems. This is a function of resin weight; container manufacturing and low annual RSC manufacturing emissions because of their long lasting life span.

 

The washing process is the biggest contributor for RSC. Decanting and washing contributed for 52.5% of the systems total GWP.

 

The sensitivity analysis showed that the choice of a ‘clean’ electrical source (e.g. windfarm vs. coal) can alter manufacturing GWP by 15% in the US. Thereby, it showed that water usage in RSC processing was associated with 40% of this process and reduction of water volumes would reduce GWP.

 

Reclamation of energy and material will reduce manufacturing GWP in both systems.

 

Costs were reduced by 19.2% by using RSC.

Authors conclusion

RSC significantly reduced GWP over DSC, with manufacturing and transport as the major contributors to the GWP of DSC. Larger containers have little GWP impact, transport distances and electricity sources are important factors.

 

Limitations study

The study is conducted in the USA with all processes related to 1 hospital, outcomes might changes for other hospitals and countries.

Grimmond (2021)

BMJ open

 

Journal information

BMJ Open is an online, open access journal, dedicated to publishing medical research from all disciplines and therapeutic areas.

 

Critical review:

Peer reviewed. Not in specific LCA journal or LCA in scope of the journal.

Type of study:

LCA

 

Objective:

To compare global warming potential (GWP) of hospitals converting from single- use sharps containers to reusable sharps containers (SSC, RSC).

 

LCA-method:

Attributional LCA

 

Setting and country:

Acute care hospital trusts in the UK


Facility:

40 UK NHS hospital trusts using RSC

 

Years of data collection:

2018-2019

 

Surgical discipline(s):
Nonspecific

 

Funding and conflict of interest:

 

Goal and scope1:

To compare the life-cycle carbon footprint of 12-months usage of SSC with 12 months usage of RSC.

Functional unit(s)2:

Total fill line litres (FLL) of sharps containers needed to dispose of sharps for 1-year period in 40 trusts.

System boundaries:

Cradle to grave

Included stages:

Manufacture, transport, decanting and decontamination and treatment and disposal

 

Stated excluded components: Capital machinery, infrastructure, vehicle life-cycle, labor, SC contents, non-GHG emissions

Inventory database: Gabi database

 

Allocation: Yes, annual emissions for RSC manufacturing were determined by dividing total manufacturing GHG by the years of life expectancy.

Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis: Yes; tests impact of larger vehicle size, transport distances, polymer and container manufacturing geographies, larger SSC container size and changing the lifespan from a base of 18 years to 1 year, theoretically maximum of 66 years and the ‘break-point’ at which life span RSC GWP matches SSC GWP.

Uncertainty analysis: No

Variance analysis: No

The global warming potential (GWP) of hospitals converting from single-use sharps containers (SSC) to reusable sharps containers (RSC) were compared by using an attributional LCA model. The intervention in this study was conversion from SSC to RSC. Twelve months of usage of SSC was compared with twelve months usage of RSC. SSC and RSC usage details in 17 baseline trusts immediately prior to 2018 were applied to the RSC usage details of the 40 trusts using RSC in 2019. The outcome measure was GWP. This was calculated in carbon dioxide equivalents (CO2 equivalents) generated in the manufacture, transport, service and disposal of 12 months, hospital-wide usage of both sharps containment systems in the 40 trusts.

 

Characterization methods:

IPCC

  1. Climate Change

Annual greenhouse gas (GHG) emissions in 40 trusts resulted in a Global Warming Potential (GWP) of 3896.4 metric tons of (MT) CO2 equivalents for SSC and 628.9 MTCO2 equivalents for RSC (-83.9%).

 

  1. Waste

Annual waste for SSC resulted in 928.7 kg incinerated plastic and 136.6 kg of cardboard boxes for 1 748 851 manufactured and 1 748 851 incinerated SSC. Whereas RSC were not incinerated – all parts were either reused or recycled. Waste in the RSC study-year came from SSCs used in study-year.

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

 

Use of RSC leads to reduction of GWP and waste.

 

The manufacturing process is the biggest contributor in GWP for SSC, and thereby gives the largest difference between the two containment systems.

 

Transport is the biggest contributor for RSC. It resulted in 442 MT CO2 equivalents of the total of 628.9 MT CO2 equivalents annually for 40 hospital trusts.

 

The sensitivity analysis showed that that changes achieved by changing processes/geography within life stages, were not mirrored in the final GWP comparisons, which in all but one alternative scenario did not achieve changes for more than 5%. This was the RSC lifespan of 1 year, which was an academic exercise and is not expected in real life. Using larger vehicles for transport and optimization for reprocessing medical devices is recommended to lower GHG.

 

 

Authors conclusion

RSC achieved significant GHG reductions over SSC, container manufacture was the largest contributor in SSC, for RSC it was transport. RSC lifespans can be reduced and achieve marked GWP reductions over SSC. Adoption of reusable over SSC can reduce GHG emissions permanently with minimal staff behavioural change.

 

Limitations study

Results of SSC has been extrapolated from 17 trusts to 40 trusts and therefore the representativeness of data might not be accurate.

Hicks (2016)

Environmental Science: Nano from ‘The Royal Society of Chemistry’

 

Journal information

Information on the design and demonstration of engineered nanomaterials for environment-based applications and on the interactions of engineered, natural, and incidental nanomaterials with biological and environmental systems.

 

  • Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
  • Nanomaterial interactions with biological systems and nanotoxicology
  • Environmental fate, reactivity, and transformations of nanoscale materials
  • Nanoscale processes in the environment
  • Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis

 

Critical review:

Peer reviewed journal. Not a specific LCA journal, however inclusion of LCA studies in scope of the journal.

 

Type of study:

LCA

 

Objective:

To compare environmental impact of reusable patient hospital gowns coated with nAg (nanosilver) product to the use of disposable gowns.

 

LCA-method:

Attributional LCA

 

Setting and country:

USA


Facility:

Hospital case study

 

Years of data collection:

Not defined.

 

Surgical discipline(s):

Nonspecific

Funding and conflict of interest:

U.S. Environmental Protection Agency Assistance Agreement No. RD 83558001-0 funded this research.

Goal and scope1:

Analysis of the lifecycle impact of the synthesis of nAg, its application to textiles in a hospital setting and laundering of the textile.

Functional unit(s)2:

  • 4600 ug of nAg (amount added to hospital gown)
  • Per one wear and laundering (over a lifetime of 75 wearings)

System boundaries:

Cradle to grave

Included stages:

Raw materials acquisition, manufacturing, use, end of life

Stated excluded components: -

Inventory database: Ecoinvent database (v 2.2)

 

Allocation: No

Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: Yes

Comparative analysis: Yes

Sensitivity analysis: Yes

Uncertainty analysis: Yes

Variance analysis: No

An LCA was conducted to compare the environmental impact of reusable patient hospital gowns coated with nAg product compared to the use of disposable gowns. First, the environmental impact of synthesis and attachment of 4600 ug nAg was determined (the amount added to a hospital gown). Second the life cycle impacts of nanoscale silver (nAg)-enabled reusable hospital gowns per one wear are modelled and midpoint environmental data are compared.

 

Characterization methods:

TRACI

  1. Climate Change

Results using nanosilver (nAg) as an antimicrobial agent for patient hospital gowns. Given the observed loss of nAg, the silver could be reapplied at each set of 17 launderings for reusable gowns and needed to be reapplied for every single disposable gown. Greenhouse gas (GHG) emissions for synthesis of 4600 ug nanosilver resulted in a Global Warming Potential (GWP) of 1.17 x 10-3 kg CO2 equivalents. Nanosilver attachment resulted in 7.90 x 10-2 kg CO2 equivalents per hospital gown.

 

  1. Waste

No results in this study.

 

  1. Acidification

Acidification for synthesis of 4600 ug nanosilver resulted in 9.99 x 10-4 mol H+ equivalents. Nanosilver attachment resulted in 2.66 x 10-2 mol H+ equivalents per hospital gown.

 

  1. Eutrophication

Eutrophication for synthesis of 4600 ug nanosilver resulted in 5.83 x 10-5 kg N equivalents. Nanosilver attachment resulted in 2.63 x 10-4 kg equivalents per hospital gown.

 

  1. Human Toxicity

Human toxicity in carcinogenics for synthesis of 4600 ug nanosilver resulted in 4.66 x 10-10 CTUh. Nanosilver attachment resulted in 4.28 x 10-9 CTUh per hospital gown.

 

Human toxicity in non-carcinogenics for synthesis of 4600 ug nanosilver resulted in 6.37 x 10-9 CTUh. Nanosilver attachment resulted in 4.28 x 10-8 CTUh per hospital gown.

 

  1. Ecotoxicity

Ecotoxicity for synthesis of 4600 ug nanosilver resulted in 2.36 x 10-2 CTUe. Nanosilver attachment resulted in 1.51 x 10-1 CTUe per hospital gown.

 

  1. Ozone Depletion

Ozone depletion for synthesis of 4600 ug nanosilver resulted in 1.29 x 10-10 kg CFC-11 equivalents. Nanosilver attachment resulted in 5.70 x 10-9 kg CFC-11 equivalents per hospital gown.

Nanosilver (nAg) can be used for patient hospital gowns due to its antimicrobial nature.

 

The results show it is necessary to synthesize the nAg and thereafter attach the silver to the gown. The impact is greater to attach the nAg to the textile than it is to synthesize it. For reusable gowns the silver could be reapplied at each set of 17 launderings. This means the attachment has to be applied more often in disposable gowns, which would lead to a higher environmental impact. Next to that, the sensitivity analysis shows reapplying the nAg every wash cycle for the reusable gown leads to a higher environmental impact compared to the disposable gown. After 28 cycles the impact of the reusable gown is lower compared to the disposable gown. When reapplying after every 17th cycle, the reusable gown has a lower impact compared to the disposable already at first use.

 

This study shows that disposable patient hospital gowns coated with nAg lead to a higher environmental impact for compared nAg coated reusable gowns.

Authors conclusion

The energy consumption was found to be much less during the lifetime of the reusable hospital gown than continuously using disposables. This suggests that nAg-enabling of reusable hospital gowns may be a method for simultaneously lowering the environmental impact and maintaining the antimicrobial performance needed to combat pathogen transmission.

 

Limitations study

Only one attachment and synthesis process was analysed. The environmental impact of excess silver during synthesis and the silver lost is not explored. The comparisons of reusable and disposable gowns relies on prior work and utilizes only one impact category.

McGain (2010)

Anaesthesia and Intensive Care

 

Journal information

Anaesthesia and Intensive Care is an international journal publishing timely, peer reviewed articles that have educational value and scientific merit for clinicians and researchers associated with anaesthesia, intensive care medicine, and pain medicine.

 

It is the official journal of the Australian Society of Anaesthetists, the Australian and New Zealand Intensive Care Society and the New Zealand Society of Anaesthetists.

 

Critical review:

Peer reviewed. Not in specific LCA journal or LCA in scope of the journal.

Type of study:

LCA

 

Objective:

To assess the environmental and financial impacts of two types of commonly used plastic anesthetic drug trays: a single-use polyurethane tray made in China and reusable (300 uses) nylon tray made in Australia. Impacts and financial costs of two cotton gauzes and one paper towel, which are included with most single-use trays, were separately modelled.

 

LCA-method:

Attributional LCA

 

Setting and country:

Australia


Facility:

Western Health, Melbourne, Victoria, Australia

 

Years of data collection:

-

 

Surgical discipline(s):
Anaesthesiology

 

Funding and conflict of interest:

None

Goal and scope1:

To compare the financial and environmental costs of two commonly used anaesthetic drug trays.

Functional unit(s)2:

Use of one plastic anesthetic drug tray (+/- use of 2 cotton gauzes and 1 paper towel)

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components: Existing infrastructure for energy extraction and transportation was not included, nor was agricultural machinery, farm establishment, and forest establishment ("acquisition and infrastructure costs of machines or items that are already in place are routinely not included in LCAs")

Inventory database:

EcoInvent

 

Allocation: No

 

Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes, although alignment between reported contributions and lifecycle stages not totally clear.

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis: No

Uncertainty analysis: Yes, Monte Carlo analysis.

Variance analysis: No

The financial and environmental costs of two commonly used anaesthetic drug trays were modelled using LCA. This study was performed at the Western Hospital in Melbourne, Victoria. The reusable tray, the single-use tray and the single-use tray with cotton and paper were compared. Data was collected directly from measurements and from databases (EcoInvent). The single-use trays were plastic Chinese-made trays and the reusable trays were Australian made nylon trays. Since not all data was directly available, an some data were also not available as average data, for the single-use trays the European energy mix is used, however the Chinese energy mix might be more coal reliant.

 

Characterization methods:

-

1. Climate Change

The reusable tray produced 110 g of CO2 (95% CI 98 to 122 g CO2), the single use tray alone produced 126 g CO2 (95% CI 104 to 151 g) with a mean difference of 16 g CO2 (95% CI -8 to 40 g CO2). The single use tray with cotton and paper produced 203 g CO2 (95% CI 166 to 268 g CO2).

 

2. Waste

No results in this study.

 

3. Acidification

No results in this study.

 

4. Eutrophication

No results in this study.

 

5. Human Toxicity

No results in this study.

 

6. Ecotoxicity

No results in this study.

 

7. Ozone Depletion

No results in this study.

 

CO2 production of single-use trays was only a non-significant 15% greater. However, when modelling the single-use tray with cotton and paper the CO2 production increased notably.

 

For the reusable tray, the washing process contributes most to the total impact. For the disposable tray this is the production process of the polyurethane tray. For the cotton gauzes and paper towel, the production of the gauzes has the greatest impact.

Authors conclusion

The author concludes that financial and environmental savings of a hospital converting to reusable trays are important, and that it seems difficult to justify persisting with single-use drug trays, particularly with added cotton gauze.

 

Limitations study

Data were average industry data and not directly measured (as with most LCA models). Data from tray manufacturers were unavailable, therefore data of average manufacturing effects were used. For the single-use trays the European energy mix is used, however the Chinese energy mix might be more coal reliant.

McPherson (2019)

PeerJ

 

Journal information:

The open access journal for life and environment

 

Critical review:

Peer reviewed journal, not a specific LCA journal and not mentioned in scope. However focus on environment in this journal.

Type of study:

LCA

 

Objective:

To assess the climate impacts of two different sharps container systems (disposable and reusable) over a 12 month period at Loma Linda University Health in California, USA, which is located considerably further away from manufacturers and reprocessors than is Northwestern Memorial Hospital (previously studied).

 

LCA-method:

Attributional LCA

 

Setting and country:

Hospital USA


Facility:

Loma Linda University Health, San Bernardino, CA, USA

 

Years of data collection:

-

 

Surgical discipline(s):
Nonspecific

 

Funding and conflict of interest:

Brett McPherson and Mihray Sharip declare no conflict of interest. Terry Grimmond is an international consultant in sharps injury prevention and waste management to healthcare and associated industries. Daniels Health, the manufacturer did not review, sight or have input into the design, content, methodology, results, write-up of the study or choice of journal for publication.

 

Daniels Health granted $2500 towards the cost of the study, which covered approximately 10% of expenses. No other grant or funding was received from any funding agency in the public, commercial, or not-for-profit sectors. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Goal and scope1:

To compare the climate impacts of two different sharps container systems over a 12 month period.

Functional unit(s)2:

Provision of sharps containers at one healthcare facility for one year

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components:

Capital machinery and infrastructure, vehicles, labor, sharps container contents, as well as any inputs and outputs that constituted less than 1% or the systems total mass or energy (article cites "British Standards Institute, 2011 " PAS2050 guide)

Inventory database:

GaBi

 

Allocation: No

Normalization & Weighting: Yes, results normalised to 10,000 Adjusted Patient Days

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis: Yes, reducing reusable container lifespan, alternate electricity grids, reprocessing optimization.

Uncertainty analysis: No

Variance analysis: Yes

This study followed a very similar methodology as that by Grimmond et al., 2012, including the use of the same cradle-to-grave LCI and calculation tool. The disposable sharps containment system was assessed for a 12 month period prior to Loma Linda University Health's (LLUH) transition to a reusable-based system. The reusable system (certified for 500 uses) was assessed for another 12 month period two years later once the transition was complete. Data were directly collected from LLUH regarding size, type, and number of containers used, as well as changeout protocols. Disposable sharps containers (DSCs) were made from US-sourced polymer in Illinois, packaged in cardboard, transported 3,200km to LLUH, and autoclaved and landfilled in California post-use. Reusable sharps containers (RSCs) were made in Michigan from Korean-sourced polymer, transported 3,500km in reusable transport containers, and reprocessed in California 440km from LLUH. Instead of normalizing the results to occupied beds, as was the case in Grimmond et al., 2012, total 'Adjusted Patient Days' was instead used as the workload indicator to which results were normalized.

 

Characterization methods:

IPCC

 

  1. Climate Change

Annual greenhouse gas (GHG) emissions resulted in a Global Warming Potential (GWP) of 248.62 metric tons of (MT) CO2 equivalents for DSC and 86.19 MTCO2 equivalents for reusable sharps containers (RSC). Adjusted patient days (APD) were used as the workload indicator to which results were normalized. This resulted in 8.37 MTCO2 equivalents per 10,000 APD for DSC and 2.90 MTCO2 equivalents per 10,000 APD for RSC. Use of RSC reduces GWP by 162.4 MTCO2eq (65.3%, P<0.001, RR 2.27-3.71).

 

  1. Waste

Annual waste for DSC resulted in 31.8 tonnes of landfilled plastic, 18.8 tonnes of incinerated plastic and 8.2 tonnes of cardboard boxes for 48,460 manufactured and 35,925 landfilled DSC (chemotherapy DSC were incinerated).

Whereas RSC only caused 0.4 tonnes of plastic waste (Tonnes of chemo/pharma DSC incinerated; 412 chemo DSC were used during RSC year) and 0.1 kg of waste from carboard boxes (this were the chemotherapy DSC, which were used in both systems if there was an indication for chemotherapy). In total 3195 RSC were manufactured and 0 containers were landfilled (all parts were either reused or recycled).

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

 

Use of RSC leads to reduction of GWP and waste.

 

The manufacturing process is the biggest contributor in GWP for DSC, and thereby gives the largest difference between the two systems. It is predominantly a function of the energy required for the higher total polymer weight needed to be annually manufactured and molded for DSC.

 

Transport is the biggest contributor for RSC. Although more DSC required transportation, the daily transport of RSC resulted in similar GHG over the year between RSC and DSC.

 

The sensitivity analysis revealed variations in RSC lifespan contributed little to the GHG result. It showed that differing electricity sources can alter the GHG contribution of the manufacturing process. It can alter DSC GHG by 23% and RSC GHG by 10%. RSC reprocessing accounted for 5.6% of the RSC life cycle. Material reclamation could reduce DSC life cycle GHG.

Authors conclusion

Large RSC transport distances less the differential between DSC and RSC GHG, however RSC still achieved significant GHG reductions over DSC.

Transport and electricity cleanliness are key. RSC lifespan has minimal effect on GHG emissions. Purchasing decisions can contribute to reduction strategies. Institution wide adoption of RSC can reduce GHG with minimal staff behavior change.

 

Limitations study

A limitation was the assumption made in the location of the polymer manufacturer for DSC. It was assumed to be close to the DSC manufacturer. Second, the use of the UK database for transport (because it used tonne.km).

Vozzola (2018)

PDA Journal of Pharmaceutical Science an Technology

 

Journal information

PDA JPST is the primary source of peer-reviewed scientific and technical papers on topics related to pharmaceutical/biopharmaceutical manufacturing, sterile product production, aseptic processing, pharmaceutical microbiology, quality, packaging science, and other topics relevant to PDA members. PDA JPST is an internationally recognized source that receives over a quarter of a million visitors annually.

 

Critical review:

Peer reviewed journal, not a specific LCA journal and not mentioned in scope.

 

For this study, only a 'portion' of the LCI data were reviewed externally by industry experts. The report was internally reviewed by four members of the commissioning body

Type of study:

LCA

 

Objective:

To assess the environmental impacts of two different cleanroom coveralls: reusable and disposable

 

LCA-method:

Attributional LCA

 

Setting and country:

USA


Facility:

-

 

Years of data collection:

-

 

Surgical discipline(s):
Nonspecific

 

Funding and conflict of interest:

The European Change Consortium (partners of the consortium include drape and tape industry groups) commissioned Environmental Clarity, Inc to undertake the LCA

 

Goal and scope1:

To compare market representative reusable versus disposable cleanroom coveralls (defined as a single-piece, long-sleeve extra-large (XL) zip up garment). The scope was cradle to end of life.

Functional unit(s)2:

1,000 garment uses

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components:

The collection and reuse activities and credits were outside of the boundary of this study. The eventual landfill activities were also outside of the boundary of this study.

Inventory database:

Environmental Clarity

 

Allocation: No

Normalization & Weighting: No

Impacts reported:

Yes

Contribution analysis:

Yes, only for NRE consumption and GHG emissions.

Scenario analysis: Yes, different transportation scenarios.

Comparative analysis: Yes

Sensitivity analysis: No

Uncertainty analysis: No

Variance analysis: No

 

An LCA was conducted to assess the environmental impacts of two different cleanroom coveralls: reusable and disposable. This study is an analysis from cradle to crave, quantifying parameters such as energy use and GHG emissions, including different phases: Raw material extraction, production, packaging, transport, reuse and disposal.

 

Characterization methods:

-

  1. Climate Change

The CO2 footprint of reusable coveralls resulted in 517 kg CO2 equivalents for 1000 uses. The disposable (HDPE) resulted in 712 kg CO2 equivalents and the disposable (PP) in 1220 kg CO2 equivalents per 1000 uses.

 

Switching to reusable resulted in a 27-58% decrease of the carbon footprint.

 

For the disposable HDPE and PP coverall the manufacturing process contributed most to the CO2 footprint (resp. 414 kg CO2eq and 823 kg CO2eq, 58-68% of cradle to end of life GHG). For the reusable PET coverall this resulted in 115 kg CO2eq (22% of cradle to end of life GHG)

 

The packaging manufacturing contributed for the reusable PET 4.4 % (22.8 kg CO2eq) of the cradle to end of life GHG, for the disposable HDPE 6.8% (48.4 kg CO2eq) and for the disposable PP 4% (48.4 kg CO2eq).

 

The laundry process contributed for the reusable PET 65 % (336 kg CO2eq) of the cradle to end of life GHG, for the disposable HDPE 20% (143 kg CO2eq) and for the disposable PP 17% (204 kg CO2eq).

 

The sterilization process contributed for the reusable PET 0.21% (1.08 kg CO2eq) of the cradle to end of life GHG, for the disposable HDPE 0.065% (0.461kg CO2eq) and for the disposable PP 0.054% (0.657 kg CO2eq).

 

The use phase transport contributed for the reusable PET 8.1% (42.1 kg CO2eq) of the cradle to end of life GHG, for the disposable HDPE 14% (99.9 kg CO2eq) and for the disposable PP 11% (132 kg CO2eq).

 

The End-of-Life contributed for the reusable PET 0% (0 kg CO2eq) of the cradle to end of life GHG, for the disposable HDPE 0.87% (6.19 kg CO2eq) and for the disposable PP 8.35% (0.69 kg CO2eq).

 

  1. Waste

Solid waste includes: Disposable coveralls, biological waste, and plastic and paper packaging. In this study, 100% of the reusable cleanroom coveralls were reused in other industries at the end-of-life stage and therefore not included as solid waste.

 

The waste generation of reusable coveralls resulted in 10.2 kg for 1000 uses. The disposable (HDPE) resulted in 171 kg and the disposable (PP) in 238 kg per 1000 uses.

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

The reusable coveralls have a lower environmental impact and produce less waste compared to the disposable variant.

 

The biggest contributor in CO2 footprint for the disposable coverall is the manufacturing process (58-68%). For the reusable variant this is the laundry process (65%).

 

 

Authors conclusion

It is absolutely clear that the environmental benefit of reusable coveralls is significant.

 

Limitations study

Packaging materials vary between supply companies and in this study representative materials are used for the different companies, however these are not precisely defined per company.

Vozzola (2018)

American Journal of Infection Control (AJIC)

 

Journal information

AJIC covers key topics and issues in infection control and epidemiology. Infection control professionals, including physicians, nurses, and epidemiologists, rely on AJIC for peer-reviewed articles covering clinical topics as well as original research.

 

Critical review:

Peer reviewed journal, not a specific LCA journal and not mentioned in scope.

 

Type of study:

LCA

 

Objective:

To assess the environmental impacts of two different isolation gowns: reusable and disposable

 

LCA-method:

Attributional LCA

 

Setting and country:

USA


Facility:

-

 

Years of data collection:

-

 

Surgical discipline(s):
Nonspecific

 

Funding and conflict of interest:

The American Reusable Textile Association (ARTA) and International Association for Healthcare Textile Management (IAHTM)

committees with reusable and disposable firms were essential in

providing funding and field information for this study.

Goal and scope1:

(1) to compare 4 environmental impacts (energy,

global warming potential, water use, and solid waste consumption) of reusable and disposable isolation gowns; (2) to clearly show

what parts of the life cycle are important to the result; and (3) to

provide a sensitivity analysis for important parameters.

Functional unit(s)2:

1,000 isolation gown uses

System boundaries:

Cradle to grave

Included stages:

Resource extraction, gown

manufacture, gown use and/or reuse in healthcare settings, to end-of-life disposal.

 Stated excluded components:

The study did not include other

medical textiles used in healthcare settings such as gloves, wipes,

or masks.

Inventory database:

Environmental Clarity

 

Allocation: No

Normalization & Weighting: No

Impacts reported:

Yes

Contribution analysis:

Yes

Scenario analysis: Yes

Comparative analysis: Yes

Sensitivity analysis: Yes, it is stated that it has been done, however results are not clear.

Uncertainty analysis: No

Variance analysis: No

 

An LCA was conducted to assess the environmental impacts of two different isolation gowns: reusable and disposable. The functional unit was 1000 isolation gowns uses. This study is an analysis from cradle to grave including manufacturing, use and end-of-life stages of the gown systems. The Environmental Clarity, Inc. LCA database was used to evaluate the life cycles of both isolation gown systems. Sixteen disposable isolations gowns from 5 suppliers were studied, composed primarily of nonwoven polypropylene fabric. Eight reusable isolation gowns were studied, composed of primarily woven polyester fabric. The outcome measures were climate change and waste.

 

Characterization methods:

-

  1. Climate change

The CO2 footprint of reusable isolation gowns resulted in 218 kg CO2 equivalents for 1000 uses. The disposable resulted in 310 kg CO2 equivalents per 1000 uses.

 

Switching to reusable resulted in a 30% decrease of the carbon footprint.

 

For the disposable isolation gowns the manufacturing process contributed most to the carbon footprint (accounting for 97% of the energy consumption and global

warming potential and 100% of the blue water consumption).

 

The laundry steps had a large influence on

the environmental indicators for reusable isolation gowns, accounting for 68% of energy consumption, 67% of greenhouse gas emissions,

and 20% of blue water consumption. Nevertheless, the reduction in environmental impact achieved by producing fewer gowns (when using reusables) outweighed the added load imposed by the laundering process of reusables.

 

  1. Waste

The amount of solid waste of reusable isolation gowns resulted in 0.413-4.42 kg for 1000 uses (range based on 0-100% reuse in other industries after disposal). The disposable resulted in 63.4 kg per 1000 uses.

 

Switching to reusable resulted in at least a 93% decrease of solid waste.

 

The reusable isolation gowns have a lower environmental impact and produce less waste compared to the disposable variant.

 

The biggest contributor in CO2 footprint for the disposable coverall is the manufacturing process. For the reusable variant this is the laundry process.

Authors conclusion

This analysis, combined with agreement of previous partial

life cycle studies of other medical textiles, makes it absolutely clear

that the environmental benefit of reusable isolation gowns is

significant.

 

Limitations study

Funding could potentially be a source of bias. Different energy mixes are not taken into account, this potentially limits the representativeness of the results for other parts of the world. A sensitivity analysis is conducted, however results are not shown.

Vozzola (2020)

AORN Journal

 

Journal information

The AORN Journal will be an indispensable resource recognized for scholarly, evidence-based, peer-reviewed articles that convey standards of excellence and innovations in the delivery of perioperative nursing.

 

Journal content supports the clinical, research/quality improvement, education, and management strategies related to the nurse's role in caring for patients before, during, or after operative and other invasive and interventional procedures in ambulatory and inpatient settings.

 

Critical review:

Peer-reviewed, however no specific LCA journal or LCA taken into the scope of the journal.

Type of study:

LCA

 

Objective:

To assess the environmental impacts of two types of surgical gown: disposable and reusable

 

LCA-method:

Attributional LCA

 

Setting and country:

USA


Facility:

-

Years of data collection:

-

 

Surgical discipline(s):
Nonspecific

 

Funding and conflict of interest:

All authors declare affiliations that could be perceived as posing a potential conflict of interest (all authors are consultants for the American Reusable Textile Association and the International Association for Healthcare Textiles, and are involved in Environmental Clarity, Inc.)

 

This study was funded by The American Reusable Textile Association (ARTA) Life Cycle Assessment Committee, Shawnee Mission, KS.

 

Goal and scope1:

Assessment of environmental impacts of disposable versus reusable surgical gowns.

Functional unit(s)2:

1,000 uses of an extra large, single‐piece, long‐sleeved surgical gown in an operating room setting

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, use, reuse, disposal

Stated excluded components: -

Inventory database:

Environmental Clarity Inc.

 

Allocation: No

Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: No

Sensitivity analysis: Yes, modelled 0% and 100% reuse of end-of-life reusable gowns in other industries; if disposable gowns were instead manufactured in the US, 10% more energy efficient laundry processes.

Uncertainty analysis: No

Variance analysis: No

 

LCA of reusable versus disposable gowns to assess the environmental impact of these surgical gowns in the USA. An LCA was conducted according to the standards from the International Organization for Standardization. The Environmental Clarity, Inc, LCA database was used to evaluate the life cycles of both surgical gown systems. The outcome Climate Change was expressed as GWP, in kg of CO2 equivalents.

 

Characterization methods:

-

  1. Climate Change

The total GWP for 1,000 uses of the reusable surgical gown is 557 kg CO2eq, and for the disposable 1636 kg CO2eq. By selecting the reusable surgical gown, this will result in a 66% reduction of GWP.

 

The gown manufacturing and supply chain resulted for 1,000 uses of the reusable gown in 134 kg CO2eq and for the disposable gown 1495 kg CO2eq.

 

The packaging manufacturing and supply chain resulted for 1,000 uses of the reusable gown in 76.7 kg CO2eq and for the disposable gown in 121 kg CO2eq.

 

Laundry resulted in 278 kg CO2eq for the reusable gown, and there was 0 kg CO2eq used for the disposable gowns.

 

The sterilization of the gowns resulted in 19.8 kg CO2eq for the reusable and 6.26 kg CO2eq for the disposable gown.

 

The use phase transport of 1,000 reusable gowns resulted in 38.7 kg CO2eq for the reusable gown and 2.47 kg CO2eq for the disposable gown.

 

The end of life contribution to the GWP resulted in 1.40 kg CO2eq for the reusable variant and 10.9 kg CO2eq for the disposables.

 

  1. Waste

Solid waste per 1,000 uses/1,000 gowns resulted in 35.5-43.4 kg for the reusable and 265 kg for the disposable gown.

 

Gown manufacturing resulted in 0-7.9 kg solid waste for the reusable and 224 kg solid waste for the disposable gown (1,000 uses/gowns).

 

Packaging manufacturing and supply chain yielded 35.5 kg solid waste for the reusable gown and 40.3 kg for the disposable (1,000 uses/gowns).

 

End of life resulted in 0-0.00842 kg solid waste for the reusable and 0.505 for disposable gowns (1,000 uses/gowns).

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

 The reusable surgical gown has lesser impact on the environment in terms of Climate Change and waste.

 

The biggest contributor for the disposable gown is the manufacturing process, as well for the GWP as in waste production.

 

For the reusable surgical gown the laundry phase has the greatest impact.

Authors conclusion

The current study adds to the body of evidence that shows the environmental superiority of reusable surgical gowns.

 

Limitations study

Comfort was not taken into the analysis, although this is a factor for scrubbed surgical team members.

 

Economic measurements are not included.

 

The blue water comparisons’ accuracy is limited due to lack of data on water content of soiled gowns.

 

Not all disposable gowns are produced in Chine or sterilized with ethylene oxide (what is used in this study).

 

Packaging of disposable and reusables vary.

Davis (2018)

Journal of Endourology

 

Journal information

Peer-reviewed journal and innovative videojournal companion exclusively focused on minimally invasive and robotic urology, applications, and clinical outcomes.

 

Critical review:

Peer reviewed article. Not in specific LCA journal.

 

Type of study:

LCA

 

Objective:

To assess the climate impacts of two types of flexible ureteroscopes: single-use (LithoVue™, Boston Scientific) and reusable (Olympus Flexible Video; typically 16 uses before repair and 180 uses before decommissioning)

 

LCA-method:

Attributional LCA

 

Setting and country:

Hospital Australia


Facility:

Austin Hospital, Melbourne, Victoria, Australia

 

Years of data collection:

-

 

Surgical discipline(s):
Urology & Nephrology

 

Funding and conflict of interest:

-

 

Goal and scope1:

To compare the environmental impacts of single-use and reusable ureteroscopes.

Functional unit(s)2:

Use of one ureteroscope during one endourologic case

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, reuse, disposal

Stated excluded components: -

Inventory database: -

 

Allocation: No Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: No Comparative analysis: Yes

Sensitivity analysis: No

Uncertainty analysis: No

Variance analysis: No

The environmental impact of single-use flexible ureteroscopes with reusable flexible ureteroscopes were compared. An LCA of the LithoVue (Boston Scientific) single-use digital flexible ureteroscope and Olympus Flexible Video Ureteroscope (URV-F) was performed. Data on raw material extraction, manufacturing, reuse and disposal of the instruments was obtained. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and used to calculate the CO2 footprint. The outcome measures were Climate Change (CO2 footprint) and waste.

 

Characterization methods:

-

  1. Climate Change

The CO2 footprint per case was calculated. For the single-use ureteroscope the total CO2 footprint per case is 4.43 kg CO2 equivalents. This consisted of manufacturing costs, solid waste and sterilization. The manufacturing costs resulted in 3.83 kg CO2, solid waste in 0.3 kg CO2 and sterilization 0.3 kg CO2 .

 

The total CO2 footprint of the reusable ureteroscope was 4.47 kg CO2 per case. This consisted of manufacturing costs (0.06 kg CO2), washing/sterilization (3.95 kg CO2), repackaging theatre wrap (<0.005 kg CO2), repair costs (0.45 kg CO2) and solid waste (0.005 kg CO2).

 

  1. Waste

Solid waste for the disposable ureteroscope resulted in 0.3 kg CO2 per case.

 

Solid waste for the reusable ureteroscope resulted in 0.005 kg CO2 per case.

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

The study suggests the data on environmental costs are comparable between the disposable and reusable ureteroscope. However, the comparison is per case and not for the whole life cycle of a reusable ureteroscope, so this might interfere with the results. It is expected that with the high manufacturing impact of the disposable variant, this impact after multiple uses will exceed the environmental impact of the reusable variant.

Authors conclusion

The carbon footprint of the single use and reusable ureteroscopes is comparable. Informed clinicians should be willing to advocate for changes within the healthcare delivery and within the manufacturing industry to maintain healthcare quality, cost-effectiveness and safety in the future.

 

Limitations study

The data are compared per case. However, reusable ureteroscopes can be used multiple times. This is not included in the analysis and could potentially lead to a lower environmental impact for reusable ureteroscopes.

Donahue (2020)

American Journal of Obstetrics & Gynecology

 

Journal information

The American Journal of Obstetrics and Gynecology, “The Gray Journal”, covers the full spectrum of Obstetrics and Gynecology.

 

The aim of the Journal is to publish original research (clinical and translational), reviews, opinions, video clips, podcasts and interviews that will have an impact on the understanding of health and disease and that has the potential to change the practice of women's health care. An important focus is the diagnosis, treatment, prediction and prevention of obstetrical and gynecological disorders. The Journal also publishes work on the biology of reproduction, and content which provides insight into the physiology and mechanisms of obstetrical and gynecological diseases.

 

Critical review:

Peer reviewed, not a specific LCA journal.

 

Type of study:

LCA

Objective:

To assess the climate impacts of three types of vaginal specula that are commonly used in practice (a single-use acrylic model and two reusable stainless steel models)

 

LCA-method:

Attributional LCA

 

Setting and country:

USA


Facility:

Michigan Medicine, University of Michigan, Ann Arbor, MI, USA

 

Years of data collection:

-

 

Surgical discipline(s):
Obstetrics & Gynecology

 

Funding and conflict of interest:

The authors report no conflict of interest.

Goal and scope1:

To compare the environmental impacts of three types of vaginal specula (one single-use and two reusable models)

Functional unit(s)2:

Completion of 20 gynaecologic examinations using a speculum

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, transportation, reuse, and disposal

Stated excluded components:

Excluded components were inks, bulk packaging, autoclave production, illumination pack for plastic specula, and lubrication (expected to have minimal impacts on results).

Inventory database:

EcoInvent, IDEMAT, GREET, EPA WARM

 

Allocation: No Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis: Yes, Sensitivity analysis reports impacts based on different numbers of uses (1-500), autoclave loading practices, regional electricity grids, reprocessing method (autoclave vs H2O2)

Uncertainty analysis: No

Variance analysis: No

 

Life cycle assessment methods were applied to evaluate the carbon footprints of 3 vaginal specula: a single-use acrylic model and two reusable stainless steel models (reusable stainless steel grade 304 speculum and the reusable stainless steel grade 316 speculum). The data were obtained regarding speculum and packaging composition and weight. There were no data available on production processes for the specula. For this reason, assumptions were made. For the acrylic specula injection molding was assumed and for the reusable specula a combination of hot extrusion, milling/turning, deformation and heat treatment was assumed, based on literature. The transportation was based on manufacturer and general industry data. Reuse for the steel reusable specula was estimated based on autoclave manufacturer specifications. Disposal was modeled with the use of the EPA WARM model, which estimates the average greenhouse gas (GHG) emissions that are associated with disposal of various materials in the United States (US).

 

Characterization methods:

IPCC

  1. Climate Change

Donahue (2020) demonstrated the reusable grade 304 speculum produces fewer life cycle CO2e emissions than the equivalent number of disposable acrylic specula after 2 completed examinations (2.11 kg CO2e compared to 2.63 kg CO2e). The reusable grade 316 produces fewer life cycle CO2e emissions after 3 completed examinations (3.11 kg CO2e compared to 3.51 kg CO2e). The reusable stainless steel grade 304 speculum is less carbon intensive to produce compared to the grade 316 speculum, which is the reason why the grade 304 remains less in its total life cycle CO2e emissions over a wide range of uses.

 

After 500 examinations the difference becomes more apparent (grade 316 – 107.52, grade 304 – 101.31 and acrylic – 438.55 kg CO2e).

 

The contribution of the stages differs between the specula. The largest contributor for the disposable acrylic speculum is material production and manufacturing (90.6%), followed by transportation (6.5%) and waste/end-of-life (2.9%). For the reusable stainless steel grade 304 speculum the largest source of CO2 emissions is use/reprocessing (74.1%), followed by material production and manufacturing (24.9%) and transportation (0.46%). The biggest contributor in total life cycle emissions for the grade 316 speculum was use/reprocessing (65.2%), followed by production (34.4%) and transportation (0.4%).

 

  1. Waste

No results in this study.

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

The study shows the disposable acrylic speculum has the biggest negative environmental impact. This is mainly due to material production and manufacturing. This phase offers opportunities to decrease this impact.

 

For the reusable stainless steel specula the main contributor is the energy used to power autoclaves. Here is an opportunity to reduce this by increasing the efficiency of energy-use and by making a transition to more renewable energy sources.

 

In the sensitivity analysis it became clear that the impact increased significantly when shifting to individually sterilizing the specula, instead of sterilizing multiple at the same time (increase of 189-219%). However, doubling the autoclave load (4 Pouches (base case) to 8 Pouches (full load)) did not have a great difference in the overall impact (20-39% decrease in greenhouse gas emissions).

 

Changing from the most carbon intensive electricity grid to the least carbon intensive resulted in a 33-36% reduction of CO2e emissions. Regardless of the grid used, the stainless steel life cycle greenhouse gas emission remained lower than the acrylic specula.

 

Using high level disinfectant instead of autoclave sterilization, resulted in a 11-12% increase in greenhouse gas emissions.

Authors conclusion

By using acrylic specula for over a period of 1 year (5875 disposable acrylic specula), 5153 kg CO2e and 5462 kg solid waste were produced. By changing to steel grade 304 of grade 316 specula (100 uses average), greenhouse gas emissions could have been reduced by 75& and 74% respectively with a significant decline in end-of-life waste generation (both 64.43 kg). Health systems might consider environmental impact in addition to costs and clinical efficacy when choosing medical instruments.

 

Limitations study

Multiple assumptions were made in the analysis, mainly regarding production and reprocessing, due to lack of data from manufacturers and other sources. The authors choose to use the less carbon intensive approach for the acrylic specula and the more carbon intensive approach for the steel specula, to ensure any difference shown would be robust. Next to that, the study was further limited by the lack of life cycle data on high level disinfectants such as glutaraldehyde, ortho-phthalaldehyde and peracetic acid.

Eckelman (2012)

Anesthesia & Analgesia

 

Journal information

The "The Global Standard in Anesthesiology," provides practice-oriented, clinical research you need to keep current and provide optimal care to your patients. Brings peer reviewed articles on the latest advances in drugs, preoperative preparation, patient monitoring, pain management, pathophysiology, and many other timely topics.

 

Critical review:

Peer reviewed, not a specific LCA journal.

Type of study:

LCA

 

Objective:

To assess the environmental impacts of two types of laryngeal mask airways (LMAs): single-use (Unique™) and reusable (Classic™; 40 lifetime uses)

 

LCA-method:

Attributional LCA

 

Setting and country:

USA


Facility:

Yale-New Haven Hospital, New Haven, CT, USA

 

Years of data collection:

-

 

Surgical discipline(s):
Anesthesiology

 

Funding and conflict of interest:

The authors declare no conflict of interest. Funding came from the department of anesthesiology, Yale School of Medicine.

 

Goal and scope1:

Compare the environmental impact of a disposable and a reusable LMA, from cradle to grave.

Functional unit(s)2:

Maintenance of 40 airways

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components:

Excluded components were bulk packaging, machinery, and small components such as inks and labels on the packaging and on the sterilization indicator strips (expected to have negligible impacts)

Inventory database:

Ecoinvent

 

Allocation: No Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: No (hotspots reported in text)

Scenario analysis: No Comparative analysis: Yes

Sensitivity analysis: Yes, tests alternative assumptions including transport mode, autoclave loading, number of reuse cycles (10-100), waste pathways, and labour.

Uncertainty analysis: No Variance analysis: No

The environmental impacts of two types of laryngeal mask airways (LMAs): single-use (Unique™) and reusable (Classic™; 40 lifetime uses) were assessed by using a life cycle assessment method. Raw material extraction, production, packaging, transport, reuse and disposal were included in the analysis. The material composition and weights were established on the basis of manufacturer information and density testing. Materials were matched with the most appropriate Life Cycle Inventory (LCI) records from EcoInvent (database). Production processes for hard and soft plastics were assumed to be injection molding and thermoforming, respectively. Data was obtained from distributors to estimate distances and mode of transport. Reprocessing of reusable LMAs was estimated using data from Yale New Haven Hospital and autoclave specifications. Disposal was modelled using US average statistics for solid waste.

 

Characterization methods:

BEES

  1. Climate Change

Eckelman (2012) demonstrated the results on climate change specifically to be 7.4 kg CO2e of GHG over its life cycle for the reusable LMA and 11.3 kg CO2e for the disposable LMA. For all outcomes in this study, results are expressed in percentages, whereas the LMA with the highest impact is defined as 100% and the other LMA is relatively compared to the LMA with the highest impact. For the outcome climate change, the disposable LMA had the highest impact (100%) compared to the reusable LMA (65%). The largest source for the disposable LMA is the polymerization of PVC (23%), which is the main material used. The majority of the remaining contributors are polycarbonate production (14%), transportation via truck (15%), thermoforming (13%) and waste disposable (11%). The majority of the GHG emissions for the reusable LMA (77%) is from natural gas production and combustion, which is to produce steam for the autoclave.

 

  1. Waste

No results in this study.

 

  1. Acidification

For the outcome acidification, the disposable LMA had the highest impact (100%) compared to the reusable LMA (20-30%).

 

  1. Eutrophication

For the outcome eutrophication, the disposable LMA had the highest impact (100%) compared to the reusable LMA (90-100%).

 

  1. Human Toxicity

The human toxicity, stated as human health (HH) in this study, was defined in three different groups: HH cancer, HH noncancer and HH air pollutants. For the outcome HH cancer, the disposable LMA had the highest impact (100%) compared to the reusable LMA (0-10%). For the outcome HH noncancer, the disposable LMA had the highest impact (100%) compared to the reusable LMA (0-10%) and the outcome HH air pollutants, resulted in the highest impact for yet the disposable LMA (100%) compared to 20-30% for the reusable LMA.

 

  1. Ecotoxicity

For the outcome ecotoxicity, the disposable LMA had the highest impact (100%) compared to the reusable LMA (10-20%).

 

  1. Ozone Depletion

For the outcome ozone depletion, the disposable LMA had the highest impact (100%) compared to the reusable LMA (20-30%).

 This study demonstrates the disposable LMA has a bigger environmental impact compared to the reusable LMA. In the outcome measure climate change, this is mainly due to the production of the material for the disposable LMAs that is used. A change of material production, or a change in type of material which has a lesser impact on the environment could be a way to help reduce the impact for the disposable LMA. Next to that the biggest contributor for the reusable LMA is the production of steam for the autoclave. If this could be done in some other way, the environmental impact of the reusable LMA could decrease.

 

Alternate assumptions are also made in this study. It shows the effect of alternate modes of transport, compared to the base case (rail), was quite small for the reusable LMA but more interesting for the disposable LMA, leading to a decrease in GHG emissions (-9%) changing to transport by road, and an increase (+81%) by using air transportation.

 

Individually autoclaving the reusable LMA resulted in an increase of life cycle GHG emissions by >400%, whereas loading with 10 LMAs per cycle (compared to the base case 5 per cycle) resulted in a decrease of 25%. Using a more capital intensive option to increase the energy efficiency of the machines by 10% results in a decrease of GHG emissions of 8%.

 

The human toxicity impacts are dominated by the production and use of plastics for the disposable LMA. Increasing the amount of PVC by 10% leads to a 5% increase in cancer and noncancer effects.

 

Premature disposal of the reusable LMA has its direct effects on GHG emissions, by a >50% increase if the LMA is disposed at 10 reuse cycles. Extending the reuse cycle of reusable LMAs to 80 cycles (doubling lifetime) results in a decrease of GHG emissions by 9%.

 

In waste management, by switching from 100% incineration to 100% landfill, reduces the impacts across all categories by 5-10%.

 

Including the labor for cleaning impacts (base case not included) resulted only in a nominally increase for total GHG emissions and water impacts of reusable LMAs.

Authors conclusion

The results suggest the reusable LMA has a lower life cycle environmental impact compared to the disposable LMA at Yale New Haven Hospital, across all categories of concern.

 

Limitations study

This study did not analyse the environmental health impacts during the use of an LMA, where intraoperative exposure to some parts of the plastics could contribute increasing the outcome human toxicity.

 

 

Ibbotson (2013)

International Journal of Life Cycle Assessment

 

Journal information

The International Journal of Life Cycle Assessment is the first journal devoted entirely to Life Cycle Assessment and closely related methods. The Int J Life Cycle Assess is a forum for scientists developing LCA and LCM (Life Cycle Management); LCA and LCM practitioners; managers concerned with environmental aspects of products; governmental environmental agencies responsible for product quality; scientific and industrial societies involved in LCA development, and ecological institutions and bodies.

 

Critical review:

Peer reviewed, specific LCA journal.

Type of study:

LCA

 

Objective:

To assess the environmental and financial impacts of three types of surgical scissors: disposable plastic reinforced scissors, disposable stainless steel scissors, and reusable stainless steel scissors

 

LCA-method:

Attributional LCA

 

Setting and country:

Hospital in Germany


Facility:

-

 

Years of data collection:

-

 

Surgical discipline(s):
Nonspecific

 

Funding and conflict of interest:

-

Goal and scope1:

Assess the environmental and financial impacts of three surgical scissors, to compare their eco-efficiency.

Functional unit(s)2:

4,500 use cycles of surgical scissors during 18 years

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components: -

Inventory database:

EcoInvent, Australian Data 2007

 

Allocation: No Normalization & Weighting: No

Impacts reported: Yes, graphically with log scale.

Contribution analysis: Only for ReCiPe endpoint and CED results.

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis:

Yes, tests alternative electricity mixes, sterilization processes (gamma and gas), disposal method (incineration and recycling).

Uncertainty analysis: No

Variance analysis: No

The environmental and financial impacts of three surgical scissors which are (1) disposable scissors made of plastic (fibre reinforced), (2) disposable scissors made of stainless steel and (3) reusable scissors made of stainless steel were assessed using a life cycle assessment and life cycle costing method. The data was compared for the use of 4,500 cycles if usage in Germany. The data on raw material, manufacturing (including electricity consumption), transport, and disposal process were obtained from a medical company in Europe. Missing data (e.g. sterilization processes for reusable scissors) were obtained from the literature or expert opinion. Electricity data that was missing was adjusted from the International Energy Agency (IEA). Incineration of plastics, cardboard and municipal solid waste were assumed based on Swiss plants in 2000 (from EcoInvent).

 

Characterization methods:

CED Method, ReCiPe

  1. Climate Change

Ibbotson (2013) reported the results on climate change graphically in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 10,000 kg CO2-equivalents), followed by the disposable plastic scissor (+/- 5500 kg CO2-equivalents) and eventually the reusable stainless steel scissor (+/- 550 kg CO2-equivalents).

 

  1. Waste

No results in this study.

 

  1. Acidification

Ibbotson (2013) reported the results on acidification in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 90 kg SO2-equivalents), followed by the disposable plastic scissor (+/- 20 kg CO2-equivalents) and eventually the reusable stainless steel scissor (+/- 0.8 kg SO2-equivalents).

 

  1. Eutrophication

Ibbotson (2013) reported the results on eutrophication in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. Freshwater and marine eutrophication are described separately. Regarding freshwater eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 1 kg P-equivalents), followed by the disposable plastic scissor (+/- 0.55 kg P-equivalents) and eventually the reusable stainless steel scissor (+/- 0.3 kg P-equivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 10 kg N-equivalents), followed by the disposable plastic scissor (+/- 6 kg N-equivalents) and eventually the reusable stainless steel scissor (+/- 0.2 kg N-equivalents).

 

  1. Human Toxicity

Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless steel scissor (+/- 200 kg 1.4-DB equivalents).

 

  1. Ecotoxicity

Ibbotson (2013) reported the results on ecotoxicity graphically in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. Terrestrial and freshwater ecotoxicity are described separately. Regarding terrestrial ecotoxicity, the results demonstrate that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 2 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 0.4 kg 1.4-DB equivalents) and eventually the reusable stainless steel scissor (+/- 0.03 kg 1.4-DB equivalents). Next to that, with regard to freshwater ecotoxicity, the results demonstrate that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 500 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 55 kg 1.4-DB equivalents) and eventually the reusable stainless steel scissor (+/- 4 kg 1.4-DB equivalents).

 

  1. Ozone Depletion

Ibbotson (2013) reported the results on ozone depletion in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (0.00055 kg CFC-11 equivalents), followed by the disposable plastic scissor (0.0001 kg CFC-11 equivalents) and eventually the reusable stainless steel scissor (+/- 0.00004 kg CFC-11 equivalents).

 The study shows that the reusable stainless steel scissor is the choice with the lowest environmental impact in all the impact categories investigated. This is followed by the disposable plastic scissor and eventually the disposable stainless steel scissor, which has the highest impact.


The hotspots for the disposable scissors were found in the material and manufacturing process and for the reusable scissor this was found in the usage phase, which could be appointed to the washing, disinfection and sterilization cycles and the repair and service cycles.

 

 

 

 

Authors conclusion

The eco-efficiency results indicated that the stainless steel reusable scissor is the option with the lowest environmental impact and is next to that, cheapest.

 

Limitations study

Data sources were not comparable between the scissors, since the plastic disposable and stainless steel reusable data was obtained from company data and the stainless steel disposable scissor data was obtained from literature. Data on electricity was not available (located in Asian countries), so another energy mix was used. This also accounted for other data like recycling data. This results in a situation that could not be totally applicable for the German situations studied.

Leiden (2020)

Resources, Conservation & Recycling

 

Journal information

Open Access journal with independent editorial board and peer-review process.

 

Contributions from research, which consider sustainable management and conservation of resources are welcomed. The journal emphasizes the transformation processes involved in a transition toward more sustainable production and consumption systems. Emphasis is upon technological, economic, institutional and policy aspects of specific resource management practices, such as conservation, recycling and resource substitution, and of "systems-wide" strategies, such as resource productivity improvement, the restructuring of production and consumption profiles and the transformation of industry.

 

Critical review:

Peer reviewed, not a specific LCA journal.

Type of study:

LCA

 

Objective:

To assess the environmental impacts of two types of instrument set for single-level lumbar fusion surgeries: disposable (Neo Pedicle Screw System from Neo Medical SA) and reusable (Viper 2 from DePuy Synthes, 300 uses).

 

LCA-method:

Attributional LCA

 

Setting and country:

Hospitals in Germany


Facility:

-

 

Years of data collection:

-

 

Surgical discipline(s):
Neurology

 

Funding and conflict of interest:

The study was funded by Neo Medical S.A., but it is stated that Neo Medical S.A. had no direct influence on the results of the study.

 

Goal and scope1:

To compare whether reusable or disposable surgical instrument sets for single-level lumbar fusion surgeries are advantageous from an environmental perspective. Also, the identification of hotspots for designing future sustainable surgical instruments.

Functional unit(s)2:

The surgical instrument set required for one single-level lumbar fusion surgery involving the implantation of four screws and two rods

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components: -

Inventory database: EcoInvent

 

Allocation: No

Normalization & Weighting: No

Impacts reported: No

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis: Yes, tests alternate assumption, including: number of usage cycles for the reusable set (300-500) and loan (distributor rechecks and replaces missing components between each use) vs. consignment system (i.e. in-hospital reprocessing with requests to distributor for missing components)

Uncertainty analysis: No

Variance analysis: No

The difference in contribution to the environmental impact of a disposable and a reusable surgery instrument set for lumbar fusion surgeries are investigated. The data compares the reusable and the disposable set for one single surgery in Germany. The data on manufacturing was based on weight, material and form of instruments, transportation on mode and calculated distances between producer, distributor, and hospital and washing and steam sterilization was specific to a German hospital. Disposal was modelled using EcoInvent waste incineration processes.

 

Characterization methods:

CML, ReCiPe

  1. Climate Change

Leiden (2020) reported the results in percentages. They are displayed as percentage of the maximum value of each impact category. For the outcome climate change, the reusable set had the highest impact (100%) compared to the disposable set (10-20%) after 1 surgery. For the disposable surgical set the production phase had the biggest contribution and for the reusable set the sterilization process.

 

  1. Waste

No results in this study.

 

  1. Acidification

Leiden (2020) reported the results in percentages. They are displayed as percentage of the maximum value of each impact category. For the outcome climate Acidification, the reusable set had the highest impact (100%) compared to the disposable set (30-40%) after 1 surgery. For the disposable surgical set the production phase had the biggest contribution and for the reusable set the sterilization process.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

 

 This study suggests the reusable surgical set has a bigger environmental impact compared to the disposable set. The limitation is that the disposable and reusable set are compared for 1 surgery. Since the reusable set can be reused for several times, this can influence the results over time.

 

A sensitivity analysis has be conducted, where the reusable set has been reused. However, it is still compared to the base case of the disposable set (1 surgery). This does not reflect reality in the results.

 

The biggest hotspots are clearly stated. The sterilization process is the biggest contributor to the environmental impact for the reusable set and for the disposable set the production process is most contributory.

Authors conclusion

The authors conclude the environmental impact of the disposable system was significantly lower in all impact categories. This is mainly due to the high impact of the steam sterilization process and the big size of the reusable instruments sets.

 

Limitations study

A limitation is that the disposable and reusable set are compared for 1 surgery. Since the reusable set can be reused for several times, this can influence the results over time.

 

A sensitivity analysis has be conducted, where the reusable set has been reused. However, it is still compared to the base case of the disposable set (1 surgery). This does not reflect reality in the results.

 

McGain (2012)

Anesthesia & Analgesia

 

Journal information

The "The Global Standard in Anesthesiology," provides practice-oriented, clinical research you need to keep current and provide optimal care to your patients. Brings peer reviewed articles on the latest advances in drugs, preoperative preparation, patient monitoring, pain management, pathophysiology, and many other timely topics.

 

Critical review:

Peer reviewed, not a specific LCA journal.

Type of study:

LCA

 

Objective:

To assess the environmental and financial impacts of two types of central venous catheter insertion kits: single-use and reusable

 

LCA-method:

Attributional LCA

 

Setting and country:

Hospital in Australia


Facility:

Western Health, Melbourne, Victoria, Australia

 

Years of data collection:

-

 

Surgical discipline(s):
Anaesthesia

 

Funding and conflict of interest:

The authors declare no conflict of interest. They received funding through grants from the Australian and New Zealand Intensive Care Society and Sustainability Victoria.

Goal and scope1:

To compare the financial costs and environmental impacts of the life cycles of reusable and single-use venous catheter insertion kits and what effect the source of electricity has on the CO2 emissions.

Functional unit(s)2:

Use of one central venous catheter kit to aid insertion of a single-use, central venous catheter in an operating room.

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components:

Existing equipment (e.g. washers and sterilizers) were not included; Cotton gauze and antiseptic were not included ("because they were common to insertion of all central venous catheters")

Inventory database:

EcoInvent

 

Allocation: No

Normalization & Weighting: No

Impacts reported: Yes, only GWP and water use impacts reported, impacts from other categories determined to be 'similar or of minor importance'

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis:

Yes, tests altered electricity source for the reusable kit: brown coal (base case), gas cogeneration, American standard supply, European standard supply

Uncertainty analysis: Yes, Monte Carlo analysis

Variance analysis: No

McGain (2012) assessed the environmental and financial impacts of two type of central venous catheter insertion kits (single-use and disposable) at the Western Health group of hospitals in Melbourne, Victoria, Australia. Next to the environmental and financial impacts, they investigated the effect of the source of electricity upon CO2 emissions. The functional unit was the use of one central venous catheter kit to aid insertion of a single-use, central venous catheter in an operating room. Data on the components of the central venous catheter kits was obtained by weighing with an electronic balance and receiving data from the manufacturer. Direct data regarding materials and energy required to reprocess reusable kits (i.e. from the washer and sterilizer) were collected using a "time-in-motion" study. Most other inputs were acquired from LCI databases or industry data. Electricity requirements (kWh) and volumes of hot (gas heated) and cold water used by the washer and sterilizer were measured. Data on waste disposal processes were obtained indirectly from industry data (sodium hypochlorite or incineration).

 

Characterization methods:

-

  1. Climate Change

McGain (2012) described the results on climate change. One reusable kit produced 1211 grams of CO2 in total and one disposable kit 407 grams of CO2. There is no comparison of multiple usage of the reusable kit. The biggest contributor for the reusable kit is the washing and sterilization process (256 resp. 830 grams of CO2), whereas for the single-use kit this is the plastic used (284 grams of CO2). A sensitivity analysis showed the influence of different energy mixes on the outcome for the reusable kit, with a Monte Carlo analysis to calculate confidence intervals (CI). Using a brown coal energy mix for the reusable kit resulted in 1211 (95% CI 1099-1323) grams of CO2 emissions, hospital gas cogeneration in 436 (95% CI 410-473) grams of CO2 emissions, United States electricity mix in 764 (95% CI 509-1174) grams of CO2 emissions and a European electricity mix in 572 (95% CI 470-713) grams of CO2 emissions.

 

  1. Waste

No results in this study.

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

The environmental and financial impacts of two type of central venous catheter insertion kits (single-use and disposable) are assessed. The results show the reusable kit has a bigger environmental impact compared to the disposable kit. However, this is calculated for one use of each kit. Reusing the reusable kit could influence results.

 

The biggest contributor for the reusable kit is the washing and sterilization process. whereas for the single-use kit this is the use of plastic. The washing and sterilization process could be a hotspot to minimalize the impact, as well as for the disposable kit a different source of material could be of great value.

 

 

Authors conclusion

For hospitals using coal-fired electricity, the environmental effects are greater when using reusable kits instead of single-use. Reducing the environmental impact of the reusable kit is possible by focusing on the inefficiencies and energy sources of steam sterilizers.

 

Limitations study

A limitation of the study could be that the reusable insertion kit is compared to the disposable for one use of inserting the single-use central venous catheter. Reusable kits were assumed to have lifespan of 300 uses (metal components requiring sharpening every 100 uses) based on a conservative estimate from staff within the study hospital's sterile supplies department, however this seems not to be included in the analysis. Calculating the difference between the outcomes when reusing this kit is not taken into account and could yet obtain more accurate results.

McGain (2017)

British Journal of Anaesthesia

 

Journal information

The British Journal of Anaesthesia (BJA) publishes high-impact original work in all branches of anaesthesia, critical care medicine, pain medicine and perioperative medicine including fundamental, translational and clinical sciences, clinical practice, technology, education and training. In addition, the Journal publishes review articles, important case reports, correspondence and special articles of general interest.

 

Critical review:

Peer reviewed, not a specific LCA journal.

Type of study:

LCA

 

Objective:

To assess environmental and financial impacts of reusable and single-use anesthetic equipment.

 

LCA-method:

Consequential LCA

 

Setting and country:

Hospitals in Australia


Facility:

Western Health, Melbourne, Victoria, Australia

 

Years of data collection:

-

 

Surgical discipline(s):
Anaesthesia

Funding and conflict of interest:

The authors declare no conflict of interest. They received funding for the project from the Australian and New Zealand College of anesthetists (project grant 13/025)

Goal and scope1:

To compare the consequences from changing from one pattern of equipment to another (single-use/reusable), looking whether new labour would be required or where the next kilowatt hour of electricity would be sourced from. Thereby the environmental and financial consequences were defined.

Functional unit(s)2:

Use of breathing circuits, face masks, LMAs, and direct and videolaryngoscopes at one hospital over one year

System boundaries: Cradle to grave

Included stages: Raw material extraction, production, packaging, transport, reuse, disposal

Stated excluded components: Existing oil, gas, mining, energy, and transport infrastructure was not included; Maintenance and depreciation of washers and sterilizers were not included ("these would be unaltered by the presence or absence of reusable anesthetic equipment")

Inventory database: EcoInvent

 

Allocation: No

Normalization & Weighting: Yes, results were normalized to average annual per capita environmental impacts in Australia.

Impacts reported: Yes

Contribution analysis: No

Scenario analysis: Yes

Comparative analysis: Yes

Sensitivity analysis: No

Uncertainty analysis: Yes, Monte Carlo analysis

Variance analysis: No

McGain (2017) assessed environmental and financial impacts of reusable and single-use anesthetic equipment through the exploration of 2 base cases and 3 modelled scenarios using a consequential LCA approach. The first base case was situated at a hospital in Melbourne, Australia with "mainly single-use" anesthetic equipment (reusable anesthetic circuits, face masks, ‘Proseal’VR (Teleflex, Westneath, Ireland) LMAs, and direct and videolaryngoscope blades and handles. The second base case was situated at another hospital in Melbourne, Australia with "mainly single-use" anesthetic equipment (disposable anesthetic circuits, single-use face masks, LMAs, and direct laryngoscope blades, but using reusable direct laryngoscope handles and reusable videolaryngoscopes). The five scenarios included: "completely single-use", "reusables except for single-use face masks", "reusables except for single-use laryngoscope blades", "reusables (Europe)", "reusables (USA)". Data on equipment were obtained from two hospitals in Melbourne, Australia in 2015 and each piece of equipment was weighed with an electronic balance (accurate to within 1g). Sterilization records and input from senior Central Sterile and Supply Department staff at hospital 1 were used to define sterilization mode and load information. Washer and steam sterilizer utility usage data were taken from a previous study by the same authors (0.15 kWh and 40 litres of water per kg of anesthetic equipment steam sterilized), while electricity consumption of a standard H2O2 sterilizer was directly measured over several days at hospital 1.

 

Characterization methods:

-

  1. Climate Change

McGain (2017) described the five scenarios as following: (1) completely reusable, (2) mainly single-use except for reusable laryngoscope handles, (3) completely single-use (4) reusables (except the single-use face masks), (5) reusables (except single-use laryngoscope blades) in an Australian hospital. Using reusables (scenario 1) had a higher impact [5575 kg CO2 equivalents (95% CI 5542-5608)] compared to using mainly single use [scenario 2; 5095 kg CO2 equivalents (95% CI 4614-5658)]. For the reusable approach (4807 kg CO2 equivalents (86%)) was for washer electricity and 387 kg CO2 equivalents (7%) for H2O2 sterilizer electricity, with all other contributing for 381 kg CO2 equivalents (7%). For scenario 2 (mainly single-use), the majority of the CO2 emissions (2695 kg CO2 equivalents, 52%) was for purchasing single use face masks (n=9900) and 1396 kg CO2 equivalents (27%) for the single-use direct laryngoscope blades (n=9900) and all other items contributed for 1052 kg CO2 equivalents (21%). Scenario 3 resulted in 5775 kg CO2 equivalents. Scenarios 4 and 5 led to 6556 and 6763 kg CO2 equivalents emissions respectively, because 365 and 550 washer loads, respectively, remained. The substitution of one reusable with a single-use item (Scenarios 4 and 5) led to higher CO2 emissions than either completely reusable or single-use equipment (Scenarios 1–3).

 

An analysis was performed to model results as if the hospital was based in UK/Europe. This led to different results compared to when the hospital was based in Australia. By switching from single-use (5095 kg CO2 equivalents) to reusable anaesthetic equipment, this would have led in a decrease of 84% (802 kg CO2 equivalents). This can be explained by the majority of the next kilowatt hour of UK/European electricity generation arising from renewables (mainly wind).

 

  1. Waste

Using reusables (scenario 1) resulted in less waste (250 kg) compared to using mainly single use (scenario 2; 1222 kg of waste). Scenario 3 had the highest amount of waste (1542 kg) and scenarios 4 and 5 led to 375 and 917 kg of waste, respectively.

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

These outcomes resulted all in a low impact on eutrophication. Using reusables (scenario 1) resulted in 0.000 kg P equivalents whereas using mainly single use (scenario 2) led to 0.12 kg P equivalents. Scenario 3, 4 and 5 led to 0.12, 0.04 and 0.07 kg P equivalents, respectively.

 

  1. Human Toxicity

Using reusables (scenario 1) resulted in 12 kg 1.4-DB equivalents whereas scenario 2 resulted in the highest impact of all scenarios (713 kg 1.4-DB equivalents). Scenario 3, 4 and 5 led to 1.023, 195 and 491 kg 1.4-DB equivalents, respectively.

 

  1. Ecotoxicity

The outcome ecotoxicity was divided in three different outcomes: terrestrial, freshwater and marine ecotoxicity. For terrestrial ecotoxicity, using reusables (scenario 1) resulted in 0.011 kg 1.4-DB equivalents whereas scenario 2 resulted in 0.4 kg 1.4-DB equivalents. Scenario 3, 4 and 5 led to 0.405, 0.118 and 0.2 kg 1.4-DB equivalents, respectively. For freshwater ecotoxicity, using reusables (scenario 1) resulted in 0.7 kg 1.4-DB equivalents whereas scenario 2 resulted in 91 kg 1.4-DB equivalents. Scenario 3, 4 and 5 led to 93.4, 3.1 and 88 kg 1.4-DB equivalents, respectively. For marine ecotoxicity, using reusables (scenario 1) resulted in 0.7 kg 1.4-DB equivalents whereas scenario 2 resulted in 94.5 kg 1.4-DB equivalents. Scenario 3, 4 and 5 led to 97.2, 2.8 and 92.3 kg 1.4-DB equivalents, respectively. Moreover, using single-use equipment (scenario 2 and 3) has the highest impact on ecotoxicity.

 

  1. Ozone Depletion

No results in this study.

 

 The results of this study result in a clear overview on how environmental impacts of the same type of equipment (e.g. reusable) can vary between different continents. Where the single-use equipment seem to have a lower environmental impact in Australia, the results suggest the impact is lower in the USA, UK and in Europe. This is due to the energy mix used in the different continents.

 

In Australia the impact of single-use equipment is lower compared to the other continents, where it is beneficial for the environment to use the reusable anaesthetic equipment.

 

 

Authors conclusion

The financial and environmental impact of anaesthetic equipment are investigated. Using single-use equipment costs more than using reusables, in all scenarios. Converting from single-use to reusable leads to an increase in CO2 emissions of almost 10%, where it decreases when converting in the US (50%) and UK/Europe (85%).

 

Limitations study

Sterilization records and input from senior Central Sterile and Supply Department staff at hospital 1 were used to define sterilization mode and load information, when 2 hospitals were involved. Comparing or using data from both hospitals would have been more accurate. This also accounts for electricity consumption of the sterilizer.

Namburar (2022)

BMJ Journals Gut

 

Journal information

Gut is a leading international journal in gastroenterology and hepatology and has an established reputation for publishing first class clinical research of the alimentary tract, the liver, biliary tree and pancreas.

 

Gut is an official journal of the British Society of Gastroenterology and has two companion titles: Frontline Gastroenterology for education and practice and BMJ Open Gastroenterology for sound science clinical research.

 

Critical review:

Peer reviewed, not a specific LCA journal.

Type of study:

Waste audit (cross-sectional study)

 

Objective:

To measure the amount of waste generated during endoscopic procedures and to understand the impact on waste of changing from reusable to single use endoscopes in the USA.

 

LCA-method:

-

 

Setting and country:

Two US academic medical centers in the USA


Facility:

VA White River Junction, Vermont, USA and Darthmouth Hitchcock Medical Center, New Hampshire, USA

 

Years of data collection:

2020

 

Surgical discipline(s):
Gastro-enterology

 

Funding and conflict of interest:

The authors declare no conflict of interest and have not received funding.

 

Goal and scope1:

Quantify waste associated with endoscopic procedures.

Functional unit(s)2: N/A

System boundaries: N/A

Included stages: Pre-procedure area, examination room and post-procedure area

Stated excluded components: Sharp objects in separate containers

Inventory database:

N/A

 

Allocation: No

Normalization & Weighting: Yes, results were normalized to the annual endoscopy procedures in the US.

Impacts reported: N/A

Contribution analysis: Yes

Scenario analysis: No

Comparative analysis: Yes

Sensitivity analysis: Yes

Uncertainty analysis: No

Variance analysis: No

 

Namburar (2022) performed an audit of waste generated during endoscopic procedures at a low and high endoscopy volume academic medical center (VA White River Junction, Vermont, USA and Darthmouth Hitchcock Medical Center, New Hampshire, USA) over a 5-day work period in 2020. Colonoscopies, upper endoscopies and endoscopic retrograde cholangiopancreatography (ERCP) were included. The waste from the pre-procedure area, examination room and post-procedure area was collected and documented as mass and volume. In the high volume hospital the waste from endoscope reprocessing was also obtained. An estimation of the contribution of single-use (compared to reusable) waste was made in the following three scenarios: (1) all reusable endoscopes, (2) colonoscopies and ERCPs were performed with single-use endoscopes (colonoscopes/duodenoscopes) and (3) all single-use endoscopes. The outcome measure was waste.

 

Characterization methods:

N/A

  1. Climate Change

No results in this study.

 

  1. Waste

The annual waste produced during endoscopic procedures in the US for the three different scenarios show that the ‘all reusable’ endoscopes (scenario 1) produce the least amount of waste (43,500 metric tons of waste for 18 million endoscopies annually in the US), followed by using single-use colonoscopes/duodenoscopes (scenario 2; 54,375 metric tons of waste) and all single-use endoscopes (scenario 3; 60,900 metric tons of waste).

 

  1. Acidification

No results in this study.

 

  1. Eutrophication

No results in this study.

 

  1. Human Toxicity

No results in this study.

 

  1. Ecotoxicity

No results in this study.

 

  1. Ozone Depletion

No results in this study.

 

 The study suggests the least amount of waste is produced by using ‘all reusable’ endoscopes. When only focusing on waste, this should be the best option following the three given scenarios. However there are no further calculations regarding environmental impact. With these calculations, as the authors suggest in the discussion, this would give a better overview of the environmental impact of the procedures, taking the whole life cycle into of the endoscopes (and procedures) into account.

Authors conclusion

The quantitative assessment shows that endoscopic procedures generate a large amount of waste from disposable instruments. Net waste is increase by using single-use endoscopes.

 

Limitations study

The study suggests to estimate the environmental impact of an endoscopic procedure, however only describes the amount of waste and does not calculate the actual environmental impact.

Rizan (2021)

Surgical Endoscopy

 

Journal information

This journal is positioned at the interface between various medical and surgical disciplines, it serves as a focal point for the international surgical community to exchange information on practice, theory, and research.

 

Critical review:

Peer reviewed, not a specific LCA journal

Type of study:

LCA

 

Objective:

To assess environmental and financial impacts of hybrid and single-use instruments in laparoscopic cholecystectomy.

 

LCA-method:

Attributional LCA and consequential approach

 

Setting and country:

UK


Facility:

-

 

Years of data collection:

2020

 

Surgical discipline(s):
Gastro-enterology

 

Funding and conflict of interest:

Funded by Surgical Innovations Ltd., but played no pared in scientific conduct, analysis or writing of the manuscript. No conflict of interest was stated.

Goal and scope1:

Quantify reduction of the environmental (and financial) impact of hybrid surgical instruments compared to single-use.

Functional unit(s)2:

The number of three types of instruments (clip appliers, laparoscopic scissors and ports) typically required to perform one laparoscopic cholecystectomy.

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, manufacture, transport, disposal, decontamination for reusable components of hybrid instruments

Stated excluded components:

Other reusable instruments and consumables used to perform a laparoscopic cholecystectomy

Inventory database:

Ecoinvent, Industry data

 

Allocation: No

Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: Yes

Comparative analysis: Yes

Sensitivity analysis: Yes, tests altered electricity source decontamination and changing way of transport

Uncertainty analysis: No

Variance analysis: No

 

Rizan (2021) assessed environmental and financial impacts of hybrid and single-use instruments in laparoscopic cholecystectomy using life cycle assessment. The number of three types of instruments (clip appliers, laparoscopic scissors and ports) typically required to perform one laparoscopic cholecystectomy were included in the analysis (two small diameter ports, two large diameter ports, one laparoscopic scissor and one laparoscopic clip applier). The stages of raw material extraction, manufacture, transport, disposal and decontamination for reusable components of hybrid instruments were included. Data was obtained from manufacturers and databases.

 

Characterization methods:

ReCiPe

  1. Climate Change

The carbon footprint of the hybrid laparoscopic instruments is lower compared to the single-use instruments. Compared to its single-use equivalent, the hybrid clip applier’s carbon footprint was 17% (445 g vs 2559 g CO2 eq), the scissor 33% (378g vs 1139 g CO2 eq) and the four ports 27% (933 g vs 3495 CO2 eq). All combined, the carbon footprint of using all hybrid instruments was 24% of that of single-use equivalents (1756 g vs 7194 g CO2 eq), saving 5.4 kg CO2 eq. The majority of the carbon footprint of the hybrid instruments was due to single-use components (mean 62%, range 43-79%), followed by decontamination of reusable components (mean 37%, range 21-56%). For the single-use instruments the biggest hotspots were raw material extraction and manufacturing (mean 57%, range 52-61%), followed by onward transportation (mean 29%, range 24-36%) and waste (mean 14%, range 12-16%). The scenario modelling resulted in the following results. When packaging and decontaminating separately, the CO2 footprint of the hybrid clip applier increased 3.7-fold to 1650 g CO2 eq. The scissor increases to 394 g CO2 eq per use (4% increase) and the ports 999 g CO2 eq per use (7% increase). For all hybrid instruments, CO2 footprint was lower than the single-use equivalents when used more than twice. The CO2 footprint of the decontamination process of hybrid instruments increased with 54% when using Australian electricity, which increased the CO2 footprint of the hybrid instruments by 11-30%, but this remained lower than the single-use equivalents (63-77%). Shipping in place of airfreight (for single-use items) reduced the CO2 footprint by 22-33%. Using three hybrid 5 mm ports and one 10 mm port (635 g CO2 eq/operation) resulted in a 32% reduction compared to the base case (5 mm single-use ports based on a dual pack).

 

  1. Waste

No results in this study.

 

  1. Acidification

Rizan (2021) reported the results of the three different instruments. The ports had the highest impact in this category (single-use vs. hybrid, 8.91 vs. 2.08 g SO2 eq), followed by the laparoscopic clip applier (single-use vs. hybrid, 8.53 vs. 1.18 g SO2 eq) and the laparoscopic scissors (single-use vs. hybrid, 4.46 vs. 1.44 g SO2 eq).

 

  1. Eutrophication

Rizan (2021) reported the results of the three different instruments on eutrophication divided in two categories: freshwater and marine eutrophication. The laparoscopic clip applier had the highest impact in the category “freshwater eutrophication” (single-use vs. hybrid, 0.62 vs. 0.12 g SO2 eq), followed by the ports (single-use vs. hybrid, 0.43 vs. 0.17 g SO2 eq) and the laparoscopic scissors (single-use vs. hybrid, 0.26 vs. 0.17 g SO2 eq). For the category “marine eutrophication” this resulted in the highest impact for the ports (single-use vs. hybrid, 0.12 vs. 0.07 g SO2 eq), followed by the laparoscopic clip applier (single-use vs. hybrid, 0.09 vs. 0.06 g SO2 eq) and the laparoscopic scissors (single-use vs. hybrid, 0.05 vs. 0.04 g SO2 eq).

 

  1. Human Toxicity

Rizan (2021) reported the results of the three different instruments on human toxicity divided in two categories: carcinogenic and non-carcinogenic human toxicity. Overall, the hybrid instruments have a lower environmental impact in this category. The laparoscopic clip applier had the highest impact in the category “carcinogenic human toxicity” (single-use vs. hybrid, 203 vs. 45 g 1.4-DCB eq), followed by the ports (single-use vs. hybrid, 117 vs. 43 g 1.4-DCB eq) and the laparoscopic scissors (single-use vs. hybrid, 91 vs. 65 g 1.4-DCB eq). Although, the hybrid port has a higher impact than the hybrid laparoscopic scissor. For the category “noncarcinogenic human toxicity” the results were as following (from greatest environmental impact to lowest impact): Single-use laparoscopic clip applier (2871 g 1.4-DCB eq), single-use laparoscopic scissor (1386 g 1.4-DCB eq), single-use ports (1013 g 1.4-DCB eq), hybrid laparoscopic scissor (952 g 1.4-DCB eq), hybrid laparoscopic clip applier (576 g 1.4-DCB eq) and hybrid ports (390 g 1.4-DCB eq).

 

  1. Ecotoxicity

Rizan (2021) reported the results of the three different instruments on ecotoxicity divided in three categories: “terrestrial”, “freshwater” and “marine” ecotoxicity. Overall, the hybrid instruments have a lower environmental impact in this category, except for the laparoscopic scissors in freshwater and marine ecotoxicity. For terrestrial ecotoxicity, the results were as following (from greatest environmental impact to lowest impact): Single-use laparoscopic clip applier (19,767 g 1.4-DCB eq), single-use laparoscopic scissor (8939 g 1.4-DCB eq), hybrid laparoscopic scissor (5628 g 1.4-DCB eq), single-use ports (4142 g 1.4-DCB eq), hybrid laparoscopic clip applier (3976 g 1.4-DCB eq) and hybrid ports (1171 g 1.4-DCB eq). For freshwater ecotoxicity, the results were as following (from greatest environmental impact to lowest impact): Single-use laparoscopic clip applier (176 g 1.4-DCB eq), hybrid laparoscopic scissor (97 g 1.4-DCB eq), single-use laparoscopic scissor (91 g 1.4-DCB eq), single-use ports (39 g 1.4-DCB eq), hybrid laparoscopic clip applier (36 g 1.4-DCB eq) and hybrid ports (17 g 1.4-DCB eq). For marine ecotoxicity, the results were as following (from greatest environmental impact to lowest impact): Single-use laparoscopic clip applier (230 g 1.4-DCB eq), hybrid laparoscopic scissor (122 g 1.4-DCB eq), single-use laparoscopic scissor (118 g 1.4-DCB eq), single-use ports (54 g 1.4-DCB eq), hybrid laparoscopic clip applier (47 g 1.4-DCB eq) and hybrid ports (23 g 1.4-DCB eq)..

 

  1. Ozone Depletion

Rizan (2021) reported the results of the three different instruments on ozone depletion as following (from greatest environmental impact to lowest impact): Single-use ports (0.0013 g CFC11 eq), single-use laparoscopic clip applier (0.0008 g CFC11 eq), single-use laparoscopic scissor (0.0005 g CFC11 eq), hybrid ports (0.0004 g CFC11 eq), hybrid laparoscopic clip applier (0.0002 g CFC11 eq) and hybrid laparoscopic scissor (0.0001 g CFC11 eq).

 The CO2 footprint of using hybrid scissors, ports and clip appliers was 76% lower than using single-use equivalents, saving 5.4 kg CO2eq per operation. Overall, the environmental impact of the hybrid instruments are lower compared to the single-use instruments. This is mainly due to the manufacturing and raw material extraction process.

Authors conclusion

The CO2 footprint of using hybrid instruments for laparoscopic cholecystectomy is around a quarter of that for single-use equivalents and the financial costs around half.

 

Limitations study

Data is limited by assumptions (as with all LCAs), however clearly explained.

Sanchez (2020)

Resources, Conservation & Recycling

 

Journal information

Open Access journal with independent editorial board and peer-review process.

 

Contributions from research, which consider sustainable management and conservation of resources are welcomed. The journal emphasizes the transformation processes involved in a transition toward more sustainable production and consumption systems. Emphasis is upon technological, economic, institutional and policy aspects of specific resource management practices, such as conservation, recycling and resource substitution, and of "systems-wide" strategies, such as resource productivity improvement, the restructuring of production and consumption profiles and the transformation of industry.

 

Critical review:

Peer reviewed, not a specific LCA journal.

Type of study:

LCA

 

Objective:

To assess the environmental and economic impacts of reusable and disposable blood pressure (BP) cuffs.

 

LCA-method:

LCA

 

Setting and country:

Outpatient clinic and ambulatory procedure rooms, regular ward and ICU in the US


Facility:

Yale-New Haven Health (YNHH) System in New Haven, Connecticut, USA.

 

Years of data collection:

-

 

Surgical discipline(s):
-

 

Funding and conflict of interest:

The authors declare no conflict of interest. Funding: Dept. of Civil and Environmental Engineering, Northeastern University

Goal and scope1:

To compare the environmental and economic performance for reusable and disposable BP cuffs, with a focus on cuff design and materials, cleaning agents and processes. This because disposables come into favor despite lack of information about environmental costs.

Functional unit(s)2:

Providing blood pressure readings for a clinic room or ward, under four different health care delivery scenarios.

System boundaries:

Cradle to grave

Included stages:

Materials and manufacturing, transport, usage, cleaning, disposal

Stated excluded components: -

Inventory database: US-EI LCI database

 

Allocation: No

Normalization & Weighting: Yes

Impacts reported: Yes

Contribution analysis: Yes

Scenario analysis: Yes

Comparative analysis: Yes

Sensitivity analysis: Yes

Uncertainty analysis: No

Variance analysis: No

 

Sanchez (2020) assessed the environmental and economic impacts of reusable and disposable blood pressure cuffs by using life cycle assessment. Data on materials and manufacturing was gathered through a combination of manufacturer information and physical testing, by weighing component on a scale. Components were identified and matched with information from inventory databases (US-EI LCI database). US EPA database was used for transport packaging information. Multiple cleaning scenarios were developed to represent a diversity of clinical settings in using and cleaning. Only landfill and incineration were included for disposal data and recycling was not taken into account (“as recycling is uncommon (though possible) given the types of plastics an mixed materials employed in the BP cuffs”).

 

Characterization methods:

TRACI

  1. Climate Change

Sanchez (2020) reported outcomes using 4 different scenarios: (1) Day office, (2) 1 Day Ambulatory Procedure, (3) 1 Day Regular Ward and (4) 1 Day ICU. Within these scenarios, a division was made between: reusable incineration (1 cleaning/encounter or 1 cleaning/day), reusable landfill (1 cleaning/encounter or 1 cleaning/day), disposable incineration (1 cleaning/encounter or 1 cleaning/day), disposable landfill (1 cleaning/encounter or 1 cleaning/day). The results of these different scenarios are summarized in the supplemental material of the study (Sanchez, 2020). For the outcome measure climate change, the overall results show reusable blood pressure cuffs have a lesser environmental impact compared to the disposable variant. The biggest contributor for the disposable is the material and manufacturing process, whereas for the reusable blood pressure cuff the main contributor is the production of the chemical wipes (which are used for cleaning).

 

  1. Waste

No results in this study.

 

  1. Acidification

The disposable blood pressure cuffs have a higher environmental impact considering acidification compared to the reusable variant. For the disposable cuff, this is especially related to the manufacturing process. For the reusable variant the biggest contributor is the production of the cleaning wipes.

 

  1. Eutrophication

The disposable blood pressure cuffs have a higher environmental impact considering eutrophication compared to the reusable variant. For the disposable cuff, this is especially related to the manufacturing process and the disposal of the cuffs. For the reusable variant the biggest contributor is the production of the cleaning wipes and partly the disposal of these wipes.

 

  1. Human Toxicity

The disposable blood pressure cuffs have a higher environmental impact considering human toxicity (non-carcinogens and carcinogens) compared to the reusable variant. For the disposable cuff, this is especially related to the manufacturing process and the disposal of the cuffs. For the reusable variant this is mainly due to the production of the cleaning wipes.

 

  1. Ecotoxicity

The disposable blood pressure cuffs have a higher environmental impact considering ecotoxicity compared to the reusable variant. For the disposable cuff, this is especially related to the manufacturing process and the disposal of the cuffs. For the reusable variant this is mainly due to the production of the cleaning wipes.

 

  1. Ozone Depletion

The disposable blood pressure cuffs have a higher environmental impact considering ozone depletion compared to the reusable variant. This is especially related to the manufacturing process.

 The overall results show the reusable blood pressure cuff has a lower environmental impact on all impact categories compared to the disposable cuff. The main contributors for the disposable cuff are the production process and the disposal. For the reusable cuff this is mainly due to the production process of the cleaning wipes. However, the environmental impact of the reusable blood pressure cuff remains lower compared to the disposable.

Authors conclusion

Environmental considerations will never be paramount in decision making around medical devices or healthcare delivery, however this work shows there are many opportunities to reduce resource use, waste and environmental impact.

 

Limitations study

There is data uncertainty associated with some of the modelling parameters (e.g. energy and BP cuff materials).

Sherman (2018)

Anesthesia & Analgesia

 

Journal information

The "The Global Standard in Anesthesiology," provides practice-oriented, clinical research you need to keep current and provide optimal care to your patients. Brings peer reviewed articles on the latest advances in drugs, preoperative preparation, patient monitoring, pain management, pathophysiology, and many other timely topics.

 

Critical review:

Peer reviewed, not a specific LCA journal.

Type of study:

LCA

 

Objective:

To assess the environmental and financial impacts of three different types of rigid laryngoscope handle and tongue blade: plastic single-use, metal single-use, and stainless steel reusable (under a range of cleaning options: low-level disinfection, high-level disinfection, sterilization)

 

LCA-method:

Attributional LCA

 

Setting and country:

US


Facility:

Yale-New Haven Hospital, New Haven, CT, USA

 

Years of data collection:

-

 

Surgical discipline(s):
Anesthesiology

 

Funding and conflict of interest:

The authors declare no conflict of interest. J.D.S. was supported by an Anesthesia Patient Safety Foundation award. L.A.R. was supported by a Provost’s award for undergraduate research at Northeastern University. M.J.E. was supported by departmental start-up funds at Northeastern University.

Goal and scope1:

To obtain environmental and financial impacts, since it is not clear, to facilitate anaesthesiologists making the best choice considering environmental and economic perspectives. Device efficacy was presumed equivalent.

Functional unit(s)2:

One handle or one blade for a single patient encounter

System boundaries:

Cradle to grave

Included stages:

Raw material extraction, production, packaging, transport, use, reuse, disposal

Stated excluded components:

Machinery and capital equipment; building operations

Inventory database:

EcoInvent, US-EI

 

Allocation: No

Normalization & Weighting: No

Impacts reported: Yes

Contribution analysis: Yes, only GWP

Scenario analysis: Yes, various cleaning options

Comparative analysis:: Yes

Sensitivity analysis: Yes, assuming a 100% recycling scenario (figure 2)

Uncertainty analysis: No

Variance analysis: No

Sherman (2018) assessed the environmental and financial impacts of three different types of rigid laryngoscope handle and tongue blade: plastic single-use, metal single-use, and stainless steel reusable (under a range of cleaning options: low-level disinfection, high-level disinfection, sterilization) by using life cycle assessment and life cycle costing at the Yale-New Haven Hospital, New Haven, CT, USA. To determine the material composition of handles and blades a combination of manufacturer specifications, deconstruction, and density testing were used, and after each material was weighed. Foreground data specific to Yale-New Haven Hospital (YNHH) were collected, including transportation mode and distance; washer and autoclave-related energy, water, and chemical use (based on machine specification and apportioned based on an assumed full-load). Reusable components were assumed to have a lifespan of 4000 uses and require refurbishment every 40 uses, according to rated lifetimes of each component (i.e. 1/4000th of the manufacturing, transportation, and disposal impacts were assigned to 1 use of a reusable device). Standard US waste management was assumed: 6% of plastics are recycled, 30%–70% of metals, and remaining solid waste is either landfilled (80%) or incinerated (20%).

 

Characterization methods:

TRACI

  1. Climate Change

Sherman (2018) reported outcomes on climate change on both laryngoscope handles and blades (reusable or single-use) as well as on different cleaning scenarios (low-level disinfection levels (LDL), high-level disinfection levels (HDL) and sterilization). The most favorable scenario for the handles is the reusable stainless steel handle, treated to HDL. Choosing LDL will result in a 40% increase of the CO2 footprint (0.08 kg CO2 eq per use). Sterilization will lead to a 400% increase (0.23 kg CO2 eq per use). The single-use handle has a 25 times bigger CO2 footprint compared to the reusable version (1.41 kg CO2 eq and 1.60 kg CO2 eq for the plastic and metal handles, respectively). The most favorable scenario for the blades is the reusable steel tongue blade treated to (the minimum) HDL standards. Sterilization will lead to a 400% increase (0.22 kg CO2 eq per use) compared to HDL (0.06 kg CO2 eq per use). Single-use options for the blades will result in an 6-8 times increase of CO2 footprint (0.38 kg CO2 eq and 0.44 kg CO2 eq for the plastic and metal blades, respectively).

 

  1. Waste

No results in this study.

 

  1. Acidification

Sherman (2018) reported outcomes on acidification on both laryngoscope handles and blades (reusable or single-use) as well as on different cleaning scenarios (low-level disinfection levels (LDL), high-level disinfection levels (HDL) and sterilization). The most favorable scenario for the handles is the reusable stainless steel handle, treated to HDL. Choosing LDL will result in a 70% increase of the CO2 footprint. Sterilization will lead to a 200% increase. The single-use handle has a 33 times bigger CO2 footprint compared to the reusable version. The most favorable scenario for the blades is the reusable steel tongue blade treated to (the minimum) HDL standards. Sterilization will lead to a 350% increase compared to HDL. Single-use options for the blades will result in an 5-10 times increase of CO2 footprint.

 

  1. Eutrophication

Sherman (2018) reported outcomes on eutrophication on both laryngoscope handles and blades (reusable or single-use) as well as on different cleaning scenarios (low-level disinfection levels (LDL), high-level disinfection levels (HDL) and sterilization). The most favorable scenario for the handles is the reusable stainless steel handle, treated to HDL. Choosing LDL will result in a 160% increase of the CO2 footprint. Sterilization will lead to a 100% increase. The single-use handle has a 65 times bigger CO2 footprint compared to the reusable version. The most favorable scenario for the blades is the reusable steel tongue blade treated to (the minimum) HDL standards. Sterilization will lead to a 150% increase compared to HDL. Single-use options for the blades will result in an 8-15 times increase of CO2 footprint.

 

  1. Human Toxicity

Sherman (2018) reported outcomes on human toxicity on both laryngoscope handles and blades (reusable or single-use) as well as on different cleaning scenarios (low-level disinfection levels (LDL), high-level disinfection levels (HDL) and sterilization). This outcome is divided in carcinogenics as well as noncarcinogenics. For the carcinogenics, the most favorable scenario for the handles is the reusable stainless steel handle, treated to HDL. Choosing LDL will result in a 200% increase of the CO2 footprint. Sterilization will lead to a 150% increase. The single-use handle has a 45 (plastic) and 250 (steel) times bigger CO2 footprint compared to the reusable version. The most favorable scenario for the blades is the reusable steel tongue blade treated to (the minimum) HDL standards. Sterilization will lead to a 150% increase compared to HDL. Single-use options for the blades will result in an 7-160 times increase of CO2 footprint. For the noncarcinogenics, the most favorable scenario for the handles is the reusable stainless steel handle, treated to HDL. Choosing LDL will result in a 100% increase of the CO2 footprint. Sterilization will lead to a 150% increase. The single-use handle has a 135 (plastic) and 180 (steel) times bigger CO2 footprint compared to the reusable version. The most favorable scenario for the blades is the reusable steel tongue blade treated to (the minimum) HDL standards. Sterilization will lead to a 200% increase compared to HDL. Single-use options for the blades will result in an 10-42 times increase of CO2 footprint.

 

  1. Ecotoxicity

Sherman (2018) reported outcomes on ecotoxicity on both laryngoscope handles and blades (reusable or single-use) as well as on different cleaning scenarios (low-level disinfection levels (LDL), high-level disinfection levels (HDL) and sterilization). This outcome is divided in carcinogenics as well as noncarcinogenics. For the carcinogenics, the most favorable scenario for the handles is the reusable stainless steel handle, treated to HDL. Choosing LDL will result in a 400% increase of the CO2 footprint. Sterilization will lead to a 100% increase. The single-use handle has a 130 (plastic) and 225 (steel) times bigger CO2 footprint compared to the reusable version. The most favorable scenario for the blades is the reusable steel tongue blade treated to (the minimum) HDL standards. Sterilization will lead to a 150% increase compared to HDL. Single-use options for the blades will result in an 13-95 times increase of CO2 footprint.

 

  1. Ozone Depletion

Sherman (2018) reported outcomes on ozone depletion on both laryngoscope handles and blades (reusable or single-use) as well as on different cleaning scenarios (low-level disinfection levels (LDL), high-level disinfection levels (HDL) and sterilization). This outcome is divided in carcinogenics as well as noncarcinogenics. For the carcinogenics, the most favorable scenario for the handles is the reusable stainless steel handle, treated to HDL. Choosing LDL will result in a 3000% increase of the CO2 footprint. Sterilization will lead to a 200% increase. The single-use handle has a 17 times bigger CO2 footprint compared to the reusable version. The most favorable scenario for the blades is the reusable steel tongue blade treated to (the minimum) HDL standards. Sterilization will lead to a 300% increase compared to HDL. Single-use options for the blades will result in an 3-7 times increase of CO2 footprint.

 The environmental impact of the reusable stainless steel laryngoscope blades and handles is lowest. The greater impact of the disposable variants is due to the material manufacturing and device assembly. The reusables create emissions mainly from reprocessing and are thus reliable on the source of cleaning.

Authors conclusion

The results demonstrate a clear benefit of reusable laryngoscope handles and blades over single-use alternatives, with HLD as the least polluting reprocessing method.

 

Limitations study

The outcomes are only expressed in percentages (except climate change). It would give a more clear view of the absolute impact if the absolute numbers were stated. The authors state there is an uncertainty test undertaken, however that is not the case.

1Goals and scope: ‘Phase of life cycle assessment in which the aim of the study, and in relation to that, the breadth and depth of the study is established’
2Functional unit: Quantified description of the function of a product or process that serves as the reference basis for all calculations regarding impact assessment


 Appendix 2. Critical appraisal of LCAs (based on Drew, 2021)

Drew (2021) developed a critical appraisal pro forma, based on Weidema’s guidelines for critical review of LCA (Weidema, 1997). This scoring system consists of 16 appraisal criteria, which are divided between the different phases of an LCA. It addresses a range of study quality indicators, such as internal validity, external validity, consistency, transparency, and bias. The percentage score provides an indication of the overall study quality. A higher score indicates a higher overall study quality. The points that can be obtained are displayed in the column labeled "appraisal criteria".

 

Appraisal criteria

Indicator(s)

Key effect modifiers

Grimmond (2012)

Grimmond (2021)

Hicks (2016)

McGain (2010)

McPherson (2019)

Vozzola (2018) CC*

Vozzola (2018)

IG**

Vozzola (2020)

Davis (2018)

Donahue (2020)

Phase 1: Goal & Scope (13 points)

 

 

 

 

 

 

 

 

 

 

 

 

Study goal is clearly stated, including the study's rationale (1), intended application (1), and intended audience (1)

Transparency

 

2

2

2

2

2

3

3

3

2

 

3

Lifecycle assessment method is clearly stated (1)

Transparency

Process-based life-cycle assessment, which is well suited to product-level analysis, may underestimate environmental impacts (i.e. from truncation error); economic input-output lifecycle assessment (EIO-LCA), which uses aggregate data and is well-suited to sector-level analysis, may overestimate environmental impacts

1

1

1

1

1

1

1

1

0

0

Functional unit is clearly defined and measurable (1), justified (1), and consistent with the study's intended application (1)

Consistency

 

1

2

2

1

2

2

2

2

3

2

The system to be studied is adequately described with clearly stated system boundaries (1), lifecycle stages (1), and appropriate justification of any omitted stages (1)

Transparency; Bias

Assessments with narrow system boundaries that exclude a number of lifecycle stages are prone to underestimating life-cycle environmental impacts

2

2

2

3

2

3

2

2

2

3

The system covers production (1), use/reuse (1) and disposal (1) of materials and energy (half mark if only for energy and vice versa)

Internal Validity, Completeness

 

3

3

3

3

3

3

3

3

3

3

Phase 2: Inventory analysis (7 points)

 

 

 

 

 

 

 

 

 

 

 

 

The data collection process is clearly explained, including the source(s) of foreground material weights and energy values (1); the source(s) of reference data (e.g. inventory database; 1); and what data are included (e.g. production and disposal of unit processes; 1)

Transparency, Internal Validity

 

3

3

2

3

3

3

3

3

2

3

Representativeness of the data is discussed (1), differences in electricity generating mix are accounted for (1), and the potential significance of exclusions or assumptions is addressed (1)

Internal validity; External validity

 

2

1

1

2

2

2

0

2

0

2

Allocation procedures, where necessary, are described and appropriately justified (1; mark given if no allocation used)

Transparency; Bias

 

1

1

1

1

1

1

1

1

1

1

Phase 3: Impact assessment (6 points)

 

 

 

 

 

 

 

 

 

 

 

 

Impact categories (1), characterization method (1), and software used (1) are documented transparently

Transparency

 

2

2

3

2

2

1

1

1

1

3

Results are clearly reported in the context of the functional unit (1) (0.5 if graphically, 0 if only normalized results reported)

Consistency; Transparency

 

1

1

1

1

1

1

1

1

1

1

A contribution analysis is performed and clearly reported (1), and hotspots are identified (1)

   

2

2

2

2

2

2

2

2

2

2

Phase 4: Interpretation (9 points)

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions are consistent with the goal and scope (1) and supported by the impact assessment results (1)

Internal validity; Consistency

 

2

2

2

2

2

2

2

2

2

2

Results are contextualized through the use of sensitivity analysis (1) and uncertainty analysis (1)

Internal validity

 

1

1

2

1

1

0

1

1

0

1

Limitations are adequately discussed (1), and the potential impact of omissions or assumptions on the study's outcomes are described (1)

Bias

 

0

1

1

2

1

1

0

2

0

1

The assessment has been critically appraised (i.e. peer review if journal article or independent, external critical review if report/thesis; 1)

Bias

 

1

1

1

1

1

1

1

1

1

1

Source(s) of funding and any potential conflict(s) of interest are disclosed (1), and are unlikely to be a source of bias (1)

Bias

 

1

1

1

1

1

1

0.5

1

1

1

   

Total (/35)

25

25

27

28

27

27

23.5

28

21

29

   

Percentage score

71%

71%

77%

80%

77%

77%

67%

80%

60%

83%

*CC: Cleanroom Coveralls, ** IG: Isolation Gowns

 

Appraisal criteria

Indicator(s)

Key effect modifiers

Donahue (2020)

Eckelman (2012)

Ibbotson (2013)

Leiden (2020)

McGain (2012)

McGain (2017)

Rizan (2021)

Sanchez (2020)

Sherman (2018)

Phase 1: Goal & Scope (13 points)

 

 

 

 

 

 

 

 

 

 

 

Study goal is clearly stated, including the study's rationale (1), intended application (1), and intended audience (1)

Transparency

 

3

3

3

2

2

1

3

3

3

Lifecycle assessment method is clearly stated (1)

Transparency

Process-based life-cycle assessment, which is well suited to product-level analysis, may underestimate environmental impacts (i.e. from truncation error); economic input-output lifecycle assessment (EIO-LCA), which uses aggregate data and is well-suited to sector-level analysis, may overestimate environmental impacts

0

1

1

1

1

1

1

1

1

Functional unit is clearly defined and measurable (1), justified (1), and consistent with the study's intended application (1)

Consistency

 

2

3

3

 

3

1

0

2

2

3

The system to be studied is adequately described with clearly stated system boundaries (1), lifecycle stages (1), and appropriate justification of any omitted stages (1)

Transparency; Bias

Assessments with narrow system boundaries that exclude a number of lifecycle stages are prone to underestimating life-cycle environmental impacts

3

3

2

2

2

3

3

2

2

The system covers production (1), use/reuse (1) and disposal (1) of materials and energy (half mark if only for energy and vice versa)

Internal Validity, Completeness

 

3

3

3

3

3

3

3

3

3

Phase 2: Inventory analysis (7 points)

 

 

 

 

 

 

 

 

 

 

 

The data collection process is clearly explained, including the source(s) of foreground material weights and energy values (1); the source(s) of reference data (e.g. inventory database; 1); and what data are included (e.g. production and disposal of unit processes; 1)

Transparency, Internal Validity

 

3

3

3

2

3

3

3

3

3

Representativeness of the data is discussed (1), differences in electricity generating mix are accounted for (1), and the potential significance of exclusions or assumptions is addressed (1)

Internal validity; External validity

 

2

1

1

1

2

2

0

1

2

Allocation procedures, where necessary, are described and appropriately justified (1; mark given if no allocation used)

Transparency; Bias

 

1

1

1

1

1

1

1

1

1

Phase 3: Impact assessment (6 points)

 

 

 

 

 

 

 

 

 

 

 

Impact categories (1), characterization method (1), and software used (1) are documented transparently

Transparency

 

3

3

3

3

2

2

3

3

3

Results are clearly reported in the context of the functional unit (1) (0.5 if graphically, 0 if only normalized results reported)

Consistency; Transparency

 

1

1

0.5

0

1

1

1

1

1

A contribution analysis is performed and clearly reported (1), and hotspots are identified (1)

   

2

1

1

2

2

1

2

2

2

Phase 4: Interpretation (9 points)

 

 

 

 

 

 

 

 

 

 

 

Conclusions are consistent with the goal and scope (1) and supported by the impact assessment results (1)

Internal validity; Consistency

 

2

2

2

2

2

1

2

2

2

Results are contextualized through the use of sensitivity analysis (1) and uncertainty analysis (1)

Internal validity

 

1

1

1

1

2

1

0

1

1

Limitations are adequately discussed (1), and the potential impact of omissions or assumptions on the study's outcomes are described (1)

Bias

 

1

1

1

1

2

0

2

1

0

The assessment has been critically appraised (i.e. peer review if journal article or independent, external critical review if report/thesis; 1)

Bias

 

1

1

1

1

1

1

1

1

1

Source(s) of funding and any potential conflict(s) of interest are disclosed (1), and are unlikely to be a source of bias (1)

Bias

 

1

2

0

1

2

2

2

2

2

   

Total (/35)

29

30

26.5

25.5

29

23

29

29

30

   

Percentage score

83%

86%

76%

73%

83%

66%

83%

83%

86%

 

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 08-01-2024

Laatst geautoriseerd  : 08-01-2024

Geplande herbeoordeling  : 08-01-2026

Initiatief en autorisatie

Initiatief:
  • Nederlandse Vereniging voor Heelkunde
Geautoriseerd door:
  • Nederlands Oogheelkundig Gezelschap
  • Nederlandse Orthopaedische Vereniging
  • Nederlandse Vereniging voor Anesthesiologie
  • Nederlandse Vereniging voor Heelkunde
  • Nederlandse Vereniging voor Keel-Neus-Oorheelkunde en Heelkunde van het Hoofd-Halsgebied
  • Nederlandse Vereniging voor Medische Microbiologie
  • Nederlandse Vereniging voor Neurochirurgie
  • Nederlandse Vereniging voor Obstetrie en Gynaecologie
  • Nederlandse Vereniging voor Plastische Chirurgie
  • Nederlandse Vereniging voor Urologie
  • Nederlandse Vereniging van Ziekenhuisapothekers
  • Vereniging voor Hygiëne en Infectiepreventie in de Gezondheidszorg

Algemene gegevens

De ontwikkeling van deze Leidraad Duurzaamheid (bestaande uit Deel A - Methodologische Handreiking en Deel B - Inhoudelijke duurzaamheidsmodules) werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut) en werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS). De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.

Doel en doelgroep

Het doel van dit project is om algemene handvatten te ontwikkelen voor het opnemen van duurzaamheid met betrekking tot het milieu bij revisie van bestaande of ontwikkeling van nieuwe landelijke richtlijnen in de snijdende disciplines. Met deze Methodologische Handreiking wil deze werkgroep toekomstige richtlijncommissies van professionele standaarden (e.g. leidraden, richtlijnen, modules) kaders bieden om duurzaamheid op de juiste wijze mee te nemen.

 

Duurzaamheid is een breed begrip, en de verschillende betekenissen kunnen een ander doel hebben. Zo is duurzame ontwikkeling een ontwikkeling die tegemoetkomt aan de levensbehoeften van de huidige generatie, zonder die van toekomstige generaties tekort te doen. Daaronder worden zowel economische, sociale als leefomgevingsbehoeften geschaard (CBS, 2023). De werkgroep focust zich in deze Leidraad voornamelijk op duurzaamheid met betrekking tot het milieu, waarin de nadruk ligt op gezond milieu en leefomgeving. Dat wil zeggen, zo min mogelijk uitstoot van broeikasgassen, geen uitputting van grondstoffen, geen vervuiling en het in stand houden van ecosystemen. Aanbevelingen die zijn geformuleerd om duurzaamheid mee te nemen in richtlijnontwikkeling, richten zich specifiek op het verbeteren van de milieu-impact, de (negatieve) invloed die het menselijk handelen heeft op de natuurlijke omgeving en op de ecosystemen van de aarde.

 

Het doel van deze Leidraad is richtlijncommissies en -adviseurs op een uniforme wijze te ondersteunen in het implementeren van duurzaamheid in medisch specialistische richtlijnen. Deze Leidraad is uiteraard een eerste stap en verkenning op dit gebied, de werkgroep acht dat evaluatie en implementatie zal worden bewaakt.

Samenstelling werkgroep

Voor het ontwikkelen van de Methodologische Handreiking en bijbehorende richtlijnmodules is in 2021 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen die betrokken zijn bij de zorg voor patiënten op operatiekamers.

 

Werkgroep

  • Dhr. prof. dr. F.W. Jansen (voorzitter), gynaecoloog, NVOG
  • Mevr. prof. dr. N.D. Bouvy, chirurg, NVVH
  • Mevr. drs. I.R. van den Berg, uroloog, NVU
  • Dhr. drs. P.W. van Egmond, orthopedisch chirurg, NOV
  • Dhr. dr. R.J.H. Ensink, KNO arts, NVKNO
  • Mevr. drs. N. de Haas, plastische (hand-)chirurg, NVPC (vanaf januari 2022)
  • Mevr. dr. A. Kwee, gynaecoloog, NVOG
  • Mevr. dr. N.C. Naus-Postema, oogarts, NOG
  • Mevr. drs. K.E. van Nieuwenhuizen, arts-onderzoeker, Leids Universitair Medisch Centrum
  • Dhr. drs. N.A. Noordzij, plastisch chirurg, NVPC (tot december 2021)
  • Mevr. drs. C.S. Sie, anesthesioloog, NVA
  • Dhr. dr. E.S. Smits, plastisch chirurg, NVPC
  • Mevr. dr. K.E. Veldkamp, arts-microbioloog, NVMM
  • Mevr. drs. F.J.M. Westerlaken, deskundige Infectiepreventie, VHIG

Meelezers in klankbordgroep

  • Dhr. prof. dr. ir. J.B. Guinée, persoonlijke titel (Instituut of Environmental Sciences (CML), Universiteit Leiden)
  • Mevr. ir. P. de Heer, adviseur; Zorginstituut Nederland
  • Mevr. dr. S.N. Hofstede, senior adviseur, Kennisinstituut van de Federatie Medisch Specialisten
  • Dhr. drs. Y. Lam, dermatoloog i.o., NVDV
  • Mevr. dr. M.W. Langendam, persoonlijke titel (epidemioloog, AmsterdamUMC)
  • Mevr. dr. J.H. van der Lee, senior adviseur, Kennisinstituut van de Federatie Medisch Specialisten
  • Mevr. D. Malenica-Nusse, anesthesie medewerker, NVAM

Met ondersteuning van:

  • Dhr. ir. T.A. van Barneveld, directeur, Kennisinstituut van de Federatie Medisch Specialisten
  • Mevr. drs. I. van Dusseldorp, senior informatiespecialist, Kennisinstituut van de Federatie Medisch Specialisten
  • Dhr. drs. A.A. Lamberts, senior adviseur, Kennisinstituut van de Federatie Medisch Specialisten
  • Mevr. dr. C.T.J. Michels, adviseur, Kennisinstituut van de Federatie Medisch Specialisten

Belangenverklaringen

De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.

Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroep

Achternaam

Hoofdfunctie

Nevenwerkzaamheden

Gemelde belangen

Ondernomen actie

Jansen
(voorzitter)

Hoogleraar Gynaecoloog LUMC en TU Delft

*Voorzitter Medical Delta (betaald)
*Voorzitter landelijk netwerk "de Groene OK' (onbetaald)
*Beeldhouwer

Onderzoekslijn ten aanzien van duurzaamheid: momenteel zijn 3 promovendi, onder mijn leiding onderzoek aan het doen op dit onderwerp. Hieruit verwacht ik geen vermarketing belangen.

Geen restrictie

Berg, van den

Uroloog, Franciscus Gasthuis & Vlietland

Geen

Geen

Geen restrictie

Bouvy

Chirurg, Maastricht UMC+

*Advisory Board Activ Surgical (betaald +/- 8 uur per jaar)
*Secretaris Nederlandse Vereniging van Heelkunde

*KWF 2018-2022 Ontwikkeling van een intra peritoneale chemotherapie gel
*KWF 2021-2024 Detectie(?) van schildklier kanker(?) in uitademingslucht

Geen restrictie

Egmond, van

Orthopedisch chirurg, ETZ Tilburg, vrijgevestigd

*DNFA wetenschappelijke commissie (onbetaald)

*NVVT bestuur (onbetaald)
*Congrescommissie traumalogen (onbetaald)

*Landelijk Netwerk groene OK (onbetaald)

Geen

Geen restrictie

Ensink

KNO-arts, Gelre ziekenhuizen

*lid Advies commissie richtlijnen (vacatiegelden)

Geen

Geen restrictie

Haas, de

* Plastisch reconstructief en Handchirurg
* Eigenaar en medeoprichter Kliniek Voor de Hand, Woerden

*Docent bij Health Investment (betaald)

*Verrichten van Medische expertises (NVMSR lid; betaald)

Geen

Geen restrictie

Kwee

Gynaecoloog , UMCU, Utrecht
(0.8fte UMCU waarvan 0.4fte gedetacheerd naar het programma Zorgevaluatie en Gepast Gebruik)
(vanaf september 2023: volledig ZEGG)

Lid diverse (onbetaalde) commissies, o.a.
*Voorzitter commissie Gynae Goes Green, NVOG
*Lid landelijk netwerk groene OK
*Lid adviescommissie Zorgevaluatie FMS
*Lid werkgroep Leading the Change

Geen

Geen restrictie

Naus

Oogarts, Erasmus MC, Rotterdam

Geen

Geen

Geen restrictie

Nieuwenhuizen, van

Arts-onderzoeker afdeling gynaecologie (PhD kandidaat), LUMC

Arts-onderzoeker (PhD kandidaat, betaald). Hierbij o.a. actief als:

* Voorzitter Young Medical Delta

* Voorzitter Green Team LUMC

* Lid Green Team OK LUMC en Green Team VK LUMC

* Projectgroep de Groene Barometer (LNDGOK)

Geen

Geen restrictie

Noordzij (tot december 2021)

Plastisch chirurg, Rode Kruis Ziekenhuis Beverwijk per 1 oktober Spaarne Gasthuis Haarlem

Namens de NVPC in landelijk netwerk de Groene OK (onbetaald)

Geen

Geen restrictie

Sie

Anesthesioloog, Ikazia Ziekenhuis, Rotterdam

Lid commissie Kwaliteitsdocumenten NVA (onbetaald)

Lid NVA werkgroep duurzaamheid (onbetaald)

Geen

Geen restrictie

Smits

*Plastisch chirurg, Erasmus MC

* Maatschapslid AZRSFG (Plast.Chirurgie, Franciscus Gasthuis)

Allen onbetaald

*Mogelijk als ik later zelf een kliniek wil starten dat het goedkoper is als er minder luchtbehandeling nodig is. Echter die wens leeft niet bij mij.

*Boegbeeldfunctie?

Geen restrictie

Veldkamp

*Arts-microbloloog, LUMC
Hoofd Infectiepreventie

*Voorzitter Infectiecommissie LUMC

*Voorzitter werkgroep Hygiëne en Infectiepreventie (HIP) van de NVMM (onbetaald)

*Lid landelijk OMT-COVID-19 RIVM (vacatiegelden)
*Lid expertiseteam Infectiepreventie FMS (onbetaald)
Lid Cluster Advies Groep Samenwerkingsverband Richtlijnen Infectiepreventie (SRI) (onbetaald)

*Werkgroeplld SRI Richtlijn Persoonlijke Beschermingsmiddelen (vacatiegelden)

*Lid Algemene Visitatie Commissie NVMM, (vacatiegelden voor visitaties)

*Adviseur opleidingscommissie deskundige Infectiepreventie CZO (onbetaald)

*Voorzitter WG curatieve zorg Platform preparatie groep A ziekten, LCI, RIVM, (onbetaald)

Geen

Geen restrictie

Westerlaken

Deskundige Infectiepreventie, Erasmus MC

Lid en secretaris Green Team infectiepreventie VHIG (onbetaald)

Geen

Geen restrictie

Klankbordgroep

Achternaam

Hoofdfunctie

Nevenwerkzaamheden

Gemelde belangen

 

Guinée

Hoogleraar LCA, Universiteit Leiden, Faculteit W&N, Instituut voor milieuwetenschappen (CML), afdeling Industrial Ecology

*Member of the ecoinvent editorial board (onbetaald)

*Member of the Editorial Board of the International Journal of Life Cycle Assessment (onbetaald)

*Member of the International Advisory Board of the Journal of Material Cycles and Waste Management (onbetaald)

*Carbon4PUR involving Covestro and Arcelor Mittal: https://www.carbon4pur.eu/
*SUPRIM on resources with mining companies such as Boliden; all not relevant for this topic: https://eitrawmaterials.eu/project/suprim/
*Safe by Design projecten: https://www.rijksoverheid.nl/documenten/rapporten/2021/11/30/implementing-safe-by-design-in-product-development-through-combining-risk-assessment-and-life-cycle-assessment-literature-review-and-guidelines en https://www.rijksoverheid.nl/documenten/rapporten/2021/11/30/selection-of-product-chemical-substance-combinations-for-illustrating-a-variety-of-safe-by-design-approaches

Geen restrictie

Heer, de

Adviseur Zorginstituut Nederland (1.0fte)

*Eigenaar eenmanszaak Mevrouw de Heer (kleine losse opdrachten, auteur)

*Lid Planetary Health Hub NL (onbetaald)

*Lid Planetary Health Alliance – Europe Hub (onbetaald)

Geen. Als voorstander van meer duurzaam denken in de zorg heb ik er belang bij dát er een Leidraad komt, niet wat er in staat.

Geen restrictie

Langendam

Universitair docent en Principal Investigator, Amsterdam UMC, afdeling Epidemiologie en Data Science

Geen

*ZonMw Taalbarrières in de zorg en sociaal domein: generieke richtlijn module (geen rol als projectleider)
*ZonMw Monitor Innovatie van richtlijnen projecten (rol als projectleider)
*ZonMw Modulair onderhoud richtlijnen jeugdgezondheidszorg (rol als projectleider)
*Canadian Institutes of Health Research COVID-19 living recommendations map

Geen restrictie

Lam

Vijfde jaars dermatoloog i.o, Erasmus MC

*Plaatsvervangend voorzitter vereniging arts assistenten dermatologie en venereologie (onbetaald)
*Bestuurslid Nederlandse vereniging cosmetische dermatologie (onbetaald)
* Dutch Representative for Youth Committee International Union of Angiology (onbetaald)
*Associate editor Vascular Specialist international. (www.vsijournal.org) (onbetaald)

*AIOS Ambassador of The Netherlands to the American Venous Forum (onbetaald)

Geen

Geen restrictie

Lee, van der

Senior adviseur, Kennisinstituut van Medisch Specialisten

*Onderzoeker, Amsterdam UMC (0.05fte)

*Lid DSMB NVOG-consortium

Geen

Geen restrictie

Malenica

Anesthesie medewerker, Noordwest Ziekenhuisgroep, Alkmaar

Bestuurslid NVAM (onbetaald)

Geen

Geen restrictie

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief door de Leidraad voor commentaar voor te leggen aan de Patiëntenfederatie Nederland en de aangeleverde commentaren zijn bekeken en verwerkt.

 

Kwalitatieve raming van mogelijke financiële gevolgen in het kader van de Wkkgz

Bij de richtlijn is conform de Wet kwaliteit, klachten en geschillen zorg (Wkkgz) een kwalitatieve raming uitgevoerd of de aanbevelingen mogelijk leiden tot substantiële financiële gevolgen. Bij het uitvoeren van deze beoordeling zijn richtlijnmodules op verschillende domeinen getoetst (zie het stroomschema op de Richtlijnendatabase).

 

Uit de kwalitatieve raming blijkt dat er waarschijnlijk geen substantiële financiële gevolgen zijn, zie onderstaande tabel.

 

Module

Uitkomst raming

Toelichting

Module 1 Operatietechnieken

Geen financiële gevolgen

Hoewel uit de toetsing volgt dat de aanbevelingen breed toepasbaar zijn (>40.000 patiënten), volgt uit de toetsing dat het overgrote deel (±90%) van de zorgaanbieders en zorgverleners al aan de norm voldoet, het geen andere organisatie van zorgverlening betreft, het geen toename in het aantal in te zetten zorgverleners betreft en het geen wijziging in het opleidingsniveau van zorgpersoneel betreft. Er worden daarom geen financiële gevolgen verwacht.

Module 2 Disposables vs reusables

Geen financiële gevolgen

Hoewel uit de toetsing volgt dat de aanbevelingen breed toepasbaar zijn (>40.000 patiënten), volgt uit de toetsing dat het overgrote deel (±90%) van de zorgaanbieders en zorgverleners al aan de norm voldoet, het geen andere organisatie van zorgverlening betreft, het geen toename in het aantal in te zetten zorgverleners betreft en het geen wijziging in het opleidingsniveau van zorgpersoneel betreft. Er worden daarom geen financiële gevolgen verwacht.

Module 3 Afdekmaterialen

Geen financiële gevolgen

Hoewel uit de toetsing volgt dat de aanbevelingen breed toepasbaar zijn (>40.000 patiënten), volgt uit de toetsing dat het overgrote deel (±90%) van de zorgaanbieders en zorgverleners al aan de norm voldoet, het geen andere organisatie van zorgverlening betreft, het geen toename in het aantal in te zetten zorgverleners betreft en het geen wijziging in het opleidingsniveau van zorgpersoneel betreft. Er worden daarom geen financiële gevolgen verwacht.

Module 4 Anesthesie

Geen financiële gevolgen

Hoewel uit de toetsing volgt dat de aanbevelingen breed toepasbaar zijn (>40.000 patiënten), volgt uit de toetsing dat het overgrote deel (±90%) van de zorgaanbieders en zorgverleners al aan de norm voldoet, het geen andere organisatie van zorgverlening betreft, het geen toename in het aantal in te zetten zorgverleners betreft en het geen wijziging in het opleidingsniveau van zorgpersoneel betreft. Er worden daarom geen financiële gevolgen verwacht.

Module 5 Luchtbehandeling

Geen financiële gevolgen

Hoewel uit de toetsing volgt dat de aanbevelingen breed toepasbaar zijn (>40.000 patiënten), volgt uit de toetsing dat het overgrote deel (±90%) van de zorgaanbieders en zorgverleners al aan de norm voldoet, het geen andere organisatie van zorgverlening betreft, het geen toename in het aantal in te zetten zorgverleners betreft en het geen wijziging in het opleidingsniveau van zorgpersoneel betreft. Er worden daarom geen financiële gevolgen verwacht.

Werkwijze

AGREE

Bijbehorende richtlijnmodules zijn opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).

 

Knelpuntenanalyse en uitgangsvragen

Deze Leidraad is opgesteld met expertise van de werkgroep en klankbordgroep die uit verschillende disciplines bestaat. Adviseurs van het Kennisinstituut van de Federatie Medisch Specialisten hebben vanuit het perspectief van richtlijnontwikkelaars knelpunten aangeleverd tijdens een bijeenkomst op 24 februari 2022 (zie Bijlage 4: Verslag Bijeenkomst Adviseurs).

Daarnaast zijn knelpunten aangedragen tijdens de kick-off bijeenkomst die 28 maart 2022 heeft plaatsgevonden in het kader van de ontwikkeling van de Leidraad Duurzaamheid ‘Toevoegen duurzaamheidsparagraaf aan landelijke richtlijnen’. Aan deze bijeenkomst hebben 18 organisaties deelgenomen (zie Bijlage 5: Verslag Kick-off bijeenkomst). De verkregen input is meegenomen bij het opstellen van de Methodologische Handreiking en bijbehorende modules.

 

Op basis van de uitkomsten van de knelpuntenanalyse zijn door de werkgroep concept-uitgangsvragen opgesteld en definitief vastgesteld.

 

Uitkomstmaten

Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten met betrekking tot de milieubelasting belangrijk zijn. Hierbij heeft de werkgroep gebruik gemaakt van het ReCiPe-model van het Rijksinstituut voor Volksgezondheid en Milieu (RIVM) (Huijbregts, 2016, Huijbregts, 2017). De werkgroep waardeerde uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Methode literatuursamenvatting

Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is mogelijk dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • er is een reële kans dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • de literatuurconclusie is zeer onzeker.

 

 

 

Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).

 

Vanwege een gebrek aan kennis en standaarden in klinische verschillen voor duurzaamheidsuitkomsten en Life Cycle Assessments, heeft de werkgroep besloten de GRADE methodiek zoveel als mogelijk te volgen conform de huidige werkwijze van richtlijnontwikkeling en erkende standaarden zoals hierboven omschreven. De werkgroep heeft deze methode toegepast bij de vijf inhoudelijke duurzaamheidsmodules (Richtlijnendatabase.nl) en in deze modules transparant beschreven hoe de beoordeling van de literatuur heeft plaatsgevonden.

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek. Aanvullend hierop, heeft de werkgroep gebruik gemaakt van de ‘R-ladder (strategieën van circulariteit)’ (gebaseerd op Cramer, 2014; Hanemaaijer; 2018; Potting, 2016; Reike, 2018), om de hotspots te evalueren.


Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.

In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.

 

Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers

 

Sterke aanbeveling

Zwakke (conditionele) aanbeveling

Voor patiënten

De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet.

Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet.

Voor behandelaars

De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen.

Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren.

Voor beleidsmakers

De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid.

Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen.

 

Organisatie van zorg

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen.

 

Commentaar- en autorisatiefase

De Methodologische Handreiking en bijbehorende inhoudelijke duurzaamheidsmodules zijn ter commentaar voorgelegd aan de betrokken (wetenschappelijke) verenigingen en de leden van de Adviescommissie Richtlijnen van de Federatie van Medisch Specialisten. De NOG, NVDV, NVKNO, NVA, NVMM, NVOG, NVPC, NVU, NVZ, NVZA, NVA en Patiëntenfederatie Nederland hebben gereageerd op ons verzoek en inhoudelijk input geleverd. De aangeleverde commentaren zijn bekeken, verwerkt en besproken met de werkgroep.

Naar aanleiding van de commentaren werd de Leidraad Duurzaamheid aangepast en definitief vastgesteld door de werkgroep. De finale versie van de Methodologische Handreiking is gepresenteerd en vastgesteld tijdens de Brede Bijeenkomst Richtlijnen op 28 november 2023. De inhoudelijke duurzaamheidsmodules zijn ter autorisatie voorgelegd aan de direct betrokken wetenschappelijke verenigingen.

 

Literatuur

Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.

 

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.

 

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.

 

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.

 

Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.

 

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html

 

Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.

 

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Afdekmaterialen