Appendix 1. Evidence tables Evidence table for systematic reviews

Study Stu	udy characteristics	Product/service characteristics	Intervention (I) and	Follow-up	Outcome measures and effect	Comments
reference			Comparison / control (C)		size	
reference SR (2021) SR (20	to f LCAs in anaesthetic and rgical care. It aims to immarize the state of LCA actice via review of literature sessing the environmental apact of related services, ocedures, equipment and harmaceuticals.	 Product/service characteristics Inclusion criteria SR: Studies which assessed the environmental impact(s) of (1) an operating room(s) using LCA, (2) a specific surgical procedure(s) using LCA or (3) equipment or pharmaceuticals used in surgical settings. Exclusion criteria SR: No access, no English language, no research in relation to healthcare, healthcare related but not related to surgery or anaesthesiology, no use of LCAs. 44 included studies 		Follow-up End-point of follow-up: N/A For how many participants were no complete outcome data available? N/A		CommentsAuthors conclusion:LCA data indicates theenvironmental burdenattributable to the services issubstantial and effectivemitigation strategies arealready available.Eligible studies varied in termsof quality, completeness andrisk of bias, with criticalappraisal scores varyingbetween 44% and 89%.(A) Only one study is foundcomparing different ORs onenvironmental impact andidentifying hotpots. Resultscould not be pooled.(B) The studies variedconsiderably in their systemboundaries and functionalunits, which leads toheterogeneity of the studies.Results could not be pooled.(C) Functional units variedconsiderably between thestudies. There is a high degreeof heterogeneity, in terms ofstudied items andmethodology.Interpretation of results(A) For the OR certain emissionhotspots were identified: useof anaesthetic gases and use ofHVAC.(B) OR energy was a greathotspot, mainly due to HVAC.Next to that provision and useof anaesthetic gases and

Study	Study characteristics	Product/service characteristics	Intervention (I) and	Follow-up	Outcome measures and effect	Comments
reference			Comparison / control (C)		size	
						consumables contribute
						mainly.
						(C) Considering the life cycle of
						single-use items, the most
						contributing phase is the
						production phase. Single-use
						items are more often worse for
						the environment compared to
						reusables. When using
						reusables the energy source
						has to be taken into account,
						since the reuse phase is the
						biggest contributor, which
						requires energy.

Evidence table for LCA studies

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
Grimmond	Waste Management &	Type of study:	Goal and scope1:	An LCA framework was	1. <u>Climate Change</u>	Use of RSC leads to	Authors conclusion
(2012)	Research	LCA	Comparison of	used to assess the climate	Annual greenhouse gas (GHG)	reduction of GWP and	RSC significantly reduced
			contribution of disposable	impacts of two different	emissions resulted in a Global	waste.	GWP over DSC, with
	Journal information	Objective:	(DSC) or reusable sharps	sharps container systems	Warming Potential (GWP) of		manufacturing and
	The journal for a	To assess the climate	containers (RSC) to the	(disposable and reusable)	139.1 metric tons of (MT) CO ₂	The manufacturing	transport as the major
	sustainable circular	impacts of two different	global warming potential	over a 12-month period.	equivalents for DSC and 25.1	process is the biggest	contributors to the GWP
	economy. Fully peer-	sharps container systems	(GWP).	Data was collected	MTCO ₂ equivalents for reusable	contributor in GWP for	of DSC. Larger containers
	reviewed international	(disposable and reusable)	Functional unit(s) ² :	regarding the size, type,	sharps containers (RSC).	DSC, and thereby gives the	have little GWP impact,
	journal that publishes	over a 12 month period.	Provision for 100 occupied	and number of containers	Stratified to 100 hospital beds	largest difference between	transport distances and
	original review articles		hospital beds over one	used, as well as	over one year this resulted in	the two containment	electricity sources are
	relating to both the theory	LCA-method:	year	modification protocols.	24.2 MTCO ₂ equivalents GWP	systems. This is a function	important factors.
	and practice of waste	Attributional LCA	System boundaries:	Both systems were taken	per 100 OB-year for DSC and 4.0	of resin weight; container	
	management and		Cradle to grave	into account from cradle	MTCO ₂ equivalents GWP per 100	manufacturing and low	Limitations study
	research. Mass flow	Setting and country:	Included stages:	to grave. The data comes	OB-year for RSC. Use of RSC	annual RSC manufacturing	The study is conducted in
	analyses, life cycle	Hospital US	Raw material extraction,	from a variety of industry	reduces GWP by 83.5%.	emissions because of their	the USA with all processes
	assessments, policy	-	production, packaging,	and government sources		long lasting life span.	related to 1 hospital,
	planning and system	Facility:	transport, reuse, disposal	and combined with an	2. <u>Waste</u>		outcomes might changes
	administration, innovative	Northwestern Memorial	Stated excluded	LCI/LCA tool developed by	Annual waste for DSC resulted in	The washing process is the	for other hospitals and
	processes and	Hospital (NMH, Chicago)	components:	the Waterman Group UK.	30,920 kg landfilled plastic and	biggest contributor for	countries.
	technologies and their		Infrastructure and assets		5020 kg of cardboard boxes for	RSC. Decanting and	
	engineering features and	Years of data collection:	were excluded from both	Characterization methods:	34,396 manufactured and 33,	washing contributed for	
	cost effectiveness are	-	systems ("in accordance	IPCC	759 landfilled DSC	52.5% of the systems total	
	among the key issues that		with product LCA		(chemotherapy DSC were	GWP.	
	WM&R seeks to cover	Surgical discipline(s):	principles")		incinerated). Whereas RSC only		
	through well documented	Nonspecific	Inventory database: GaBi		caused 123 kg of plastic waste	The sensitivity analysis	
	reports on new concepts,				(calculated for the end of life of	showed that the choice of	
	systems, practical	Funding and conflict of	Allocation: No		the RSC, during the study no RSC	a 'clean' electrical source	
	experience (including case	interest:	Normalization &		were landfilled) and 116 kg of	(e.g. windfarm vs. coal)	
	studies), and theoretical	None	Weighting: Results		waste from carboard boxes (this	can alter manufacturing	
	and experimental research		normalized to 100		were the chemotherapy DSC,	GWP by 15% in the US.	
	work.		occupied beds/year		which were used in both	Thereby, it showed that	
			Impacts reported: Yes		systems if there was an	water usage in RSC	
	Critical review:		Contribution analysis: Yes		indication for chemotherapy). In	processing was associated	
	Peer reviewed journal. Not		Scenario analysis: No		total 2481 RSC were	with 40% of this process	
	a specific LCA journal,		Comparative analysis: Yes		manufactured and 47 containers	and reduction of water	
	however inclusion of LCA		Sensitivity analysis: Yes;		were landfilled.	volumes would reduce	
	studies in scope of the		tests impact of			GWP.	
	journal.		distribution distances by		3. Acidification		
			assuming RSCs were made		No results in this study.	Reclamation of energy and	
			at the DSC facility, and vice		···· · ····,	material will reduce	
			versa; tests impact of		4. Eutrophication	manufacturing GWP in	
			equal sized container		No results in this study.	both systems.	
			volumes; tests impact of				

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
			alternative electricity		5. <u>Human Toxicity</u>	Costs were reduced by	
			grids; tests transport		No results in this study.	19.2% by using RSC.	
			vehicle load capacity; tests				
			alternate disposal		6. <u>Ecotoxicity</u>		
			methods, e.g. shredding.		No results in this study.		
			Uncertainty analysis:				
			No		7. Ozone Depletion		
			Variance analysis:		No results in this study.		
			Yes				
Grimmond	BMJ open	Type of study:	Goal and scope ¹ :	The global warming	1. <u>Climate Change</u>	Use of RSC leads to	Authors conclusion
(2021)		LCA	To compare the life-cycle	potential (GWP) of	Annual greenhouse gas (GHG)	reduction of GWP and	RSC achieved significant
. ,	Journal information		carbon footprint of 12-	hospitals converting from	emissions in 40 trusts resulted in	waste.	GHG reductions over SSC,
	BMJ Open is an online,	Objective:	months usage of SSC with	single-use sharps	a Global Warming Potential		container manufacture
	open access journal,	To compare global	12 months usage of RSC.	containers (SSC) to	(GWP) of 3896.4 metric tons of	The manufacturing	was the largest
	dedicated to publishing	warming potential (GWP)	Functional unit(s) ² :	reusable sharps containers	$(MT) CO_2$ equivalents for SSC	process is the biggest	contributor in SSC, for RSC
	medical research from all	of hospitals converting	Total fill line litres (FLL) of	(RSC) were compared by	and 628.9 MTCO ₂ equivalents	contributor in GWP for	it was transport. RSC
	disciplines and therapeutic	from single- use sharps	sharps containers needed	using an attributional LCA	for RSC (-83.9%).	SSC, and thereby gives the	lifespans can be reduced
	areas.	containers to reusable	to dispose of sharps for 1-	model. The intervention in	(,	largest difference between	and achieve marked GWP
		sharps containers (SSC,	year period in 40 trusts.	this study was conversion	2. Waste	the two containment	reductions over SSC.
	Critical review:	RSC).	System boundaries:	from SSC to RSC. Twelve	Annual waste for SSC resulted in	systems.	Adoption of reusable over
	Peer reviewed. Not in	,	Cradle to grave	months of usage of SSC	928.7 kg incinerated plastic and	- ,	SSC can reduce GHG
	specific LCA journal or LCA	LCA-method:	Included stages:	was compared with twelve	136.6 kg of cardboard boxes for	Transport is the biggest	emissions permanently
	in scope of the journal.	Attributional LCA	Manufacture, transport,	months usage of RSC. SSC	1 748 851 manufactured and 1	contributor for RSC. It	with minimal staff
			decanting and	and RSC usage details in	748 851 incinerated SSC.	resulted in 442 MT CO ₂	behavioural change.
		Setting and country:	decontamination and	17 baseline trusts	Whereas RSC were not	equivalents of the total of	Senario di di changei
		Acute care hospital trusts	treatment and disposal	immediately prior to 2018	incinerated – all parts were	628.9 MT CO_2 equivalents	Limitations study
		in the UK	treatment and disposal	were applied to the RSC	either reused or recycled. Waste	annually for 40 hospital	Results of SSC has been
		in the ork	Stated excluded	usage details of the 40	in the RSC study-year came from	trusts.	extrapolated from 17
		Facility:	components: Capital	trusts using RSC in 2019.	SSCs used in study-year.	thusts.	trusts to 40 trusts and
		40 UK NHS hospital trusts	machinery, infrastructure,	The outcome measure was	soes used in study year.	The sensitivity analysis	therefore the
		using RSC	vehicle life-cycle, labor, SC	GWP. This was calculated	3. Acidification	showed that that changes	representativeness of data
		using rise	contents, non-GHG	in carbon dioxide	No results in this study.	achieved by changing	might not be accurate.
		Years of data collection:	emissions	equivalents (CO2	No results in this study.	processes/geography	inght not be decarate.
		2018-2019	Inventory database: Gabi	equivalents) generated in	4. Eutrophication	within life stages, were not	
		2010 2013	database	the manufacture,	No results in this study.	mirrored in the final GWP	
		Surgical discipline(s):		transport, service and		comparisons, which in all	
		Nonspecific	Allocation: Yes, annual	disposal of 12 months,	5. Human Toxicity	but one alternative	
			emissions for RSC	hospital-wide usage of	No results in this study.	scenario did not achieve	
		Funding and conflict of	manufacturing were	both sharps containment		changes for more than 5%.	
		interest:	determined by dividing	systems in the 40 trusts.	6. Ecotoxicity	This was the RSC lifespan	
		interest.	total manufacturing GHG		No results in this study.	of 1 year, which was an	
			by the years of life	Characterization methods:	No results in this study.	academic exercise and is	
			expectancy.	IPCC	7. Ozone Depletion	not expected in real life.	
			capeetancy.		No results in this study.	Using larger vehicles for	
			1	1	ino results in this study.	Using larger vehicles lor	1

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
			Normalization &			transport and optimization	
			<u>Weighting:</u> No			for reprocessing medical	
			Impacts reported: Yes			devices is recommended	
			Contribution analysis: Yes			to lower GHG.	
			<u>Scenario analysis:</u> No				
			Comparative analysis: Yes				
			Sensitivity analysis: Yes;				
			tests impact of larger				
			vehicle size, transport				
			distances, polymer and				
			container manufacturing				
			geographies, larger SSC				
			container size and				
			changing the lifespan from				
			a base of 18 years to 1				
			year, theoretically				
			maximum of 66 years and				
			the 'break-point' at which				
			life span RSC GWP				
			matches SSC GWP.				
			Uncertainty analysis: No				
			Variance analysis: No				
Hicks	Environmental Science:	Type of study:	Goal and scope ¹ :	An LCA was conducted to	1. <u>Climate Change</u>	Nanosilver (nAg) can be	Authors conclusion
(2016)	Nano from 'The Royal	LCA	Analysis of the lifecycle	compare the	Results using nanosilver (nAg) as	used for patient hospital	The energy consumption
	Society of Chemistry'		impact of the synthesis of	environmental impact of	an antimicrobial agent for	gowns due to its	was found to be much less
		Objective:	nAg, its application to	reusable patient hospital	patient hospital gowns. Given	antimicrobial nature.	during the lifetime of the
	Journal information	To compare environmental	textiles in a hospital	gowns coated with nAg	the observed loss of nAg, the		reusable hospital gown
	Information on the design	impact of reusable patient	setting and laundering of	product compared to the	silver could be reapplied at each	The results show it is	than continuously using
	and demonstration of	hospital gowns coated	the textile.	use of disposable gowns.	set of 17 launderings for	necessary to synthesize	disposables. This suggests
	engineered nanomaterials	with nAg (nanosilver)	Functional unit(s) ² :	First, the environmental	reusable gowns and needed to	the nAg and thereafter	that nAg-enabling of
	for environment-based	product to the use of	 4600 ug of nAg 	impact of synthesis and	be reapplied for every single	attach the silver to the	reusable hospital gowns
	applications and on the	disposable gowns.	(amount added to	attachment of 4600 ug	disposable gown. Greenhouse	gown. The impact is	may be a method for
	interactions of		hospital gown)	nAg was determined (the	gas (GHG) emissions for	greater to attach the nAg	simultaneously lowering
	engineered, natural, and	LCA-method:	 Per one wear and 	amount added to a	synthesis of 4600 ug nanosilver	to the textile than it is to	the environmental impact
	incidental nanomaterials	Attributional LCA	laundering (over a	hospital gown). Second	resulted in a Global Warming	synthesize it. For reusable	and maintaining the
	with biological and		lifetime of 75	the life cycle impacts of	Potential (GWP) of 1.17 x 10 ⁻³ kg	gowns the silver could be	antimicrobial performance
	environmental systems.	Setting and country:	wearings)	nanoscale silver (nAg)-	CO ₂ equivalents. Nanosilver	reapplied at each set of 17	needed to combat
		USA	System boundaries:	enabled reusable hospital	attachment resulted in 7.90 x 10 ⁻	launderings. This means	pathogen transmission.
	 Novel nanomaterial- 		Cradle to grave	gowns per one wear are	² kg CO ₂ equivalents per hospital	the attachment has to be	
	based applications for	Facility:	Included stages:	modelled and midpoint	gown.	applied more often in	Limitations study
	water, air, soil, food,	Hospital case study	Raw materials acquisition,	environmental data are		disposable gowns, which	Only one attachment and
	and energy		manufacturing, use, end	compared.	2. <u>Waste</u>	would lead to a higher	synthesis process was
	sustainability	Years of data collection:	of life		No results in this study.	environmental impact.	analysed. The
		Not defined.		Characterization methods:		Next to that, the	environmental impact of

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	 Nanomaterial 		Stated excluded	TRACI	3. <u>Acidification</u>	sensitivity analysis shows	excess silver during
	interactions with	Surgical discipline(s):	<u>components</u> : -		Acidification for synthesis of	reapplying the nAg every	synthesis and the silver
	biological systems and	Nonspecific	Inventory database:		4600 ug nanosilver resulted in	wash cycle for the	lost is not explored. The
	nanotoxicology		Ecoinvent database (v 2.2)		9.99 x 10 ⁻⁴ mol H ⁺ equivalents.	reusable gown leads to a	comparisons of reusable
	 Environmental fate, 	Funding and conflict of			Nanosilver attachment resulted	higher environmental	and disposable gowns
	reactivity, and	interest:	Allocation: No		in 2.66 x 10 ⁻² mol H ⁺ equivalents	impact compared to the	relies on prior work and
	transformations of	U.S. Environmental	Normalization &		per hospital gown.	disposable gown. After 28	utilizes only one impact
	nanoscale materials	Protection Agency	Weighting: No			cycles the impact of the	category.
	 Nanoscale processes in 	Assistance Agreement No.	Impacts reported: Yes		4. <u>Eutrophication</u>	reusable gown is lower	
	the environment	RD 83558001-0 funded	Contribution analysis: Yes		Eutrophication for synthesis of	compared to the	
	 Sustainable 	this research.	Scenario analysis: Yes		4600 ug nanosilver resulted in	disposable gown. When	
	nanotechnology		Comparative analysis: Yes		5.83 x 10 ⁻⁵ kg N equivalents.	reapplying after every 17 th	
	including rational		Sensitivity analysis: Yes		Nanosilver attachment resulted	cycle, the reusable gown	
	nanomaterial design,		Uncertainty analysis: Yes		in 2.63 x 10 ⁻⁴ kg equivalents per	has a lower impact	
	life cycle assessment,		Variance analysis: No		hospital gown.	compared to the	
	risk/benefit analysis				E H H H H	disposable already at first	
					5. <u>Human Toxicity</u>	use.	
	Critical review:				Human toxicity in carcinogenics	This study shows that	
	Peer reviewed journal. Not				for synthesis of 4600 ug nanosilver resulted in 4.66 x 10 ⁻	This study shows that disposable patient hospital	
	a specific LCA journal,				¹⁰ CTUh. Nanosilver attachment	gowns coated with nAg	
	however inclusion of LCA				resulted in 4.28 x 10 ⁻⁹ CTUh per	lead to a higher	
	studies in scope of the				hospital gown.	environmental impact for	
	journal.				nospital gown.	compared nAg coated	
					Human toxicity in non-	reusable gowns.	
					carcinogenics for synthesis of	reusable gowits.	
					4600 ug nanosilver resulted in		
					6.37×10^{-9} CTUh. Nanosilver		
					attachment resulted in 4.28 x 10		
					⁸ CTUh per hospital gown.		
					6. Ecotoxicity		
					Ecotoxicity for synthesis of 4600		
					ug nanosilver resulted in 2.36 x		
					10 ⁻² CTUe. Nanosilver		
					attachment resulted in 1.51 x 10 ⁻		
					¹ CTUe per hospital gown.		
					F - · · · · · · · · · · · · · · ·		
					7. Ozone Depletion		
					Ozone depletion for synthesis of		
					4600 ug nanosilver resulted in		
					1.29 x 10 ⁻¹⁰ kg CFC-11		
					equivalents. Nanosilver		
					attachment resulted in 5.70 x 10 ⁻		

Study Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
				⁹ kg CFC-11 equivalents per		
				hospital gown.		
McGain Anaesthesia and Intensive		Goal and scope1:	The financial and	<u>1. Climate Change</u>	CO ₂ production of single-	Authors conclusion
(2010) Care	LCA	To compare the financial	environmental costs of	The reusable tray produced 110	use trays was only a non-	The author concludes that
		and environmental costs	two commonly used	g of CO_2 (95% CI 98 to 122 g	significant 15% greater.	financial and
Journal information	Objective:	of two commonly used	anaesthetic drug trays	CO ₂), the single use tray alone	However, when modelling	environmental savings of a
Anaesthesia and Intensive		anaesthetic drug trays.	were modelled using LCA.	produced 126 g CO ₂ (95% CI 104	the single-use tray with	hospital converting to
Care is an international	environmental and	Functional unit(s) ² :	This study was performed	to 151 g) with a mean difference	cotton and paper the CO ₂	reusable trays are
journal publishing timely,	financial impacts of two	Use of one plastic	at the Western Hospital in	of 16 g CO $_2$ (95% CI -8 to 40 g	production increased	important, and that it
peer reviewed articles that		anesthetic drug tray (+/-	Melbourne, Victoria. The	CO ₂). The single use tray with	notably.	seems difficult to justify
have educational value	plastic anesthetic drug	use of 2 cotton gauzes and	reusable tray, the single-	cotton and paper produced 203		persisting with single-use
and scientific merit for	trays: a single-use	1 paper towel)	use tray and the single-use	g CO ₂ (95% CI 166 to 268 g CO ₂).	For the reusable tray, the	drug trays, particularly
clinicians and researchers	polyurethane tray made in	System boundaries:	tray with cotton and paper		washing process	with added cotton gauze.
associated with	China and reusable (300	Cradle to grave	were compared. Data was	2. Waste	contributes most to the	
anaesthesia, intensive car		Included stages:	collected directly from	No results in this study.	total impact. For the	Limitations study
medicine, and pain	Australia. Impacts and	Raw material extraction,	measurements and from		disposable tray this is the	Data were average
medicine.	financial costs of two	production, packaging,	databases (EcoInvent). The	3. Acidification	production process of the	industry data and not
	cotton gauzes and one	transport, reuse, disposal	single-use trays were	No results in this study.	polyurethane tray. For the	directly measured (as with
It is the official journal of	paper towel, which are	Stated excluded	plastic Chinese-made trays		cotton gauzes and paper	most LCA models). Data
the Australian Society of	included with most single-	components: Existing	and the reusable trays	<u>4. Eutrophication</u>	towel, the production of	from tray manufacturers
Anaesthetists, the	use trays, were separately	infrastructure for energy	were Australian made	No results in this study.	the gauzes has the	were unavailable,
Australian and New	modelled.	extraction and	nylon trays. Since not all	E H H H H H	greatest impact.	therefore data of average
Zealand Intensive Care		transportation was not	data was directly available,	5. Human Toxicity		manufacturing effects
Society and the New	LCA-method:	included, nor was	an some data were also	No results in this study.		were used. For the single-
Zealand Society of	Attributional LCA	agricultural machinery,	not available as average			use trays the European
Anaesthetists.	Cotting and soundary	farm establishment, and	data, for the single-use	<u>6. Ecotoxicity</u>		energy mix is used,
Critical reviews	Setting and country:	forest establishment	trays the European energy	No results in this study.		however the Chinese
Critical review:	Australia	("acquisition and	mix is used, however the	7 Orana Depletion		energy mix might be more
Peer reviewed. Not in specific LCA journal or LCA	Facility	infrastructure costs of machines or items that are	Chinese energy mix might be more coal reliant.	7. Ozone Depletion No results in this study.		coal reliant.
in scope of the journal.	<u>Facility</u> : Western Health,		be more coal reliant.	No results in this study.		
in scope of the journal.	Melbourne, Victoria,	already in place are routinely not included in	Characterization methods:			
	Australia	LCAs")	characterization methods.			
	Australia	Inventory database:	-			
	Years of data collection:	Ecolnvent				
		LConvent				
		Allocation: No				
	Surgical discipline(s):	<u>,</u>				
	Anaesthesiology	Normalization &				
	. Mesthesiology	Weighting: No				
	Funding and conflict of	Impacts reported: Yes				
	interest:	Contribution analysis: Yes,				
	None	although alignment				
		5 5				
	None	between reported				

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
			contributions and lifecycle				
			stages not totally clear.				
			Scenario analysis: No				
			Comparative analysis: Yes				
			Sensitivity analysis: No				
			Uncertainty analysis: Yes,				
			Monte Carlo analysis.				
			Variance analysis: No				
McPherson	PeerJ	Type of study:	Goal and scope ¹ :	This study followed a very	1. <u>Climate Change</u>	Use of RSC leads to	Authors conclusion
(2019)		LCA	To compare the climate	similar methodology as	Annual greenhouse gas (GHG)	reduction of GWP and	Large RSC transport
	Journal information:		impacts of two different	that by Grimmond et al.,	emissions resulted in a Global	waste.	distances less the
	The open access journal	Objective:	sharps container systems	2012, including the use of	Warming Potential (GWP) of		differential between DSC
	for life and environment	To assess the climate	over a 12 month period.	the same cradle-to-grave	248.62 metric tons of (MT) CO ₂	The manufacturing	and RSC GHG, however
		impacts of two different	Functional unit(s) ² :	LCI and calculation tool.	equivalents for DSC and 86.19	process is the biggest	RSC still achieved
	Critical review:	sharps container systems	Provision of sharps	The disposable sharps	MTCO ₂ equivalents for reusable	contributor in GWP for	significant GHG reductions
	Peer reviewed journal, not	(disposable and reusable)	containers at one	containment system was	sharps containers (RSC).	DSC, and thereby gives the	over DSC.
	a specific LCA journal and	over a 12 month period at	healthcare facility for one	assessed for a 12 month	Adjusted patient days (APD)	largest difference between	Transport and electricity
	not mentioned in scope.	Loma Linda University	year	period prior to Loma Linda	were used as the workload	the two systems. It is	cleanliness are key. RSC
	However focus on	Health in California, USA,	System boundaries:	University Health's (LLUH)	indicator to which results were	predominantly a function	lifespan has minimal effect
	environment in this	which is located	Cradle to grave	transition to a reusable-	normalized. This resulted in 8.37	of the energy required for	on GHG emissions.
	journal.	considerably further away	Included stages:	based system. The	MTCO ₂ equivalents per 10,000	the higher total polymer	Purchasing decisions can
		from manufacturers and	Raw material extraction,	reusable system (certified	APD for DSC and 2.90 MTCO ₂	weight needed to be	contribute to reduction
		reprocessors than is	production, packaging,	for 500 uses) was assessed	equivalents per 10,000 APD for	annually manufactured	strategies. Institution wide
		Northwestern Memorial	transport, reuse, disposal	for another 12 month	RSC. Use of RSC reduces GWP by	and molded for DSC.	adoption of RSC can
		Hospital (previously	Stated excluded	period two years later	162.4 MTCO2eq (65.3%,		reduce GHG with minimal
		studied).	components:	once the transition was	P<0.001, RR 2.27-3.71).	Transport is the biggest	staff behavior change.
			Capital machinery and	complete. Data were		contributor for RSC.	
		LCA-method:	infrastructure, vehicles,	directly collected from	2. <u>Waste</u>	Although more DSC	Limitations study
		Attributional LCA	labor, sharps container	LLUH regarding size, type,	Annual waste for DSC resulted in	required transportation,	A limitation was the
			contents, as well as any	and number of containers	31.8 tonnes of landfilled plastic,	the daily transport of RSC	assumption made in the
		Setting and country:	inputs and outputs that	used, as well as changeout	18.8 tonnes of incinerated	resulted in similar GHG	location of the polymer
		Hospital USA	constituted less than 1%	protocols. Disposable	plastic and 8.2 tonnes of	over the year between	manufacturer for DSC. It
			or the systems total mass	sharps containers (DSCs)	cardboard boxes for 48,460	RSC and DSC.	was assumed to be close
		<u>Facility</u> :	or energy (article cites	were made from US-	manufactured and 35,925		to the DSC manufacturer.
		Loma Linda University	"British Standards	sourced polymer in Illinois,	landfilled DSC (chemotherapy	The sensitivity analysis	Second, the use of the UK
		Health, San Bernardino,	Institute, 2011 " PAS2050	packaged in cardboard,	DSC were incinerated).	revealed variations in RSC	database for transport
		CA, USA	guide)	transported 3,200km to	Whereas RSC only caused 0.4	lifespan contributed little	(because it used
			Inventory database:	LLUH, and autoclaved and	tonnes of plastic waste (Tonnes	to the GHG result. It	tonne.km).
		Years of data collection:	GaBi	landfilled in California	of chemo/pharma DSC	showed that differing	
		-		post-use. Reusable sharps	incinerated; 412 chemo DSC	electricity sources can	
			Allocation: No	containers (RSCs) were	were used during RSC year) and	alter the GHG contribution	
		Surgical discipline(s):	Normalization &	made in Michigan from	0.1 kg of waste from carboard	of the manufacturing	
		Nonspecific	Weighting: Yes, results	Korean-sourced polymer,	boxes (this were the	process. It can alter DSC	
	1			transported 3,500km in	chemotherapy DSC, which were	GHG by 23% and RSC GHG	

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
		Funding and conflict of	normalised to 10,000	reusable transport	used in both systems if there	by 10%. RSC reprocessing	
		interest:	Adjusted Patient Days	containers, and	was an indication for	accounted for 5.6% of the	
		Brett McPherson and	Impacts reported: Yes	reprocessed in California	chemotherapy). In total 3195	RSC life cycle. Material	
		Mihray Sharip declare no	Contribution analysis: Yes	440km from LLUH. Instead	RSC were manufactured and 0	reclamation could reduce	
		conflict of interest. Terry	Scenario analysis: No	of normalizing the results	containers were landfilled (all	DSC life cycle GHG.	
		Grimmond is an	Comparative analysis: Yes	to occupied beds, as was	parts were either reused or		
		international consultant in	Sensitivity analysis: Yes,	the case in Grimmond et	recycled).		
		sharps injury prevention	reducing reusable	al., 2012, total 'Adjusted			
		and waste management to	container lifespan,	Patient Days' was instead	3. <u>Acidification</u>		
		healthcare and associated	alternate electricity grids,	used as the workload	No results in this study.		
		industries. Daniels Health,	reprocessing optimization.	indicator to which results			
		the manufacturer did not	Uncertainty analysis: No	were normalized.	4. <u>Eutrophication</u>		
		review, sight or have input	Variance analysis: Yes		No results in this study.		
		into the design, content,		Characterization methods:			
		methodology, results,		IPCC	5. <u>Human Toxicity</u>		
		write-up of the study or			No results in this study.		
		choice of journal for					
		publication.			6. <u>Ecotoxicity</u>		
					No results in this study.		
		Daniels Health granted					
		\$2500 towards the cost of			7. <u>Ozone Depletion</u>		
		the study, which covered			No results in this study.		
		approximately 10% of					
		expenses. No other grant					
		or funding was received					
		from any funding agency					
		in the public, commercial,					
		or not-for-profit sectors.					
		The funders had no role in					
		study design, data					
		collection and analysis,					
		decision to publish, or					
		preparation of the					
		manuscript.					
Vozzola	PDA Journal of	Type of study:	Goal and scope ¹ :	An LCA was conducted to	1. <u>Climate Change</u>	The reusable coveralls	Authors conclusion
(2018)	Pharmaceutical Science an	LCA	To compare market	assess the environmental	The CO ₂ footprint of reusable	have a lower	It is absolutely clear that
	Technology		representative reusable	impacts of two different	coveralls resulted in 517 kg CO ₂	environmental impact and	the environmental benefit
		Objective:	versus disposable	cleanroom coveralls:	equivalents for 1000 uses. The	produce less waste	of reusable coveralls is
	Journal information	To assess the	cleanroom coveralls	reusable and disposable.	disposable (HDPE) resulted in	compared to the	significant.
	PDA JPST is the primary	environmental impacts of	(defined as a single-piece,	This study is an analysis	712 kg CO_2 equivalents and the	disposable variant.	l'initations at d
	source of peer-reviewed	two different cleanroom	long-sleeve extra-large	from cradle to crave,	disposable (PP) in 1220 kg CO ₂	The later of a state of the state	Limitations study
	scientific and technical	coveralls: reusable and	(XL) zip up garment). The	quantifying parameters	equivalents per 1000 uses.	The biggest contributor in	Packaging materials vary
	papers on topics related to	disposable	scope was cradle to end of	such as energy use and		CO ₂ footprint for the	between supply
	pharmaceutical/biopharm	L	life.	GHG emissions, including	1	disposable coverall is the	companies and in this

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	aceutical manufacturing,	LCA-method:	Functional unit(s) ² :	different phases: Raw	Switching to reusable resulted in	manufacturing process	study representative
	sterile product production,	Attributional LCA	1,000 garment uses	material extraction,	a 27-58% decrease of the carbon	(58-68%). For the reusable	materials are used for the
	aseptic processing,		System boundaries:	production, packaging,	footprint.	variant this is the laundry	different companies,
	pharmaceutical	Setting and country:	Cradle to grave	transport, reuse and		process (65%).	however these are not
	microbiology, quality,	USA	Included stages:	disposal.	For the disposable HDPE and PP		precisely defined per
	packaging science, and		Raw material extraction,		coverall the manufacturing		company.
	other topics relevant to	Facility:	production, packaging,	Characterization methods:	process contributed most to the		
	PDA members. PDA JPST is	-	transport, reuse, disposal	-	CO ₂ footprint (resp. 414 kg		
	an internationally		Stated excluded		CO ₂ eq and 823 kg CO ₂ eq, 58-		
	recognized source that	Years of data collection:	components:		68% of cradle to end of life		
	receives over a quarter of	-	The collection and reuse		GHG). For the reusable PET		
	a million visitors annually.		activities and credits were		coverall this resulted in 115 kg		
		Surgical discipline(s):	outside of the boundary of		CO ₂ eq (22% of cradle to end of		
	Critical review:	Nonspecific	this study. The eventual		life GHG)		
	Peer reviewed journal, not		landfill activities were also				
	a specific LCA journal and	Funding and conflict of	outside of the boundary of		The packaging manufacturing		
	not mentioned in scope.	interest:	this study.		contributed for the reusable PET		
		The European Change	Inventory database:		4.4 % (22.8 kg CO₂eq) of the		
	For this study, only a	Consortium (partners of	Environmental Clarity		cradle to end of life GHG, for the		
	'portion' of the LCI data	the consortium include			disposable HDPE 6.8% (48.4 kg		
	were reviewed externally	drape and tape industry	Allocation: No		CO ₂ eq) and for the disposable		
	by industry experts. The	groups) commissioned	Normalization &		PP 4% (48.4 kg CO₂eq).		
	report was internally	Environmental Clarity, Inc	Weighting: No				
	reviewed by four members	to undertake the LCA	Impacts reported:		The laundry process contributed		
	of the commissioning		Yes		for the reusable PET 65 % (336		
	body		Contribution analysis:		kg CO ₂ eq) of the cradle to end of		
			Yes, only for NRE		life GHG, for the disposable		
			consumption and GHG		HDPE 20% (143 kg CO ₂ eq) and		
			emissions.		for the disposable PP 17% (204		
			Scenario analysis: Yes,		kg CO₂eq).		
			different transportation		с <i>п</i>		
			scenarios.		The sterilization process		
			Comparative analysis: Yes		contributed for the reusable PET		
			Sensitivity analysis: No		0.21% (1.08 kg CO ₂ eq) of the		
			Uncertainty analysis: No		cradle to end of life GHG, for the		
			Variance analysis: No		disposable HDPE 0.065%		
			<u>-ranance analysis</u> e		$(0.461 \text{kg CO}_2 \text{eq})$ and for the		
					disposable PP 0.054% (0.657 kg		
					CO_2eq).		
					00204/.		
					The use phase transport		
					contributed for the reusable PET		
					8.1% (42.1 kg CO ₂ eq) of the		
					cradle to end of life GHG, for the		
					disposable HDPE 14% (99.9 kg		
				1	uisposable ndpe 14% (99.9 Kg		<u> </u>

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					CO ₂ eq) and for the disposable		
					PP 11% (132 kg CO₂eq).		
					The End-of-Life contributed for		
					the reusable PET 0% (0 kg		
					CO ₂ eq) of the cradle to end of		
					life GHG, for the disposable		
					HDPE 0.87% (6.19 kg CO ₂ eq) and		
					for the disposable PP 8.35%		
					(0.69 kg CO ₂ eq).		
					2. <u>Waste</u>		
					Solid waste includes: Disposable		
					coveralls, biological waste, and		
					plastic and paper packaging. In		
					this study, 100% of the reusable		
					cleanroom coveralls were		
					reused in other industries at the		
					end-of-life stage and therefore		
					not included as solid waste.		
					not included as solid waste.		
					The waste generation of		
					reusable coveralls resulted in		
					10.2 kg for 1000 uses. The		
					disposable (HDPE) resulted in		
					171 kg and the disposable (PP)		
					in 238 kg per 1000 uses.		
					3. <u>Acidification</u>		
					No results in this study.		
					4. <u>Eutrophication</u>		
					No results in this study.		
					5. <u>Human Toxicity</u>		
					No results in this study.		
					6. <u>Ecotoxicity</u>		
					No results in this study.		
					7. Ozone Depletion		
			1		No results in this study.		
Vozzola	American Journal of	Type of study:	Goal and scope ¹ :	An LCA was conducted to	1. <u>Climate change</u>	The reusable isolation	Authors conclusion
(2018)	Infection Control (AJIC)	LCA		assess the environmental		gowns have a lower	1

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
			(1) to compare 4	impacts of two different	The CO ₂ footprint of	environmental impact and	This analysis, combined
	Journal information	Objective:	environmental impacts	isolation gowns: reusable	reusable isolation gowns	produce less waste	with agreement of
	AJIC covers key topics and	To assess the	(energy,	and disposable. The	resulted in 218 kg CO ₂	compared to the	previous partial
	issues in infection control	environmental impacts of	global warming potential,	functional unit was 1000	equivalents for 1000 uses.	disposable variant.	life cycle studies of other
	and epidemiology.	two different isolation	water use, and solid waste	isolation gowns uses. This	The disposable resulted in		medical textiles, makes it
	Infection control	gowns: reusable and	consumption) of reusable	study is an analysis from	310 kg CO ₂ equivalents per	The biggest contributor in	absolutely clear
	professionals, including	disposable	and disposable isolation	cradle to grave including	1000 uses.	CO ₂ footprint for the	that the environmental
	physicians, nurses, and		gowns; (2) to clearly show	manufacturing, use and		disposable coverall is the	benefit of reusable
	epidemiologists, rely on	LCA-method:	what parts of the life cycle	end-of-life stages of the	Switching to reusable	manufacturing process.	isolation gowns is
	AJIC for peer-reviewed	Attributional LCA	are important to the	gown systems. The	resulted in a 30% decrease	For the reusable variant	significant.
	articles covering clinical		result; and (3) to	Environmental Clarity, Inc.	of the carbon footprint.	this is the laundry process.	
	topics as well as original	Setting and country:	provide a sensitivity	LCA database was used to			Limitations study
	research.	USA	analysis for important	evaluate the life cycles of	For the disposable		Funding could potentially
			parameters.	both isolation gown	isolation gowns the		be a source of bias.
	Critical review:	Facility:	Functional unit(s) ² :	systems. Sixteen	manufacturing process		Different energy mixes are
	Peer reviewed journal, not	-	1,000 isolation gown uses	disposable isolations	contributed most to the		not taken into account,
	a specific LCA journal and		System boundaries:	gowns from 5 suppliers	carbon footprint		this potentially limits the
	not mentioned in scope.	Years of data collection:	Cradle to grave	were studied, composed	(accounting for 97% of the		representativeness of the
		-	Included stages:	primarily of nonwoven	energy consumption and		results for other parts of
			Resource extraction, gown	polypropylene fabric. Eight	global		the world. A sensitivity
		Surgical discipline(s):	manufacture, gown use	reusable isolation gowns	warming potential and		analysis is conducted,
		Nonspecific	and/or reuse in healthcare	were studied, composed	100% of the blue water		however results are not
			settings, to end-of-life	of primarily woven	consumption).		shown.
		Funding and conflict of	disposal.	polyester fabric. The			
		interest:	Stated excluded	outcome measures were	The laundry steps had a		
		The American Reusable	<u>components:</u>	climate change and waste.	large influence on		
		Textile Association (ARTA)	The study did not include		the environmental		
		and International	other	Characterization methods:	indicators for reusable		
		Association for Healthcare	medical textiles used in	-	isolation gowns,		
		Textile Management	healthcare settings such as		accounting for 68% of		
		(IAHTM)	gloves, wipes,		energy consumption, 67%		
		committees with reusable	or masks.		of greenhouse gas		
		and disposable firms were	Inventory database:		emissions,		
		essential in	Environmental Clarity		and 20% of blue water		
		providing funding and field			consumption.		
		information for this study.	Allocation: No		Nevertheless, the		
			Normalization &		reduction in		
			Weighting: No		environmental impact		
			Impacts reported:		achieved by producing		
			Yes		fewer gowns (when using		
			Contribution analysis:		reusables) outweighed the		
			Yes		added load imposed by the		
			Scenario analysis: Yes		laundering process of		
			Comparative analysis: Yes		reusables.		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
1			Sensitivity analysis: Yes, it		2. <u>Waste</u>		
			is stated that it has been		The amount of solid waste		
			done, however results are		of reusable isolation		
			not clear.		gowns resulted in 0.413-		
I			Uncertainty analysis: No		4.42 kg for 1000 uses		
1			Variance analysis: No		(range based on 0-100%		
I					reuse in other industries		
I					after disposal). The		
1					disposable resulted in 63.4		
					kg per 1000 uses.		
					Switching to reusable		
					resulted in at least a 93%		
					decrease of solid waste.		
Vozzola	AORN Journal	Type of study:	Goal and scope ¹ :	LCA of reusable versus	1. <u>Climate Change</u>	The reusable surgical	Authors conclusion
(2020)		LCA	Assessment of	disposable gowns to	The total GWP for 1,000 uses of	gown has lesser impact on	The current study adds to
()	Journal information	-	environmental impacts of	assess the environmental	the reusable surgical gown is	the environment in terms	the body of evidence that
	The AORN Journal will be	Objective:	disposable versus reusable	impact of these surgical	557 kg CO ₂ eq, and for the	of Climate Change and	shows the environmental
	an indispensable resource	To assess the	surgical gowns.	gowns in the USA. An LCA	disposable 1636 kg CO ₂ eq. By	waste.	superiority of reusable
	recognized for scholarly,	environmental impacts of	Functional unit(s) ² :	was conducted according	selecting the reusable surgical		surgical gowns.
	evidence-based, peer-	two types of surgical	1,000 uses of an extra	to the standards from the	gown, this will result in a 66%	The biggest contributor for	0
	reviewed articles that	gown: disposable and	large, single-piece, long-	International Organization	reduction of GWP.	the disposable gown is the	Limitations study
	convey standards of	reusable	sleeved surgical gown in	for Standardization. The		manufacturing process, as	Comfort was not taken
	excellence and innovations		an operating room setting	Environmental Clarity, Inc,	The gown manufacturing and	well for the GWP as in	into the analysis, although
	in the delivery of	LCA-method:	System boundaries:	LCA database was used to	supply chain resulted for 1,000	waste production.	this is a factor for
	perioperative nursing.	Attributional LCA	Cradle to grave	evaluate the life cycles of	uses of the reusable gown in		scrubbed surgical team
			Included stages:	both surgical gown	134 kg CO₂eq and for the	For the reusable surgical	members.
	Journal content supports	Setting and country:	Raw material extraction,	systems. The outcome	disposable gown 1495 kg CO₂eq.	gown the laundry phase	
	the clinical,	USA	production, packaging,	Climate Change was		has the greatest impact.	Economic measurements
	research/quality		transport, use, reuse,	expressed as GWP, in kg of	The packaging manufacturing		are not included.
	improvement, education,	Facility:	disposal	CO2 equivalents.	and supply chain resulted for		
	and management	-	Stated excluded		1,000 uses of the reusable gown		The blue water
	strategies related to the	Years of data collection:	<u>components</u> : -	Characterization methods:	in 76.7 kg CO2eq and for the		comparisons' accuracy is
	nurse's role in caring for	-	Inventory database:	-	disposable gown in 121 kg		limited due to lack of data
	patients before, during, or		Environmental Clarity Inc.		CO2eq.		on water content of soiled
	after operative and other	Surgical discipline(s):					gowns.
	invasive and interventional	Nonspecific	Allocation: No		Laundry resulted in 278 kg		
	procedures in ambulatory		Normalization &		CO ₂ eq for the reusable gown,		Not all disposable gowns
	and inpatient settings.	Funding and conflict of	Weighting: No		and there was 0 kg CO ₂ eq used		are produced in Chine or
		interest:	Impacts reported: Yes		for the disposable gowns.		sterilized with ethylene
	Critical review:	All authors declare	Contribution analysis: Yes				oxide (what is used in this
	Peer-reviewed, however	affiliations that could be	Scenario analysis: No		The sterilization of the gowns		study).
	no specific LCA journal or	perceived as posing a	Comparative analysis: No		resulted in 19.8 kg CO ₂ eq for the		

Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
LCA taken into the scope	potential conflict of	Sensitivity analysis: Yes,		reusable and 6.26 kg CO ₂ eq for		Packaging of disposable
of the journal.	interest (all authors are	modelled 0% and 100%		the disposable gown.		and reusables vary.
	consultants for the	reuse of end-of-life				
	American Reusable Textile					
		gowns were instead		o .		
	for Healthcare Textiles,	-				
				CO ₂ eq for the disposable gown.		
	Environmental Clarity, Inc.)					
		<u>Variance analysis</u> : No		_		
	. ,					
				disposables.		
	-					
	Mission, KS.					
				gown.		
				Gown manufacturing resulted in		
				0		
				reusable and 224 kg solid waste		
				for the disposable gown (1,000		
				uses/gowns).		
				Packaging manufacturing and		
				End of life resulted in 0-0.00842		
				kg solid waste for the reusable		
				and 0.505 for disposable gowns		
				(1,000 uses/gowns).		
				3 Acidification		
				No results in this study.		
				4. <u>Eutrophication</u>		
				No results in this study.		
		of the journal. interest (all authors are consultants for the American Reusable Textile Association and the International Association	of the journal.interest (all authors are consultants for the American Reusable Textile Association and the International Association for Healthcare Textiles, and are involved in Environmental Clarity, Inc.)modelled 0% and 100% reuse of end-of-life reusable gowns in other industries; if disposable gowns were instead manufactured in the US, 10% more energy efficient laundry processes. Uncertainty analysis: No 	of the journal.interest (all authors are consultants for the American Reusable Textile Association and the International Association for Healthcare Textiles, and are involved in Environmental Clarity, Inc.)modelled 0% and 100% reuse of end-of-life reusable gowns in other industries; if disposable gowns were instead manufactured in the US, 10% more energy efficient laundry processes. Uncertainty analysis: No Variance analysis: NoThis study was funded by The American Reusable Textile Association (ARTA) Life Cycle Assessment Committee, Shawneemodelled 0% and 100% reuse of end-of-life reusable gowns in other industries; if disposable gowns were instead manufactured in the US, 10% more energy efficient laundry processes. Uncertainty analysis: No	of the journal.interest (all authors are consultants for the Association and the International Association for Healthcare Textiles, and are involved in Environmental Clarity, Inc.)modelled 0% and 100% reusable gowns in other industries; if disposable gowns were instead manufactured in the US, 10.0% more energy efficient laundry processes. Uncertainty analysis; No Variance analysis; No No Solid waste per 1,000 uses/1,000 gowns resulted in 3.5.4.3.4.1 kg for the reusable and 25.4.3.4.8 (for the reusable and 25.4.4 kg for the reusable and 25.4.4 kg for the disposable gown. Gown manufacturing resulted in 0.5.4.3.4 kg for the reusable and 25.4.4 kg for the reusable and 25.4.4 kg for the reusable and 25.4 kg for the reusable and 25.4.4 kg for the reusable and 25.4 kg for the reusable and 25.4.4 kg for t	of the journal. interest (all authors are cond of life resultants for the American Russable Textile Association for Healthcar Excits; if disposable gowns in other industries; if disposable gowns resulted in 38.7 kg C.Q.eq for the framework resulted and are involved in Environmental Clarity, Inc.) The use phase transport of 1,000 reusable gowns resulted in 38.7 kg C.Q.eq for the disposable gown. This study was funded by The American Resulter and Visits and Visits. The use phase transport of 1,000 reusable gowns are instead. This study was funded by The American Resulter and Visits. The use phase transport of the GWP reusable gown. This study was funded by The American Resulter and Visits. The use phase transport of the GWP reusable gown. Cocyeq for the disposable gown. The use phase transport of the GWP reusable gown. Cocyeq for the disposable gown. The use phase transport of the GWP reusable gown. This study was funded by The American Resent Committee, Shawnee Mission, KS. The use phase transport of the GWP reusable gown. Cocyeq for the reusable Tottle (Cycle Assessment Committee, Shawnee Mission, KS. The use phase transport of the GWP reusable gown. Cocyeq for the reusable gown. Cocyeq for the reusable gown. Committee, Shawnee Mission, KS. Cocyeq for the reusable gown. Committee, Shawnee Mission, KS. Cocyeq for the reusable gown. Cocyeq for the classical gown. Cocyeq for the reusable gown. <t< td=""></t<>

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					5. <u>Human Toxicity</u> No results in this study.		
					6. <u>Ecotoxicity</u> No results in this study.		
					7. <u>Ozone Depletion</u> No results in this study.		
Davis (2018)	Journal of Endourology Journal information Peer-reviewed journal and innovative videojournal companion exclusively focused on minimally invasive and robotic urology, applications, and clinical outcomes. <u>Critical review:</u> Peer reviewed article. Not in specific LCA journal.	Type of study: LCA Objective: To assess the climate impacts of two types of flexible ureteroscopes: single-use (LithoVue™, Boston Scientific) and reusable (Olympus Flexible Video; typically 16 uses before repair and 180 uses before decommissioning) LCA-method: Attributional LCA Setting and country: Hospital Australia Facility: Austin Hospital, Melbourne, Victoria,	Goal and scope ¹ : To compare the environmental impacts of single-use and reusable ureteroscopes. <u>Functional unit(s)²:</u> Use of one ureteroscope during one endourologic case <u>System boundaries:</u> Cradle to grave <u>Included stages:</u> Raw material extraction, production, reuse, disposal <u>Stated excluded</u> <u>components</u> : - <u>Inventory database</u> : - <u>Allocation</u> : No <u>Normalization &</u> <u>Weighting</u> : No <u>Impacts reported</u> : Yes	The environmental impact of single-use flexible ureteroscopes with reusable flexible ureteroscopes were compared. An LCA of the LithoVue (Boston Scientific) single-use digital flexible ureteroscope and Olympus Flexible Video Ureteroscope (URV-F) was performed. Data on raw material extraction, manufacturing, reuse and disposal of the instruments was obtained. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and used to calculate the CO2 footprint. The outcome	 <u>Climate Change</u> The CO₂ footprint per case was calculated. For the single-use ureteroscope the total CO₂ footprint per case is 4.43 kg CO₂ equivalents. This consisted of manufacturing costs, solid waste and sterilization. The manufacturing costs resulted in 3.83 kg CO₂, solid waste in 0.3 kg CO₂ and sterilization 0.3 kg CO₂. The total CO₂ footprint of the reusable ureteroscope was 4.47 kg CO₂ per case. This consisted of manufacturing costs (0.06 kg CO₂), washing/sterilization (3.95 kg CO₂), repair costs (0.45 kg CO₂) and solid waste (0.005 kg CO₂). <u>Waste</u> 	The study suggests the data on environmental costs are comparable between the disposable and reusable ureteroscope. However, the comparison is per case and not for the whole life cycle of a reusable ureteroscope, so this might interfere with the results. It is expected that with the high manufacturing impact of the disposable variant, this impact after multiple uses will exceed the environmental impact of the reusable variant.	Authors conclusion The carbon footprint of the single use and reusable ureteroscopes is comparable. Informed clinicians should be willing to advocate for changes within the healthcare delivery and within the manufacturing industry to maintain healthcare quality, cost-effectiveness and safety in the future. Limitations study The data are compared per case. However, reusable ureteroscopes can be used multiple times. This is not included in the analysis and could potentially lead to a lower environmental impact for
		Australia <u>Years of data collection:</u> - Surgical discipline(s):	Contribution analysis: Yes Scenario analysis: No Comparative analysis: Yes Sensitivity analysis: No Uncertainty analysis: No Variance analysis: No	measures were Climate Change (CO2 footprint) and waste. <u>Characterization methods:</u>	Solid waste for the disposable ureteroscope resulted in 0.3 kg CO ₂ per case. Solid waste for the reusable ureteroscope resulted in 0.005		reusable ureteroscopes.
		Funding and conflict of interest:			 kg CO₂ per case. 3. <u>Acidification</u> No results in this study. 		
		-			4. <u>Eutrophication</u> No results in this study.		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					5. <u>Human Toxicity</u>		
					No results in this study.		
					C Factoriaity		
					6. <u>Ecotoxicity</u>		
					No results in this study.		
					7 Orana Deviation		
					 Ozone Depletion No results in this study. 		
Danahua		Turne of study a	Cool and soon al			The study shows the	
Donahue	American Journal of	Type of study:	Goal and scope ¹ :	Life cycle assessment	1. <u>Climate Change</u>	,	Authors conclusion
(2020)	Obstetrics & Gynecology	LCA	To compare the	methods were applied to evaluate the carbon	Donahue (2020) demonstrated the reusable grade 304	disposable acrylic	By using acrylic specula for
	la una l'infa una atta a	Ohiastiwa	environmental impacts of		5	speculum has the biggest	over a period of 1 year (5875 disposable acrylic
	Journal information	Objective:	three types of vaginal	footprints of 3 vaginal	speculum produces fewer life	negative environmental	· · · · ·
	The American Journal of	To assess the climate	specula (one single-use	specula: a single-use	cycle CO ₂ e emissions than the	impact. This is mainly due	specula), 5153 kg CO2e
	Obstetrics and	impacts of three types of	and two reusable models) Functional unit(s) ² :	acrylic model and two	equivalent number of disposable	to material production and	and 5462 kg solid waste
	Gynecology, "The Gray Journal", covers the full	vaginal specula that are	Completion of 20	reusable stainless steel	acrylic specula after 2 completed	manufacturing. This phase	were produced. By
	spectrum of Obstetrics	commonly used in practice	-	models (reusable stainless	examinations $(2.11 \text{ kg CO}_2\text{e})$	offers opportunities to	changing to steel grade
		(a single-use acrylic model	gynaecologic examinations	steel grade 304 speculum	compared to 2.63 kg CO_2e). The	decrease this impact.	304 of grade 316 specula
	and Gynecology.	and two reusable stainless steel models)	using a speculum System boundaries:	and the reusable stainless steel grade 316 speculum).	reusable grade 316 produces fewer life cycle CO ₂ e emissions	For the reusable stainless	(100 uses average), greenhouse gas emissions
	The aim of the Journal is	steel models)	Cradle to grave	The data were obtained	after 3 completed examinations	steel specula the main	could have been reduced
	to publish original	LCA-method:	Included stages:		$(3.11 \text{ kg CO}_2\text{ e compared to } 3.51$	contributor is the energy	by 75& and 74%
	research (clinical and	Attributional LCA	Raw material extraction,	regarding speculum and packaging composition	kg CO_2e). The reusable stainless	used to power autoclaves.	respectively with a
	translational), reviews,	Attributional ECA	production,	and weight. There were no	steel grade 304 speculum is less	Here is an opportunity to	significant decline in end-
	opinions, video clips,	Setting and country:		data available on	carbon intensive to produce	reduce this by increasing	of-life waste generation
	podcasts and interviews	USA	transportation, reuse, and disposal	production processes for	compared to the grade 316	the efficiency of energy-	(both 64.43 kg). Health
	that will have an impact	USA	Stated excluded	the specula. For this	speculum, which is the reason	use and by making a	systems might consider
	on the understanding of	Facility:	components:	reason, assumptions were	why the grade 304 remains less	transition to more	environmental impact in
	health and disease and	Michigan Medicine,	Excluded components	made. For the acrylic	in its total life cycle CO_2e	renewable energy sources.	addition to costs and
	that has the potential to	University of Michigan,	were inks, bulk packaging,	specula injection molding	emissions over a wide range of	renewable energy sources.	clinical efficacy when
	change the practice of	Ann Arbor, MI, USA	autoclave production,	was assumed and for the	uses.	In the sensitivity analysis it	choosing medical
	women's health care. An		illumination pack for	reusable specula a	4505.	became clear that the	instruments.
	important focus is the	Years of data collection:	plastic specula, and	combination of hot	After 500 examinations the	impact increased	
	diagnosis, treatment,	-	lubrication (expected to	extrusion, milling/turning,	difference becomes more	significantly when shifting	Limitations study
	prediction and prevention		have minimal impacts on	deformation and heat	apparent (grade $316 - 107.52$,	to individually sterilizing	Multiple assumptions
	of obstetrical and	Surgical discipline(s):	results).	treatment was assumed,	grade 304 – 101.31 and acrylic –	the specula, instead of	were made in the analysis,
	gynecological disorders.	Obstetrics & Gynecology	Inventory database:	based on literature. The	438.55 kg CO ₂ e).	sterilizing multiple at the	mainly regarding
	The Journal also publishes		Ecolnvent, IDEMAT, GREET,	transportation was based	0,	same time (increase of	production and
	work on the biology of	Funding and conflict of	EPA WARM	on manufacturer and	The contribution of the stages	189-219%). However,	reprocessing, due to lack
	reproduction, and content	interest:		general industry data.	differs between the specula. The	doubling the autoclave	of data from
	which provides insight into	The authors report no	Allocation: No	Reuse for the steel	largest contributor for the	load (4 Pouches (base	manufacturers and other
	the physiology and	conflict of interest.	Normalization &	reusable specula was	disposable acrylic speculum is	case) to 8 Pouches (full	sources. The authors
	mechanisms of obstetrical		Weighting: No	estimated based on	material production and	load)) did not have a great	choose to use the less
			Impacts reported: Yes	autoclave manufacturer	manufacturing (90.6%), followed	difference in the overall	carbon intensive approach

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
Study	Journal and gynecological diseases. <u>Critical review:</u> Peer reviewed, not a specific LCA journal.	Study characteristics	Methods Contribution analysis: Yes Scenario analysis: No Comparative analysis: Yes, Sensitivity analysis: Yes, Sensitivity analysis: reports impacts based on different numbers of uses (1-500), autoclave loading practices, regional electricity grids, reprocessing method (autoclave vs H ₂ O ₂) Uncertainty analysis: No Variance analysis: No	Data collection specifications. Disposal was modeled with the use of the EPA WARM model, which estimates the average greenhouse gas (GHG) emissions that are associated with disposal of various materials in the United States (US). Characterization methods: IPCC	Outcomes by transportation (6.5%) and waste/end-of-life (2.9%). For the reusable stainless steel grade 304 speculum the largest source of CO ₂ emissions is use/reprocessing (74.1%), followed by material production and manufacturing (24.9%) and transportation (0.46%). The biggest contributor in total life cycle emissions for the grade 316 speculum was use/reprocessing (65.2%), followed by production (34.4%) and transportation (0.4%). 2. Waste No results in this study. 3. Acidification No results in this study. 4. Eutrophication No results in this study. 5. Human Toxicity No results in this study. 6. Ecotoxicity No results in this study. 7. Ozone Depletion	Interpretation impact (20-39% decrease in greenhouse gas emissions). Changing from the most carbon intensive electricity grid to the least carbon intensive resulted in a 33-36% reduction of CO2e emissions. Regardless of the grid used, the stainless steel life cycle greenhouse gas emission remained lower than the acrylic specula. Using high level disinfectant instead of autoclave sterilization, resulted in a 11-12% increase in greenhouse gas emissions.	Comments for the acrylic specula and the more carbon intensive approach for the steel specula, to ensure any difference shown would be robust. Next to that, the study was further limited by the lack of life cycle data on high level disinfectants such as glutaraldehyde, ortho- phthalaldehyde and peracetic acid.
Eckelman (2012)	Anesthesia & Analgesia Journal information The "The Global Standard in Anesthesiology," provides practice- oriented, clinical research you need to keep current and provide optimal care to your patients. Brings peer reviewed articles on	Type of study: LCA Objective: To assess the environmental impacts of two types of laryngeal mask airways (LMAs): single-use (Unique™) and reusable (Classic™; 40 lifetime uses)	Goal and scope ¹ : Compare the environmental impact of a disposable and a reusable LMA, from cradle to grave. <u>Functional unit(s)²:</u> Maintenance of 40 airways <u>System boundaries:</u> Cradle to grave Included stages:	The environmental impacts of two types of laryngeal mask airways (LMAs): single-use (Unique™) and reusable (Classic™; 40 lifetime uses) were assessed by using a life cycle assessment method. Raw material extraction, production, packaging, transport,	No results in this study. 1. <u>Climate Change</u> Eckelman (2012) demonstrated the results on climate change specifically to be 7.4 kg CO ₂ e of GHG over its life cycle for the reusable LMA and 11.3 kg CO ₂ e for the disposable LMA. For all outcomes in this study, results are expressed in percentages, whereas the LMA with the highest impact is defined as	This study demonstrates the disposable LMA has a bigger environmental impact compared to the reusable LMA. In the outcome measure climate change, this is mainly due to the production of the material for the disposable LMAs that is used. A change of material	Authors conclusion The results suggest the reusable LMA has a lower life cycle environmental impact compared to the disposable LMA at Yale New Haven Hospital, across all categories of concern. Limitations study

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	the latest advances in		Raw material extraction,	reuse and disposal were	100% and the other LMA is	production, or a change in	This study did not analyse
	drugs, preoperative	LCA-method:	production, packaging,	included in the analysis.	relatively compared to the LMA	type of material which has	the environmental health
	preparation, patient	Attributional LCA	transport, reuse, disposal	The material composition	with the highest impact. For the	a lesser impact on the	impacts during the use of
	monitoring, pain		Stated excluded	and weights were	outcome climate change, the	environment could be a	an LMA, where
	management,	Setting and country:	components:	established on the basis of	disposable LMA had the highest	way to help reduce the	intraoperative exposure to
	pathophysiology, and	USA	Excluded components	manufacturer information	impact (100%) compared to the	impact for the disposable	some parts of the plastics
	many other timely topics.		were bulk packaging,	and density testing.	reusable LMA (65%). The largest	LMA. Next to that the	could contribute
		Facility:	machinery, and small	Materials were matched	source for the disposable LMA is	biggest contributor for the	increasing the outcome
	Critical review:	Yale-New Haven Hospital,	components such as inks	with the most appropriate	the polymerization of PVC	reusable LMA is the	human toxicity.
	Peer reviewed, not a	New Haven, CT, USA	and labels on the	Life Cycle Inventory (LCI)	(23%), which is the main	production of steam for	
	specific LCA journal.		packaging and on the	records from EcoInvent	material used. The majority of	the autoclave. If this could	
		Years of data collection:	sterilization indicator	(database). Production	the remaining contributors are	be done in some other	
		-	strips (expected to have	processes for hard and	polycarbonate production	way, the environmental	
			negligible impacts)	soft plastics were assumed	(14%), transportation via truck	impact of the reusable	
		Surgical discipline(s):	Inventory database:	to be injection molding	(15%), thermoforming (13%)	LMA could decrease.	
		Anesthesiology	Ecoinvent	and thermoforming,	and waste disposable (11%). The		
				respectively. Data was	majority of the GHG emissions	Alternate assumptions are	
		Funding and conflict of	Allocation: No	obtained from distributors	for the reusable LMA (77%) is	also made in this study. It	
		interest:	Normalization &	to estimate distances and	from natural gas production and	shows the effect of	
		The authors declare no	Weighting: No	mode of transport.	combustion, which is to produce	alternate modes of	
		conflict of interest.	Impacts reported: Yes	Reprocessing of reusable	steam for the autoclave.	transport, compared to	
		Funding came from the	Contribution analysis: No	LMAs was estimated using		the base case (rail), was	
		department of	(hotspots reported in text)	data from Yale New Haven	2. <u>Waste</u>	quite small for the	
		anesthesiology, Yale	Scenario analysis: No	Hospital and autoclave	No results in this study.	reusable LMA but more	
		School of Medicine.	Comparative analysis: Yes	specifications. Disposal		interesting for the	
			Sensitivity analysis: Yes,	was modelled using US	3. Acidification	disposable LMA, leading to	
			tests alternative	average statistics for solid	For the outcome acidification,	a decrease in GHG	
			assumptions including	waste.	the disposable LMA had the	emissions (-9%) changing	
			transport mode, autoclave		highest impact (100%)	to transport by road, and	
			loading, number of reuse	Characterization methods:	compared to the reusable LMA	an increase (+81%) by	
			cycles (10-100), waste	BEES	(20-30%).	using air transportation.	
			pathways, and labour.			. .	
			Uncertainty analysis: No		4. Eutrophication	Individually autoclaving	
			Variance analysis: No		For the outcome eutrophication,	the reusable LMA resulted	
					the disposable LMA had the	in an increase of life cycle	
					highest impact (100%)	GHG emissions by >400%,	
					compared to the reusable LMA	whereas loading with 10	
					(90-100%).	LMAs per cycle (compared	
						to the base case 5 per	
					5. <u>Human Toxicity</u>	cycle) resulted in a	
					The human toxicity, stated as	decrease of 25%. Using a	
					human health (HH) in this study,	more capital intensive	
					was defined in three different	option to increase the	
					groups: HH cancer, HH	energy efficiency of the	
					noncancer and HH air	machines by 10% results	

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
Study					pollutants. For the outcome HH cancer, the disposable LMA had the highest impact (100%) compared to the reusable LMA (0-10%). For the outcome HH noncancer, the disposable LMA had the highest impact (100%) compared to the reusable LMA (0-10%) and the outcome HH air pollutants, resulted in the highest impact for yet the disposable LMA (100%) compared to 20-30% for the reusable LMA. 6. Ecotoxicity For the outcome ecotoxicity, the disposable LMA (10-20%). 7. Ozone Depletion For the outcome ozone depletion, the disposable LMA (100%)	in a decrease of GHG emissions of 8%. The human toxicity impacts are dominated by the production and use of plastics for the disposable LMA. Increasing the amount of PVC by 10% leads to a 5% increase in cancer and noncancer effects. Premature disposal of the reusable LMA has its direct effects on GHG emissions, by a >50% increase if the LMA is disposed at 10 reuse cycles. Extending the reuse cycle of reusable LMAs to 80 cycles (doubling lifetime) results in a decrease of GHG emissions by 9%. In waste management, by switching from 100% incineration to 100% landfill, reduces the impacts across all categories by 5-10%. Including the labor for cleaning impacts (base case not included) resulted only in a nominally increase for total GHG emissions and water impacts of reusable	
lbbotson (2013)	International Journal of Life Cycle Assessment	Type of study: LCA	Goal and scope ¹ : Assess the environmental and financial impacts of	The environmental and financial impacts of three surgical scissors which are	1. <u>Climate Change</u> Ibbotson (2013) reported the results on climate change	LMAs. The study shows that the reusable stainless steel scissor is the choice with	Authors conclusion The eco-efficiency results indicated that the stainless

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	Journal information	Objective:	three surgical scissors, to	(1) disposable scissors	graphically in Figure 4 of the	the lowest environmental	steel reusable scissor is
	The International Journal	To assess the	compare their eco-	made of plastic (fibre	article (Ibbotson, 2013). The	impact in all the impact	the option with the lowest
	of Life Cycle Assessment is	environmental and	efficiency.	reinforced), (2) disposable	figure shows the results on a log	categories investigated.	environmental impact and
	the first journal devoted	financial impacts of three	Functional unit(s) ² :	scissors made of stainless	scale and the outcomes are	This is followed by the	is next to that, cheapest.
	entirely to Life Cycle	types of surgical scissors:	4,500 use cycles of surgical	steel and (3) reusable	extracted from this figure. It	disposable plastic scissor	
	Assessment and closely	disposable plastic	scissors during 18 years	scissors made of stainless	demonstrates that after 4,500	and eventually the	Limitations study
	related methods. The Int J	reinforced scissors,	System boundaries:	steel were assessed using	use cycles the disposable	disposable stainless steel	Data sources were not
	Life Cycle Assess is a forum	disposable stainless steel	Cradle to grave	a life cycle assessment and	stainless steel scissor has the	scissor, which has the	comparable between the
	for scientists developing	scissors, and reusable	Included stages:	life cycle costing method.	highest impact in this category	highest impact.	scissors, since the plastic
	LCA and LCM (Life Cycle	stainless steel scissors	Raw material extraction,	The data was compared	(+/- 10,000 kg CO ₂ -equivalents),		disposable and stainless
	Management); LCA and		production, packaging,	for the use of 4,500 cycles	followed by the disposable	The hotspots for the	steel reusable data was
	LCM practitioners;	LCA-method:	transport, reuse, disposal	if usage in Germany. The	plastic scissor (+/- 5500 kg CO ₂ -	disposable scissors were	obtained from company
	managers concerned with	Attributional LCA	Stated excluded	data on raw material,	equivalents) and eventually the	found in the material and	data and the stainless
	environmental aspects of		<u>components</u> : -	manufacturing (including	reusable stainless steel scissor	manufacturing process	steel disposable scissor
	products; governmental	Setting and country:	Inventory database:	electricity consumption),	(+/- 550 kg CO ₂ -equivalents).	and for the reusable	data was obtained from
	environmental agencies	Hospital in Germany	Ecolnvent, Australian Data	transport, and disposal		scissor this was found in	literature. Data on
	responsible for product		2007	process were obtained	2. <u>Waste</u>	the usage phase, which	electricity was not
	quality; scientific and	Facility:		from a medical company	No results in this study.	could be appointed to the	available (located in Asian
	industrial societies	-	Allocation: No	in Europe. Missing data		washing, disinfection and	countries), so another
	involved in LCA		Normalization &	(e.g. sterilization processes	3. <u>Acidification</u>	sterilization cycles and the	energy mix was used. This
	development, and	Years of data collection:	Weighting: No	for reusable scissors) were	Ibbotson (2013) reported the	repair and service cycles.	also accounted for other
	ecological institutions and	-	Impacts reported: Yes,	obtained from the	results on acidification in Figure		data like recycling data.
	bodies.		graphically with log scale.	literature or expert	4 of the article (Ibbotson, 2013).		This results in a situation
		Surgical discipline(s):	Contribution analysis: Only	opinion. Electricity data	The figure shows the results on		that could not be totally
	Critical review:	Nonspecific	for ReCiPe endpoint and	that was missing was	a log scale and the outcomes are		applicable for the German
	Peer reviewed, specific		CED results.	adjusted from the	extracted from this figure. It		situations studied.
	LCA journal.	Funding and conflict of	Scenario analysis: No	International Energy	demonstrates that after 4,500		
		interest:	Comparative analysis: Yes	Agency (IEA). Incineration	use cycles the disposable		
		-	Sensitivity analysis:	of plastics, cardboard and	stainless steel scissor has the		
			Yes, tests alternative	municipal solid waste	highest impact in this category		
			electricity mixes,	were assumed based on	(+/- 90 kg SO ₂ -equivalents),		
			sterilization processes	Swiss plants in 2000 (from	followed by the disposable		
			(gamma and gas), disposal	Ecolnvent).	plastic scissor (+/- 20 kg CO ₂ -		
			method (incineration and		equivalents) and eventually the		
			recycling).	Characterization methods:	reusable stainless steel scissor		
			<u>Uncertainty analysis</u> : No Variance analysis: No	CED Method, ReCiPe	(+/- 0.8 kg SO ₂ -equivalents).		
					4. <u>Eutrophication</u>		
					Ibbotson (2013) reported the		
					results on eutrophication in		
					Figure 4 of the article (Ibbotson,		
					2013). The figure shows the		
					results on a log scale and the		
					outcomes are extracted from		
					this figure. Freshwater and		

marine eutrophication are described separately. Regarding freshwater eutrophication, the results demonstrate that after 4,500 use cycles the disposable statiless sets elssisor has the highest impact in this category (+/, 1 ge-requivalents), followed by the disposable plastic action? (+/, 0.55 kg P- equivalents) and eventually the eutrophication, the results demonstrate that after 4,500 use cycles the disposable statiless sets elssisor (+/, 0.3 kg P-equivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable statiless sets elssisor has the highest impact in this category (+/, 10 kg N-equivalents). followed by the disposable statiless sets elssisor has the highest impact in this category (+/, 10 kg N-equivalents). followed by the disposable statiless sets elssisor (+/, 0.2 kg N-equivalents). followed by the disposable plastic action? (+/ 6 kg N equivalents) and eventually the results on human toxicity in Figure 4 of the activel (blottoon, 2013). The figure shows the results on human toxicity in Figure 4 of the activel (blottoon, 2013). The figure shows the results on human toxicity in figure 4 of the activel (blottoon, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable statiles scissor (+/, 750 kg 1.4-0.0 equivalents), and eventually the results cations? has the highest impact in this categor (+/, 750 kg 1.4-0.0 equivalents), and eventually the results cations?	Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
Image: Section 1 Image: Section 1 Image: Section 1						marine eutrophication are		
results demonstrate that after 4.500 uce cycles the disposable stainless steel acisor has the highest impact in this category (r/-1kg P-equivalents), followed by the disposable plastic acisor (r/-0.55 kg P-equivalents), and eventually the resurble stainless steel acisor (r/-0.5 kg P-equivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4.500 use cycles the disposable plastic acisor (r/-0.5 kg N-equivalents), followed by the disposable use cycles the disposable use cycles the disposable plastic acisor (r/-0.5 kg N-equivalents), followed by the disposable plastic acisor (r/-0.5 kg N-equivalents), followed by the disposable plastic acisor (r/-0.5 kg N-equivalents), followed by the disposable plastic acisor (r/-0.5 kg N-equivalents), followed by the disposable plastic acisor (r/-0.5 kg N-equivalents), followed by the disposable plastic acisor (r/-0.5 kg N-equivalents), followed by the disposable plastic acine (r/-0.5 kg N-equivalents), fo		1				described separately. Regarding		
 4.500 use cycles the disposable stainless stell scisor has the highest impact in this category (// 1, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20		1						
stainless steel scisor has the highest impact in this category (4/-1 kg P-quivalents), followed by the disposable plastic scisor (4/- 0.55 kg P- equivalents) and eventually the rousable stainless steel scisor (4/-0.35 kg P-quivalents). Next to that, with regard to marine eutrophication, the results demonstret that after 4.500 use cycles the disposable stainless steel scisor has the highest impact in this category (4/-10 kg N-quivalents), followed by the disposable plastic scisor (4/- 6 kg N- equivalents) and eventually the results steel scisor (4/- 6 kg N- equivalents) and eventually the results on human toxicity in this category (4/- 0 kg N- equivalents). 5. <u>Human Toxicity</u> libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scisor (4/-720 kg 1.4-DB equivalents) followed by the disposable stainless steel scisor has the highest impact in this categor(4/-7720 kg 1.4-DB equivalents) followed by the disposable plastic scisor (4/- 720 kg 1.4-DB equivalents) and eventually the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scisor has the highest impact in this categor(4/-7720 kg 1.4-DB equivalents) (1/-7720 kg 1.4-DB equivalents		1				results demonstrate that after		
 highest impart in this category (+', 1/g P-equivalents), followed by the disposable plastis existor (+', 0.5 kg P-, equivalents) and eventually the reusable stailness steel scissor (+', 0.3 kg P-equivalents), Next to that, with regard to marine eutrophration, there exists demonstrate that after 4,500 use cycles the disposable stailness steel scissor has the highest impact in this category (+', 0.2 kg P-equivalents), Next to that, with regard to marine eutrophration, there exists demonstrate that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+', 10 kg N-equivalents), followed by the disposable plastis coissor (+', 6 kg N- equivalents), and eventually the reusable stainless steel scissor (+', -0.2 kg N-equivalents), 5. <u>Human Toxicity</u> libbotson (2013) reported the results on a log scale and the outcomes are extracted from this figure shows the category (+', 750 kg 1.4-0B equivalents), followed by the disposable stainless steel scisor has the highest inpact in this category (+', 750 kg 1.4-0B equivalents), followed by the disposable stainless theel scisor (+', 750 kg 1.4-0B equivalents), followed by the disposable stainless theel scisor (+', 750 kg 1.4-0B equivalents), followed by the disposable stainless theel scisor (+', 750 kg 1.4-0B equivalents), followed by the disposable stainless theel scisor (+', 750 kg 1.4-0B equivalents), followed by the disposable stainless the scisor (+', 750 kg 1.4-0B equivalents), followed by the disposable stainless the scisor (+', 750 kg 1.4-0B 		1				4,500 use cycles the disposable		
(+/-1 kg P-equivalents), followed by the disposable plastic estors (+/- 0.55 kg P- equivalents) and eventually the recusable stainless steel scissor (+/- 0.3 kg P-equivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scissor (+/- 6 kg N- equivalents), and (+/- 6 kg N- equivalents) and eventually the recusable stainless steel scissor (+/- 0.2 kg N-equivalents). 5. <u>Human Toxicity</u> libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on allog scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor (+/- 0.2 kg N-equivalents).		1				stainless steel scissor has the		
Image: Second		1				highest impact in this category		
 plastic scisor (+/- 0.55 g-P- equivalents) and eventually the reusable stainless steel scisor (+/- 0.3 g-Pequivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scisor has the highest impact in this category (+/- 10 g-N-equivalents), followed by the disposable plastic scisor (+/- 6 g, N- equivalents) and eventually the reusable stainless steel scisor (+/- 0.2 kg N-equivalents). 5. <u>Human Toxicity</u> lbbotson (2013) reported the results on human toxicity in Figure 4 of the article (lbbotson, 2013). The figure shows the astrong the science of the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless scient scisor has the highest scisor (+/- 750 kg 1.4-08 equivalents) and equivalents) and equivalents) and equivalents) and 		1				(+/- 1 kg P-equivalents),		
equivalents] and eventually the reusable stainless steel scisor (+/-0.3 kg P-equivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scisor has the highest impact in this category (-/-1.0 kg N-equivalents). followed by the disposable plastic scisor (+/- 10 kg N-equivalents). followed by the disposable plastic scisor (+/- 20 kg N-equivalents). followed by the disposable plastic scisor (+/- 20 kg N-equivalents). followed by the disposable plastic scisor (+/- 20 kg N-equivalents). followed by the disposable plastic scisor (+/- 20 kg N-equivalents). followed by the disposable plastic scisor (+/- 750 kg 1.4-D8 equivalents). science and the outcomes are extracted from this figure. It demonstrates that after 4.500 use cycles the disposable stainless steel scisor (+/- followed by the reusable stainless equivalents), followed by the outcomes are extracted from this		1				followed by the disposable		
equivalents] and eventually the reusable stainless steal scisor (+/-0.3 kg P-equivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steal scisor has the highest impact in this category (+/-10 kg N-equivalents), followed by the disposable plastic scisor (+/- 10 kg N-equivalents), followed by the disposable plastic scisor (+/- 750 kg 14-DB equivalents) followed by comparison of the science of the reusable stainless steal scisor (+/- 0.2 kg N-equivalents). 5. <u>Human Toxicity</u> libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4.700 kg 14-DB equivalents), followed by the disposable stainless steel scissor (+/- 750 kg 1.4-DB equivalents)		1				plastic scissor (+/- 0.55 kg P-		
(+/-0.3 kg P-equivalents). Next to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scisor has the highest impact in this category (+/-0.3 kg N-equivalents), followed by the disposable plastic scisor (+/- Kg N- equivalents) and eventually the reveable stainless steel scisor (+/-0.2 kg N-equivalents), followed by the disposable plastic scisor (+/- Kg N- equivalents) and eventually the reveable stainless steel scisor (+/-0.2 kg N-equivalents), followed by the disposable plastic scisor (+/- Kg N- equivalents) and eventually the reveable stainless stainless steel scisor (+/-0.2 kg N-equivalents), followed by the disposable results on human toxicity in Figure 4 of the article (libotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure 4 of the article (libotson + 300 scale and the disposable stainless steel scisor <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>equivalents) and eventually the</td> <td></td> <td></td>		1				equivalents) and eventually the		
b to that, with regard to marine eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scisors has the highest impact in this category (4/- 10 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the disposable plastic scisor (+/- 6 & Nequivalents), followed by the highest impact in this results on human toxicity in reguivalents), figure A of the article (bbotson, 2013). The figure A of the article (bbotson, 2013). The figure A of the article (bbotson, 2013). The figure A of the article (bbotson, disposable stainless steel scisor has the highest impact in this category (+/- 775		1				reusable stainless steel scissor		
Image: Step Size Size Size Size Size Size Size Size		1				(+/- 0.3 kg P-equivalents). Next		
eutrophication, the results demonstrate that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+', 10 kg N-equivalents), (f) followed by the disposable plastic scissor (+' - 6 kg N- equivalents) and eventually the recursible stainless steel scissor (+' - 0.2 kg N-equivalents). (+' - 0.2 kg N-equivalents). (+' - 0.2 kg N-equivalents). 5. Human Toxicity Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a luma toxicity in this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable stainless tell scissor (+/- 750 kg 1.4-DB equivalents), and eventually the results and and eventually the results and and eventually the results and and eventually the resusble tatainless		1						
demonstrate that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+' - 10 kg N=quivalents). followed by the disposable plastic scissor (+' - 6 kg N equivalents) and eventually the reusable stainless steel scissor (+' - 0.2 kg N=quivalents). S Human Toxicity Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 775 kg 1-4.DB equivalents) and category (+/- 775 kg 1-4.DB equivalents) and eventually the reusable stainless		1						
stainless steel scissor has the highest impact in this category (+/ 10 kg N-equivalents), followed by the disposable plastic scissor (+/- 6 kg N- equivalents) and eventually the reusable stainless steel scissor (+/- 0.2 kg N-equivalents). 5. <u>Human Toxicity</u> Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on a log scale and the outcomes reatracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
highest impact in this category (+/-10 kg N-equivalents), plastic scissor (+/- 6 kg N- equivalents) and eventually the recusale stainless steel scissor (+/- 0.2 kg N-equivalents). 5. Human Toxicity libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on human toxicity in regulated and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable stainless steel scissor		1				use cycles the disposable		
highest impact in this category (+/-10 kg N-equivalents), followed by the disposable plastic scissor (+/- 6 kg N- equivalents) and eventually the reusable stainless steel scissor (+/- 0.2 kg N-equivalents). 5. <u>Human Toxicity</u> libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on human toxicity in og scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1				stainless steel scissor has the		
(+-10 kg N-equivalents), followed by the disposable plastic scissor (+/-6 kg N- equivalents) and eventually the reusable stainless steel scissor (+/-0.2 kg N-equivalents). 5. <u>Human Toxicity</u> Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+-7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
followed by the disposable plastic scissor (+/- 6 kg N- equivalents) and eventually the reusable stainless steel scissor (+/- 0.2 kg N-equivalents). 5. Human Toxicity libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on human toxicity atter 4 of the article (libbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that atfer 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-D8 equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-D8 equivalents) and eventually the reusable stainless		1				(+/- 10 kg N-equivalents),		
equivalents) and eventually the reusable stainless steel scissor (+/- 0.2 kg N-equivalents). 5. Human Toxicity libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact institution in the science of the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact of the results on a log scale intervention of the results on a log scale intervention of the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the provident of the results on a log scale intervention of the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact intervention of the results intervention of the results and the disposable stainless steel scissor has the results on a log scale and the outcomes are extracted by the disposable stainless the scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
equivalents) and eventually the reusable stainless steel scissor (+/- 0.2 kg N-equivalents). 5. Human Toxicity libbotson (2013) reported the results on human toxicity in Figure 4 of the article (libbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact institution in the science of the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact of the results on a log scale intervention of the results on a log scale intervention of the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the provident of the results on a log scale intervention of the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact intervention of the results intervention of the results and the disposable stainless steel scissor has the results on a log scale and the outcomes are extracted by the disposable stainless the scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1				plastic scissor (+/- 6 kg N-		
reusable stainless steel scissor (+/- 0.2 kg N-equivalents). 5. <u>Human Toxicity</u> Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
5. <u>Human Toxicity</u> Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
5. <u>Human Toxicity</u> Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (Ibbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1				(+/- 0.2 kg N-equivalents).		
Ibbotson (2013) reported the results on human toxicity in Figure 4 of the article (lbbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. this figure. the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
results on human toxicity in Figure 4 of the article (lbbotson, 2013). The figure shows the results on a log scale and the outcomes extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable stainless or (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1				5. Human Toxicity		
results on human toxicity in Figure 4 of the article (lbbotson, 2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scisor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1				Ibbotson (2013) reported the		
2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
2013). The figure shows the results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1				Figure 4 of the article (Ibbotson,		
results on a log scale and the outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
outcomes are extracted from this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
this figure. It demonstrates that after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1				0		
after 4,500 use cycles the disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
disposable stainless steel scissor has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
has the highest impact in this category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
category (+/- 7750 kg 1.4-DB equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
equivalents), followed by the disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
disposable plastic scissor (+/- 750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
750 kg 1.4-DB equivalents) and eventually the reusable stainless		1						
eventually the reusable stainless		1						
		1						
		1				steel scissor (+/- 200 kg 1.4-DB		
equivalents).		1						
		1						

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					6. <u>Ecotoxicity</u>		
					Ibbotson (2013) reported the		
					results on ecotoxicity graphically		
					in Figure 4 of the article		
					(Ibbotson, 2013). The figure		
					shows the results on a log scale		
					and the outcomes are extracted		
					from this figure. Terrestrial and		
					freshwater ecotoxicity are		
					described separately. Regarding		
					terrestrial ecotoxicity, the results		
					demonstrate that after 4,500		
					use cycles the disposable		
					stainless steel scissor has the		
					highest impact in this category		
					(+/- 2 kg 1.4-DB equivalents),		
					followed by the disposable		
					plastic scissor (+/- 0.4 kg 1.4-DB		
					equivalents) and eventually the		
					reusable stainless steel scissor		
					(+/- 0.03 kg 1.4-DB equivalents).		
					Next to that, with regard to		
					freshwater ecotoxicity, the		
					results demonstrate that after		
					4,500 use cycles the disposable		
					stainless steel scissor has the		
					highest impact in this category		
					(+/- 500 kg 1.4-DB equivalents),		
					followed by the disposable		
					plastic scissor (+/- 55 kg 1.4-DB		
1					equivalents) and eventually the		
					reusable stainless steel scissor		
					(+/- 4 kg 1.4-DB equivalents).		
					(,		
					7. Ozone Depletion		
					Ibbotson (2013) reported the		
					results on ozone depletion in		
1					Figure 4 of the article (Ibbotson,		
					2013). The figure shows the		
1					results on a log scale and the		
					outcomes are extracted from		
					this figure. It demonstrates that		
1					after 4,500 use cycles the		
1					disposable stainless steel scissor		
					•		
			1	1	has the highest impact in this		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					category (0.00055 kg CFC-11		
					equivalents), followed by the		
					disposable plastic scissor		
					(0.0001 kg CFC-11 equivalents)		
					and eventually the reusable		
					stainless steel scissor (+/-		
					0.00004 kg CFC-11 equivalents).		
Leiden	Resources, Conservation &	Type of study:	Goal and scope ¹ :	The difference in	1. <u>Climate Change</u>	This study suggests the	Authors conclusion
(2020)	Recycling	LCA	To compare whether	contribution to the	Leiden (2020) reported the	reusable surgical set has a	The authors conclude the
			reusable or disposable	environmental impact of a	results in percentages. They are	bigger environmental	environmental impact of
	Journal information	Objective:	surgical instrument sets	disposable and a reusable	displayed as percentage of the	impact compared to the	the disposable system was
	Open Access journal with	To assess the	for single-level lumbar	surgery instrument set for	maximum value of each impact	disposable set. The	significantly lower in all
	independent editorial	environmental impacts of	fusion surgeries are	lumbar fusion surgeries	category. For the outcome	limitation is that the	impact categories. This is
	board and peer-review	two types of instrument	advantageous from an	are investigated. The data	climate change, the reusable set	disposable and reusable	mainly due to the high
	process.	set for single-level lumbar	environmental	compares the reusable	had the highest impact (100%)	set are compared for 1	impact of the steam
		fusion surgeries:	perspective. Also, the	and the disposable set for	compared to the disposable set	surgery. Since the reusable	sterilization process and
	Contributions from	disposable (Neo Pedicle	identification of hotspots	one single surgery in	(10-20%) after 1 surgery. For the	set can be reused for	the big size of the reusable
	research, which consider	Screw System from Neo	for designing future	Germany. The data on	disposable surgical set the	several times, this can	instruments sets.
	sustainable management	Medical SA) and reusable	sustainable surgical	manufacturing was based	production phase had the	influence the results over	
	and conservation of	(Viper 2 from DePuy	instruments.	on weight, material and	biggest contribution and for the	time.	Limitations study
	resources are welcomed.	Synthes, 300 uses).	Functional unit(s) ² :	form of instruments,	reusable set the sterilization		A limitation is that the
	The journal emphasizes		The surgical instrument	transportation on mode	process.	A sensitivity analysis has	disposable and reusable
	the transformation	LCA-method:	set required for one	and calculated distances		be conducted, where the	set are compared for 1
	processes involved in a	Attributional LCA	single-level lumbar fusion	between producer,	2. <u>Waste</u>	reusable set has been	surgery. Since the reusable
	transition toward more		surgery involving the	distributor, and hospital	No results in this study.	reused. However, it is still	set can be reused for
	sustainable production	Setting and country:	implantation of four	and washing and steam		compared to the base case	several times, this can
	and consumption systems.	Hospitals in Germany	screws and two rods	sterilization was specific to	3. <u>Acidification</u>	of the disposable set (1	influence the results over
	Emphasis is upon		System boundaries:	a German hospital.	Leiden (2020) reported the	surgery). This does not	time.
	technological, economic,	Facility:	Cradle to grave	Disposal was modelled	results in percentages. They are	reflect reality in the	
	institutional and policy	-	Included stages:	using Ecolnvent waste	displayed as percentage of the	results.	A sensitivity analysis has
	aspects of specific	Veens of data collections.	Raw material extraction,	incineration processes.	maximum value of each impact	The biggest betagests and	be conducted, where the
	resource management	Years of data collection:	production, packaging,	Characterization methods	category. For the outcome	The biggest hotspots are	reusable set has been reused. However, it is still
	practices, such as conservation, recycling	-	transport, reuse, disposal Stated excluded	Characterization methods: CML, ReCiPe	climate Acidification, the reusable set had the highest	clearly stated. The sterilization process is the	compared to the base case
	and resource substitution,	Surgical discipline(s):	components: -	CIVIL, RECIPE	impact (100%) compared to the	biggest contributor to the	of the disposable set (1
	and of "systems-wide"	Neurology	Inventory database:		disposable set (30-40%) after 1	environmental impact for	surgery). This does not
	strategies, such as	Neurology	Ecolnvent		surgery. For the disposable	the reusable set and for	reflect reality in the
	resource productivity	Funding and conflict of			surgical set the production	the disposable set the	results.
	improvement, the	interest:	Allocation: No		phase had the biggest	production process is most	i courto.
	restructuring of	The study was funded by	Normalization &		contribution and for the	contributory.	
	production and	Neo Medical S.A., but it is	Weighting: No		reusable set the sterilization		
	consumption profiles and	stated that Neo Medical	Impacts reported: No		process.		
	the transformation of	S.A. had no direct	Contribution analysis: Yes		process.		
	industry.		Scenario analysis: No		4. Eutrophication		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
		influence on the results of	Comparative analysis: Yes		No results in this study.		
	Critical review:	the study.	Sensitivity analysis: Yes,				
	Peer reviewed, not a		tests alternate		5. <u>Human Toxicity</u>		
	specific LCA journal.		assumption, including:		No results in this study.		
			number of usage cycles for				
			the reusable set (300-500)		6. <u>Ecotoxicity</u>		
			and loan (distributor		No results in this study.		
			rechecks and replaces				
			missing components		7. Ozone Depletion		
			between each use) vs.		No results in this study.		
			consignment system (i.e.				
			in-hospital reprocessing				
			with requests to				
			distributor for missing				
			components)				
			Uncertainty analysis: No				
			Variance analysis: No				
McGain	Anesthesia & Analgesia	Type of study:	Goal and scope ¹ :	McGain (2012) assessed	1. <u>Climate Change</u>	The environmental and	Authors conclusion
(2012)		LCA	To compare the financial	the environmental and	McGain (2012) described the	financial impacts of two	For hospitals using coal-
	Journal information		costs and environmental	financial impacts of two	results on climate change. One	type of central venous	fired electricity, the
	The "The Global Standard	Objective:	impacts of the life cycles	type of central venous	reusable kit produced 1211	catheter insertion kits	environmental effects are
	in Anesthesiology,"	To assess the	of reusable and single-use	catheter insertion kits	grams of CO ₂ in total and one	(single-use and	greater when using
	provides practice-	environmental and	venous catheter insertion	(single-use and	disposable kit 407 grams of CO ₂ .	disposable) are assessed.	reusable kits instead of
	oriented, clinical research	financial impacts of two	kits and what effect the	disposable) at the Western	There is no comparison of	The results show the	single-use. Reducing the
	you need to keep current	types of central venous	source of electricity has on	Health group of hospitals	multiple usage of the reusable	reusable kit has a bigger	environmental impact of
	and provide optimal care	catheter insertion kits:	the CO ₂ emissions.	in Melbourne, Victoria,	kit. The biggest contributor for	environmental impact	the reusable kit is possible
	to your patients. Brings	single-use and reusable	Functional unit(s) ² :	Australia. Next to the	the reusable kit is the washing	compared to the	by focusing on the
	peer reviewed articles on		Use of one central venous	environmental and	and sterilization process (256	disposable kit. However,	inefficiencies and energy
	the latest advances in	LCA-method:	catheter kit to aid	financial impacts, they	resp. 830 grams of CO ₂),	this is calculated for one	sources of steam
	drugs, preoperative	Attributional LCA	insertion of a single-use,	investigated the effect of	whereas for the single-use kit	use of each kit. Reusing	sterilizers.
	preparation, patient		central venous catheter in	the source of electricity	this is the plastic used (284	the reusable kit could	
	monitoring, pain	Setting and country:	an operating room.	upon CO ₂ emissions. The	grams of CO ₂). A sensitivity	influence results.	Limitations study
	management,	Hospital in Australia	System boundaries:	functional unit was the	analysis showed the influence of		A limitation of the study
	pathophysiology, and		Cradle to grave	use of one central venous	different energy mixes on the	The biggest contributor for	could be that the reusable
	many other timely topics.	Facility:	Included stages:	catheter kit to aid	outcome for the reusable kit,	the reusable kit is the	insertion kit is compared
		Western Health,	Raw material extraction,	insertion of a single-use,	with a Monte Carlo analysis to	washing and sterilization	to the disposable for one
	Critical review:	Melbourne, Victoria,	production, packaging,	central venous catheter in	calculate confidence intervals	process. whereas for the	use of inserting the single-
	Peer reviewed, not a	Australia	transport, reuse, disposal	an operating room. Data	(CI). Using a brown coal energy	single-use kit this is the	use central venous
	specific LCA journal.		Stated excluded	on the components of the	mix for the reusable kit resulted	use of plastic. The washing	catheter. Reusable kits
		Years of data collection:	<u>components:</u>	central venous catheter	in 1211 (95% Cl 1099-1323)	and sterilization process	were assumed to have
		-	Existing equipment (e.g.	kits was obtained by	grams of CO ₂ emissions, hospital	could be a hotspot to	lifespan of 300 uses (metal
			washers and sterilizers)	weighing with an	gas cogeneration in 436 (95% Cl	minimalize the impact, as	components requiring
		Surgical discipline(s):	were not included; Cotton	electronic balance and	410-473) grams of CO ₂	well as for the disposable	sharpening every 100
		Anaesthesia	gauze and antiseptic were	receiving data from the	emissions, United States	kit a different source of	uses) based on a

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
			not included ("because	manufacturer. Direct data	electricity mix in 764 (95% Cl	material could be of great	conservative estimate
		Funding and conflict of	they were common to	regarding materials and	509-1174) grams of CO ₂	value.	from staff within the study
		interest:	insertion of all central	energy required to	emissions and a European		hospital's sterile supplies
		The authors declare no	venous catheters")	reprocess reusable kits	electricity mix in 572 (95% Cl		department, however this
		conflict of interest. They	Inventory database:	(i.e. from the washer and	470-713) grams of CO ₂		seems not to be included
		received funding through	EcoInvent	sterilizer) were collected	emissions.		in the analysis. Calculating
		grants from the Australian		using a "time-in-motion"			the difference between
		and New Zealand	Allocation: No	study. Most other inputs	2. <u>Waste</u>		the outcomes when
		Intensive Care Society and	Normalization &	were acquired from LCI	No results in this study.		reusing this kit is not taken
		Sustainability Victoria.	Weighting: No	databases or industry			into account and could yet
			Impacts reported: Yes,	data. Electricity	3. <u>Acidification</u>		obtain more accurate
			only GWP and water use	requirements (kWh) and	No results in this study.		results.
			impacts reported, impacts	volumes of hot (gas			
			from other categories	heated) and cold water	4. <u>Eutrophication</u>		
			determined to be 'similar	used by the washer and	No results in this study.		
			or of minor importance'	sterilizer were measured.			
			Contribution analysis: Yes	Data on waste disposal	5. <u>Human Toxicity</u>		
			Scenario analysis: No	processes were obtained	No results in this study.		
			Comparative analysis: Yes	indirectly from industry			
			Sensitivity analysis:	data (sodium hypochlorite	6. <u>Ecotoxicity</u>		
			Yes, tests altered	or incineration).	No results in this study.		
			electricity source for the				
			reusable kit: brown coal	Characterization methods:	7. Ozone Depletion		
			(base case), gas	-	No results in this study.		
			cogeneration, American				
			standard supply, European				
			standard supply				
			Uncertainty analysis: Yes,				
			Monte Carlo analysis				
			Variance analysis: No				
McGain	British Journal of	Type of study:	Goal and scope ¹ :	McGain (2017) assessed	1. <u>Climate Change</u>	The results of this study	Authors conclusion
(2017)	Anaesthesia	LCA	To compare the	environmental and	McGain (2017) described the	result in a clear overview	The financial and
			consequences from	financial impacts of	five scenarios as following: (1)	on how environmental	environmental impact of
	Journal information	Objective:	changing from one pattern	reusable and single-use	completely reusable, (2) mainly	impacts of the same type	anaesthetic equipment are
	The British Journal of	To assess environmental	of equipment to another	anesthetic equipment	single-use except for reusable	of equipment (e.g.	investigated. Using single-
	Anaesthesia (BJA)	and financial impacts of	(single-use/reusable),	through the exploration of	laryngoscope handles, (3)	reusable) can vary	use equipment costs more
	publishes high-impact	reusable and single-use	looking whether new	2 base cases and 3	completely single-use (4)	between different	than using reusables, in all
	original work in all	anesthetic equipment.	labour would be required	modelled scenarios using	reusables (except the single-use	continents. Where the	scenarios. Converting from
	branches of anaesthesia,		or where the next kilowatt	a consequential LCA	face masks), (5) reusables	single-use equipment	single-use to reusable
	critical care medicine, pain	LCA-method:	hour of electricity would	approach. The first base	(except single-use laryngoscope	seem to have a lower	leads to an increase in CO ₂
	medicine and	Consequential LCA	be sourced from. Thereby	case was situated at a	blades) in an Australian hospital.	environmental impact in	emissions of almost 10%,
	perioperative medicine		the environmental and	hospital in Melbourne,	Using reusables (scenario 1) had	Australia, the results	where it decreases when
	including fundamental,	Setting and country:	financial consequences	Australia with "mainly	a higher impact [5575 kg CO ₂	suggest the impact is	converting in the US (50%)
	translational and clinical	Hospitals in Australia	were defined.	single-use" anesthetic	equivalents (95% CI 5542-5608)]	lower in the USA, UK and	and UK/Europe (85%).

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	sciences, clinical practice,		Functional unit(s) ² :	equipment (reusable	compared to using mainly single	in Europe. This is due to	
	technology, education and	Facility:	Use of breathing circuits,	anesthetic circuits, face	use [scenario 2; 5095 kg CO ₂	the energy mix used in the	Limitations study
	training. In addition, the	Western Health,	face masks, LMAs, and	masks, 'Proseal'VR	equivalents (95% CI 4614-	different continents.	Sterilization records and
	Journal publishes review	Melbourne, Victoria,	direct and	(Teleflex, Westneath,	5658)]. For the reusable		input from senior Central
	articles, important case	Australia	videolaryngoscopes at one	Ireland) LMAs, and direct	approach (4807 kg CO ₂	In Australia the impact of	Sterile and Supply
	reports, correspondence		hospital over one year	and videolaryngoscope	equivalents (86%)) was for	single-use equipment is	Department staff at
	and special articles of	Years of data collection:	System boundaries: Cradle	blades and handles. The	washer electricity and 387 kg	lower compared to the	hospital 1 were used to
	general interest.	-	to grave	second base case was	CO_2 equivalents (7%) for H_2O_2	other continents, where it	define sterilization mode
			Included stages: Raw	situated at another	sterilizer electricity, with all	is beneficial for the	and load information,
	Critical review:	Surgical discipline(s):	material extraction,	hospital in Melbourne,	other contributing for 381 kg	environment to use the	when 2 hospitals were
	Peer reviewed, not a	Anaesthesia	production, packaging,	Australia with "mainly	CO₂ equivalents (7%). For	reusable anaesthetic	involved. Comparing or
	specific LCA journal.		transport, reuse, disposal	single-use" anesthetic	scenario 2 (mainly single-use),	equipment.	using data from both
		Funding and conflict of	Stated excluded	equipment (disposable	the majority of the CO ₂		hospitals would have been
		interest:	components: Existing oil,	anesthetic circuits, single-	emissions (2695 kg CO ₂		more accurate. This also
		The authors declare no	gas, mining, energy, and	use face masks, LMAs, and	equivalents, 52%) was for		accounts for electricity
		conflict of interest. They	transport infrastructure	direct laryngoscope	purchasing single use face masks		consumption of the
		received funding for the	was not included;	blades, but using reusable	(n=9900) and 1396 kg CO ₂		sterilizer.
		project from the	Maintenance and	direct laryngoscope	equivalents (27%) for the single-		
		Australian and New	depreciation of washers	handles and reusable	use direct laryngoscope blades		
		Zealand College of	and sterilizers were not	videolaryngoscopes). The	(n=9900) and all other items		
		anesthetists (project grant	included ("these would be	five scenarios included:	contributed for 1052 kg CO ₂		
		13/025)	unaltered by the presence	"completely single-use",	equivalents (21%). Scenario 3		
			or absence of reusable	"reusables except for	resulted in 5775 kg CO ₂		
			anesthetic equipment")	single-use face masks",	equivalents. Scenarios 4 and 5		
			Inventory database:	"reusables except for	led to 6556 and 6763 kg CO ₂		
			EcoInvent	single-use laryngoscope	equivalents emissions		
				blades", "reusables	respectively, because 365 and		
			Allocation: No	(Europe)", "reusables	550 washer loads, respectively,		
			Normalization &	(USA)". Data on	remained. The substitution of		
			Weighting: Yes, results	equipment were obtained	one reusable with a single-use		
			were normalized to	from two hospitals in	item (Scenarios 4 and 5) led to		
			average annual per capita	Melbourne, Australia in	higher CO ₂ emissions than either		
			environmental impacts in	2015 and each piece of	completely reusable or single-		
			Australia.	equipment was weighed	use equipment (Scenarios 1–3).		
			Impacts reported: Yes	with an electronic balance			
			Contribution analysis: No	(accurate to within 1g).	An analysis was performed to		
			Scenario analysis: Yes	Sterilization records and	model results as if the hospital		
			Comparative analysis: Yes	input from senior Central	was based in UK/Europe. This		
			Sensitivity analysis: No	Sterile and Supply	led to different results compared		
			Uncertainty analysis: Yes,	Department staff at	to when the hospital was based		
			Monte Carlo analysis	hospital 1 were used to	in Australia. By switching from		
			Variance analysis: No	define sterilization mode	single-use (5095 kg CO2		
				and load information.	equivalents) to reusable		
				Washer and steam	anaesthetic equipment, this		
				sterilizer utility usage data	would have led in a decrease of		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
				were taken from a	84% (802 kg CO2 equivalents).		
				previous study by the	This can be explained by the		
				same authors (0.15 kWh	majority of the next kilowatt		
				and 40 litres of water per	hour of UK/European electricity		
				kg of anesthetic	generation arising from		
				equipment steam	renewables (mainly wind).		
				sterilized), while electricity			
				consumption of a standard	2. <u>Waste</u>		
				H2O2 sterilizer was	Using reusables (scenario 1)		
				directly measured over	resulted in less waste (250 kg)		
				several days at hospital 1.	compared to using mainly single		
					use (scenario 2; 1222 kg of		
				Characterization methods:	waste). Scenario 3 had the		
				-	highest amount of waste (1542		
					kg) and scenarios 4 and 5 led to		
					375 and 917 kg of waste,		
					respectively.		
					3. <u>Acidification</u>		
					No results in this study.		
					No results in this study.		
					4. <u>Eutrophication</u>		
					These outcomes resulted all in a		
					low impact on eutrophication.		
					Using reusables (scenario 1)		
					resulted in 0.000 kg P		
					equivalents whereas using		
					mainly single use (scenario 2)		
					led to 0.12 kg P equivalents.		
					Scenario 3, 4 and 5 led to 0.12,		
					0.04 and 0.07 kg P equivalents,		
					respectively.		
					5. <u>Human Toxicity</u>		
					Using reusables (scenario 1)		
					resulted in 12 kg 1.4-DB		
					equivalents whereas scenario 2		
					resulted in the highest impact of		
					all scenarios (713 kg 1.4-DB		
					equivalents). Scenario 3, 4 and 5		
					led to 1.023, 195 and 491 kg 1.4-		
					DB equivalents, respectively.		
					6. <u>Ecotoxicity</u>		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					The outcome ecotoxicity was		
					divided in three different		
					outcomes: terrestrial,		
					freshwater and marine		
					ecotoxicity. For terrestrial		
					ecotoxicity, using reusables		
					(scenario 1) resulted in 0.011 kg		
					1.4-DB equivalents whereas		
					scenario 2 resulted in 0.4 kg 1.4-		
					DB equivalents. Scenario 3, 4		
					and 5 led to 0.405, 0.118 and 0.2		
					kg 1.4-DB equivalents,		
					respectively. For freshwater		
					ecotoxicity, using reusables		
					(scenario 1) resulted in 0.7 kg		
					1.4-DB equivalents whereas		
					scenario 2 resulted in 91 kg 1.4-		
					DB equivalents. Scenario 3, 4		
					and 5 led to 93.4, 3.1 and 88 kg		
					1.4-DB equivalents, respectively.		
					For marine ecotoxicity, using		
					reusables (scenario 1) resulted		
					in 0.7 kg 1.4-DB equivalents		
					whereas scenario 2 resulted in		
					94.5 kg 1.4-DB equivalents.		
					Scenario 3, 4 and 5 led to 97.2,		
					2.8 and 92.3 kg 1.4-DB		
					equivalents, respectively.		
					Moreover, using single-use		
					equipment (scenario 2 and 3)		
					has the highest impact on		
					ecotoxicity.		
					7. Ozone Depletion		
					No results in this study.		
Newsburgs	DML Laura da Cut	Ture of study	Cool and soons 1.	Newsharen (2022)	1 Climata Change	The study successfully	
Namburar	BMJ Journals Gut	Type of study:	Goal and scope ¹ :	Namburar (2022)	1. <u>Climate Change</u>	The study suggests the	Authors conclusion
(2022)	lournal information	Waste audit (cross-	Quantify waste associated	performed an audit of	No results in this study.	least amount of waste is	The quantitative
	Journal information	sectional study)	with endoscopic	waste generated during	2 Waste	produced by using 'all	assessment shows that
	Gut is a leading	Objective	procedures.	endoscopic procedures at	2. <u>Waste</u>	reusable' endoscopes.	endoscopic procedures
	international journal in	<u>Objective:</u>	<u>Functional unit(s)</u> ² : N/A	a low and high endoscopy	The annual waste produced	When only focusing on	generate a large amount
	gastroenterology and	To measure the amount of	System boundaries: N/A	volume academic medical	during endoscopic procedures in	waste, this should be the	of waste from disposable
	hepatology and has an	waste generated during	Included stages: Pre-	center (VA White River	the US for the three different	best option following the	instruments. Net waste is
	established reputation for	endoscopic procedures	procedure area,	Junction, Vermont, USA	scenarios show that the 'all	three given scenarios.	

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	publishing first class	and to understand the	examination room and	and Darthmouth	reusable' endoscopes (scenario	However there are no	increase by using single-
	clinical research of the	impact on waste of	post-procedure area	Hitchcock Medical Center,	 produce the least amount of 	further calculations	use endoscopes.
	alimentary tract, the liver,	changing from reusable to	Stated excluded	New Hampshire, USA)	waste (43,500 metric tons of	regarding environmental	
	biliary tree and pancreas.	single use endoscopes in	components: Sharp	over a 5-day work period	waste for 18 million endoscopies	impact. With these	Limitations study
		the USA.	objects in separate	in 2020. Colonoscopies,	annually in the US), followed by	calculations, as the	The study suggests to
	Gut is an official journal of		containers	upper endoscopies and	using single-use	authors suggest in the	estimate the
	the British Society of	LCA-method:	Inventory database:	endoscopic retrograde	colonoscopes/duodenoscopes	discussion, this would give	environmental impact of
	Gastroenterology and has	-	N/A	cholangiopancreatography	(scenario 2; 54,375 metric tons	a better overview of the	an endoscopic procedure,
	two companion titles:			(ERCP) were included. The	of waste) and all single-use	environmental impact of	however only describes
	Frontline	Setting and country:	Allocation: No	waste from the pre-	endoscopes (scenario 3; 60,900	the procedures, taking the	the amount of waste and
	Gastroenterology for	Two US academic medical	Normalization &	procedure area,	metric tons of waste).	whole life cycle into of the	does not calculate the
	education and practice	centers in the USA	Weighting: Yes, results	examination room and		endoscopes (and	actual environmental
	and BMJ Open		were normalized to the	post-procedure area was	3. Acidification	procedures) into account.	impact.
	Gastroenterology for	Facility:	annual endoscopy	collected and documented	No results in this study.		
	sound science clinical	VA White River Junction,	procedures in the US.	as mass and volume. In			
	research.	Vermont, USA and	Impacts reported: N/A	the high volume hospital	4. Eutrophication		
		Darthmouth Hitchcock	Contribution analysis: Yes	the waste from endoscope	No results in this study.		
	Critical review:	Medical Center, New	Scenario analysis: No	reprocessing was also	,		
	Peer reviewed, not a	Hampshire, USA	Comparative analysis: Yes	obtained. An estimation of	5. <u>Human Toxicity</u>		
	specific LCA journal.		Sensitivity analysis: Yes	the contribution of single-	No results in this study.		
		Years of data collection:	Uncertainty analysis: No	use (compared to	,		
		2020	Variance analysis: No	reusable) waste was made	6. Ecotoxicity		
				in the following three	No results in this study.		
		Surgical discipline(s):		scenarios: (1) all reusable			
		Gastro-enterology		endoscopes, (2)	7. Ozone Depletion		
		0,		colonoscopies and ERCPs	No results in this study.		
		Funding and conflict of		were performed with	,		
		interest:		single-use endoscopes			
		The authors declare no		(colonoscopes/duodenosc			
		conflict of interest and		opes) and (3) all single-use			
		have not received funding.		endoscopes. The outcome			
				measure was waste.			
				Characterization methods:			
				N/A			
Rizan	Surgical Endoscopy	Type of study:	Goal and scope1:	Rizan (2021) assessed	1. <u>Climate Change</u>	The CO ₂ footprint of using	Authors conclusion
(2021)	,	LCA	Quantify reduction of the	environmental and	The carbon footprint of the	hybrid scissors, ports and	The CO ₂ footprint of using
-	Journal information		environmental (and	financial impacts of hybrid	hybrid laparoscopic instruments	clip appliers was 76%	hybrid instruments for
	This journal is positioned	Objective:	financial) impact of hybrid	and single-use instruments	is lower compared to the single-	lower than using single-	laparoscopic
	at the interface between	To assess environmental	surgical instruments	in laparoscopic	use instruments. Compared to	use equivalents, saving 5.4	cholecystectomy is around
	various medical and	and financial impacts of	compared to single-use.	cholecystectomy using life	its single-use equivalent, the	kg CO2eq per operation.	a quarter of that for
	surgical disciplines, it	hybrid and single-use	Functional unit(s) ² :	cycle assessment. The	hybrid clip applier's carbon	Overall, the environmental	single-use equivalents and
	serves as a focal point for	instruments in	The number of three types	number of three types of	footprint was 17% (445 g vs	impact of the hybrid	the financial costs around
	the international surgical		of instruments (clip	instruments (clip appliers,	2559 g CO ₂ eq), the scissor 33%	instruments are lower	half.

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	community to exchange	laparoscopic	appliers, laparoscopic	laparoscopic scissors and	(378g vs 1139 g CO_2 eq) and the	compared to the single-	
	information on practice,	cholecystectomy.	scissors and ports)	ports) typically required to	four ports 27% (933 g vs 3495	use instruments. This is	Limitations study
	theory, and research.		typically required to	perform one laparoscopic	CO ₂ eq). All combined, the	mainly due to the	Data is limited by
		LCA-method:	perform one laparoscopic	cholecystectomy were	carbon footprint of using all	manufacturing and raw	assumptions (as with all
	Critical review:	Attributional LCA and	cholecystectomy.	included in the analysis	hybrid instruments was 24% of	material extraction	LCAs), however clearly
	Peer reviewed, not a	consequential approach	System boundaries:	(two small diameter ports,	that of single-use equivalents	process.	explained.
	specific LCA journal		Cradle to grave	two large diameter ports,	(1756 g vs 7194 g CO ₂ eq), saving		
		Setting and country:	Included stages:	one laparoscopic scissor	5.4 kg CO ₂ eq. The majority of		
		UK	Raw material extraction,	and one laparoscopic clip	the carbon footprint of the		
			manufacture, transport,	applier). The stages of raw	hybrid instruments was due to		
		Facility:	disposal, decontamination	material extraction,	single-use components (mean		
		-	for reusable components	manufacture, transport,	62%, range 43-79%), followed by		
			of hybrid instruments	disposal and	decontamination of reusable		
		Years of data collection:	Stated excluded	decontamination for	components (mean 37%, range		
		2020	components:	reusable components of	21-56%). For the single-use		
			Other reusable	hybrid instruments were	instruments the biggest		
		Surgical discipline(s):	instruments and	included. Data was	hotspots were raw material		
		Gastro-enterology	consumables used to	obtained from	extraction and manufacturing		
			perform a laparoscopic	manufacturers and	(mean 57%, range 52-61%),		
		Funding and conflict of	cholecystectomy	databases.	followed by onward		
		interest:	Inventory database:		transportation (mean 29%,		
		Funded by Surgical	Ecoinvent, Industry data	Characterization methods:	range 24-36%) and waste (mean		
		Innovations Ltd., but		ReCiPe	14%, range 12-16%). The		
		played no pared in	Allocation: No		scenario modelling resulted in		
		scientific conduct, analysis	Normalization &		the following results. When		
		or writing of the	Weighting: No		packaging and decontaminating		
		manuscript. No conflict of	Impacts reported: Yes		separately, the CO2 footprint of		
		interest was stated.	Contribution analysis: Yes		the hybrid clip applier increased		
			Scenario analysis: Yes		3.7-fold to 1650 g CO2 eq. The		
			Comparative analysis: Yes		scissor increases to 394 g CO2		
			Sensitivity analysis: Yes,		eq per use (4% increase) and the		
			tests altered electricity		ports 999 g CO2 eq per use (7%		
			source decontamination		increase). For all hybrid		
			and changing way of		instruments, CO2 footprint was		
			transport		lower than the single-use		
			Uncertainty analysis: No		equivalents when used more		
			Variance analysis: No		than twice. The CO2 footprint of		
					the decontamination process of		
					hybrid instruments increased		
					with 54% when using Australian		
					electricity, which increased the		
					CO2 footprint of the hybrid		
					instruments by 11-30%, but this		
					remained lower than the single-		
					use equivalents (63-77%).		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					Shipping in place of airfreight		
					(for single-use items) reduced		
					the CO2 footprint by 22-33%.		
					Using three hybrid 5 mm ports		
					and one 10 mm port (635 g CO2		
					eq/operation) resulted in a 32%		
					reduction compared to the base		
					case (5 mm single-use ports		
					based on a dual pack).		
					2. <u>Waste</u>		
					No results in this study.		
					3. <u>Acidification</u>		
					Rizan (2021) reported the		
					results of the three different		
					instruments. The ports had the		
					highest impact in this category		
					(single-use vs. hybrid, 8.91 vs.		
					2.08 g SO2 eq), followed by the		
					laparoscopic clip applier (single-		
					use vs. hybrid, 8.53 vs. 1.18 g		
					SO2 eq) and the laparoscopic		
					scissors (single-use vs. hybrid,		
					4.46 vs. 1.44 g SO2 eq).		
					0 10		
					4. Eutrophication		
					Rizan (2021) reported the		
					results of the three different		
					instruments on eutrophication		
					divided in two categories:		
					freshwater and marine		
					eutrophication. The laparoscopic		
					clip applier had the highest		
					impact in the category		
					"freshwater eutrophication"		
					(single-use vs. hybrid, 0.62 vs.		
					0.12 g SO2 eq), followed by the		
					ports (single-use vs. hybrid, 0.43		
					vs. 0.17 g SO2 eq) and the		
					laparoscopic scissors (single-use		
					vs. hybrid, 0.26 vs. 0.17 g SO2		
1					eq). For the category "marine		
1					eutrophication" this resulted in		
					the highest impact for the ports		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					(single-use vs. hybrid, 0.12 vs.		
					0.07 g SO2 eq), followed by the		
					laparoscopic clip applier (single-		
					use vs. hybrid, 0.09 vs. 0.06 g		
					SO2 eq) and the laparoscopic		
					scissors (single-use vs. hybrid,		
					0.05 vs. 0.04 g SO2 eq).		
					5. <u>Human Toxicity</u>		
					Rizan (2021) reported the		
					results of the three different		
					instruments on human toxicity		
					divided in two categories:		
					carcinogenic and non-		
					carcinogenic human toxicity.		
					Overall, the hybrid instruments		
					have a lower environmental		
					impact in this category. The		
					laparoscopic clip applier had the		
					highest impact in the category		
					"carcinogenic human toxicity"		
					(single-use vs. hybrid, 203 vs. 45		
					g 1.4-DCB eq), followed by the		
					ports (single-use vs. hybrid, 117		
					vs. 43 g 1.4-DCB eq) and the		
					laparoscopic scissors (single-use		
					vs. hybrid, 91 vs. 65 g 1.4-DCB		
					eq). Although, the hybrid port		
					has a higher impact than the		
					hybrid laparoscopic scissor. For		
					the category "noncarcinogenic		
					human toxicity" the results were		
					as following (from greatest		
					environmental impact to lowest		
					impact): Single-use laparoscopic		
					clip applier (2871 g 1.4-DCB eq),		
					single-use laparoscopic scissor		
					(1386 g 1.4-DCB eq), single-use		
					ports (1013 g 1.4-DCB eq),		
					hybrid laparoscopic scissor (952		
					g 1.4-DCB eq), hybrid		
					laparoscopic clip applier (576 g		
					1.4-DCB eq) and hybrid ports		
					(390 g 1.4-DCB eq).		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					6. <u>Ecotoxicity</u>		
					Rizan (2021) reported the		
					results of the three different		
					instruments on ecotoxicity		
					divided in three categories:		
					"terrestrial", "freshwater" and		
					"marine" ecotoxicity. Overall,		
					the hybrid instruments have a		
					lower environmental impact in		
					this category, except for the		
					laparoscopic scissors in		
					freshwater and marine		
					ecotoxicity. For terrestrial		
					ecotoxicity, the results were as		
					following (from greatest		
					environmental impact to lowest		
					impact): Single-use laparoscopic		
					clip applier (19,767 g 1.4-DCB		
					eq), single-use laparoscopic		
					scissor (8939 g 1.4-DCB eq),		
					hybrid laparoscopic scissor		
					(5628 g 1.4-DCB eq), single-use		
					ports (4142 g 1.4-DCB eq),		
					hybrid laparoscopic clip applier		
					(3976 g 1.4-DCB eq) and hybrid		
					ports (1171 g 1.4-DCB eq). For		
					freshwater ecotoxicity, the		
					results were as following (from		
					greatest environmental impact to lowest impact): Single-use		
					. , .		
					laparoscopic clip applier (176 g		
					1.4-DCB eq), hybrid laparoscopic		
					scissor (97 g 1.4-DCB eq), single-		
					use laparoscopic scissor (91 g		
					1.4-DCB eq), single-use ports (39		
					g 1.4-DCB eq), hybrid		
					laparoscopic clip applier (36 g		
					1.4-DCB eq) and hybrid ports (17		
					g 1.4-DCB eq). For marine		
					ecotoxicity, the results were as		
					following (from greatest		
					environmental impact to lowest		
					impact): Single-use laparoscopic		
					clip applier (230 g 1.4-DCB eq),		
					hybrid laparoscopic scissor (122		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					g 1.4-DCB eq), single-use		
1					laparoscopic scissor (118 g 1.4-		
I					DCB eq), single-use ports (54 g		
I					1.4-DCB eq), hybrid laparoscopic		
l					clip applier (47 g 1.4-DCB eq)		
l					and hybrid ports (23 g 1.4-DCB		
					eq)		
					7. <u>Ozone Depletion</u> Rizan (2021) reported the results of the three different instruments on ozone depletion as following (from greatest environmental impact to lowest impact): Single-use ports (0.0013 g CFC11 eq), single-use laparoscopic clip applier (0.0008 g CFC11 eq), single-use laparoscopic scissor (0.0005 g CFC11 eq), hybrid ports (0.0004 g CFC11 eq), hybrid laparoscopic clip applier (0.0002 g CFC11 eq)		
					and hybrid laparoscopic scissor		
Sanchez	Resources, Conservation &	Type of study:	Goal and scope ¹ :	Sanchez (2020) assessed	(0.0001 g CFC11 eq). 1. Climate Change	The overall results show	Authors conclusion
(2020)	Recycling	LCA	To compare the	the environmental and	Sanchez (2020) reported	the reusable blood	Environmental
(2020)		20,1	environmental and	economic impacts of	outcomes using 4 different	pressure cuff has a lower	considerations will never
1	Journal information	Objective:	economic performance for	reusable and disposable	scenarios: (1) Day office, (2) 1	environmental impact on	be paramount in decision
l	Open Access journal with	To assess the	reusable and disposable	blood pressure cuffs by	Day Ambulatory Procedure, (3) 1	all impact categories	making around medical
I	independent editorial	environmental and	BP cuffs, with a focus on	using life cycle	Day Regular Ward and (4) 1 Day	compared to the	devices or healthcare
1	board and peer-review	economic impacts of	cuff design and materials,	assessment. Data on	ICU. Within these scenarios, a	disposable cuff. The main	delivery, however this
1	process.	reusable and disposable	cleaning agents and	materials and	division was made between:	contributors for the	work shows there are
l		blood pressure (BP) cuffs.	processes. This because	manufacturing was	reusable incineration (1	disposable cuff are the	many opportunities to
1	Contributions from	,	disposables come into	gathered through a	cleaning/encounter or 1	production process and	reduce resource use,
l	research, which consider	LCA-method:	favor despite lack of	combination of	cleaning/day), reusable landfill	the disposal. For the	waste and environmental
l	sustainable management	LCA	information about	manufacturer information	(1 cleaning/encounter or 1	reusable cuff this is mainly	impact.
	and conservation of		environmental costs.	and physical testing, by	cleaning/day), disposable	due to the production	
l	resources are welcomed.	Setting and country:	Functional unit(s) ² :	weighing component on a	incineration (1	process of the cleaning	Limitations study
1	The journal emphasizes	Outpatient clinic and	Providing blood pressure	scale. Components were	cleaning/encounter or 1	wipes. However, the	There is data uncertainty
1	the transformation	ambulatory procedure	readings for a clinic room	identified and matched	cleaning/day), disposable landfill	environmental impact of	associated with some of
1	processes involved in a	rooms, regular ward and	or ward, under four	with information from	(1 cleaning/encounter or 1	the reusable blood	the modelling parameters
I	transition toward more	ICU in the US	different health care	inventory databases (US-EI	cleaning/day). The results of	pressure cuff remains	(e.g. energy and BP cuff
	sustainable production		delivery scenarios.	LCI database). US EPA	these different scenarios are	lower compared to the	materials).
	and consumption systems.	Facility:	System boundaries:	database was used for	summarized in the supplemental	disposable.	

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	Emphasis is upon	Yale-New Haven Health	Cradle to grave	transport packaging	material of the study (Sanchez,		
	technological, economic,	(YNHH) System in New	Included stages:	information. Multiple	2020). For the outcome measure		
	institutional and policy	Haven, Connecticut, USA.	Materials and	cleaning scenarios were	climate change, the overall		
	aspects of specific		manufacturing, transport,	developed to represent a	results show reusable blood		
	resource management	Years of data collection:	usage, cleaning, disposal	diversity of clinical settings	pressure cuffs have a lesser		
	practices, such as	-	Stated excluded	in using and cleaning. Only	environmental impact compared		
	conservation, recycling		<u>components</u> : -	landfill and incineration	to the disposable variant. The		
	and resource substitution,	Surgical discipline(s):	Inventory database: US-EI	were included for disposal	biggest contributor for the		
	and of "systems-wide"	-	LCI database	data and recycling was not	disposable is the material and		
	strategies, such as			taken into account ("as	manufacturing process, whereas		
	resource productivity	Funding and conflict of	Allocation: No	recycling is uncommon	for the reusable blood pressure		
	improvement, the	interest:	Normalization &	(though possible) given	cuff the main contributor is the		
	restructuring of	The authors declare no	Weighting: Yes	the types of plastics an	production of the chemical		
	production and	conflict of interest.	Impacts reported: Yes	mixed materials employed	wipes (which are used for		
	consumption profiles and	Funding: Dept. of Civil and	Contribution analysis: Yes	in the BP cuffs").	cleaning).		
	the transformation of	Environmental	Scenario analysis: Yes				
	industry.	Engineering, Northeastern	Comparative analysis: Yes	Characterization methods:	2. <u>Waste</u>		
		University	Sensitivity analysis: Yes	TRACI	No results in this study.		
	Critical review:		Uncertainty analysis: No				
	Peer reviewed, not a		Variance analysis: No		3. <u>Acidification</u>		
	specific LCA journal.				The disposable blood pressure		
					cuffs have a higher		
					environmental impact		
					considering acidification		
					compared to the reusable		
					variant. For the disposable cuff,		
					this is especially related to the		
					manufacturing process. For the		
					reusable variant the biggest		
					contributor is the production of		
					the cleaning wipes.		
					4. <u>Eutrophication</u>		
					The disposable blood pressure		
					cuffs have a higher		
					environmental impact		
					considering eutrophication		
					compared to the reusable		
					variant. For the disposable cuff,		
					this is especially related to the		
					manufacturing process and the		
					disposal of the cuffs. For the		
					reusable variant the biggest		
L		1			contributor is the production of		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					the cleaning wipes and partly		
					the disposal of these wipes.		
					5. <u>Human Toxicity</u>		
					The disposable blood pressure		
					cuffs have a higher		
					environmental impact		
					considering human toxicity		
					(non-carcinogens and		
					carcinogens) compared to the		
					reusable variant. For the		
					disposable cuff, this is especially		
					related to the manufacturing		
					process and the disposal of the		
					cuffs. For the reusable variant		
					this is mainly due to the		
					production of the cleaning		
					wipes.		
					6. <u>Ecotoxicity</u>		
					The disposable blood pressure		
					cuffs have a higher		
					environmental impact		
					considering ecotoxicity		
					compared to the reusable		
					variant. For the disposable cuff,		
					this is especially related to the		
					manufacturing process and the		
					disposal of the cuffs. For the		
					reusable variant this is mainly		
					due to the production of the		
					cleaning wipes.		
					7. <u>Ozone Depletion</u>		
					The disposable blood pressure		
					cuffs have a higher		
					environmental impact		
					considering ozone depletion		
					compared to the reusable		
					variant. This is especially related		
					to the manufacturing process.		
Sherman	Anesthesia & Analgesia	Type of study:	Goal and scope ¹ :	Sherman (2018) assessed	1. <u>Climate Change</u>	The environmental impact	Authors conclusion
(2018)		LCA	To obtain environmental	the environmental and	Sherman (2018) reported	of the reusable stainless	The results demonstrate a
	Journal information		and financial impacts,	financial impacts of three	outcomes on climate change on	steel laryngoscope blades	clear benefit of reusable

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	The "The Global Standard	Objective:	since it is not clear, to	different types of rigid	both laryngoscope handles and	and handles is lowest. The	laryngoscope handles and
	in Anesthesiology,"	To assess the	facilitate	laryngoscope handle and	blades (reusable or single-use)	greater impact of the	blades over single-use
	provides practice-	environmental and	anaesthesiologists making	tongue blade: plastic	as well as on different cleaning	disposable variants is due	alternatives, with HLD as
	oriented, clinical research	financial impacts of three	the best choice	single-use, metal single-	scenarios (low-level disinfection	to the material	the least polluting
	you need to keep current	different types of rigid	considering environmental	use, and stainless steel	levels (LDL), high-level	manufacturing and device	reprocessing method.
	and provide optimal care	laryngoscope handle and	and economic	reusable (under a range of	disinfection levels (HDL) and	assembly. The reusables	
	to your patients. Brings	tongue blade: plastic	perspectives. Device	cleaning options: low-level	sterilization). The most favorable	create emissions mainly	Limitations study
	peer reviewed articles on	single-use, metal single-	efficacy was presumed	disinfection, high-level	scenario for the handles is the	from reprocessing and are	The outcomes are only
	the latest advances in	use, and stainless steel	equivalent.	disinfection, sterilization)	reusable stainless steel handle,	thus reliable on the source	expressed in percentages
	drugs, preoperative	reusable (under a range of	Functional unit(s) ² :	by using life cycle	treated to HDL. Choosing LDL	of cleaning.	(except climate change). It
	preparation, patient	cleaning options: low-level	One handle or one blade	assessment and life cycle	will result in a 40% increase of		would give a more clear
	monitoring, pain	disinfection, high-level	for a single patient	costing at the Yale-New	the CO ₂ footprint (0.08 kg CO ₂		view of the absolute
	management,	disinfection, sterilization)	encounter	Haven Hospital, New	eq per use). Sterilization will		impact if the absolute
	pathophysiology, and		System boundaries:	Haven, CT, USA. To	lead to a 400% increase (0.23 kg		numbers were stated. The
	many other timely topics.	LCA-method:	Cradle to grave	determine the material	CO ₂ eq per use). The single-use		authors state there is an
		Attributional LCA	Included stages:	composition of handles	handle has a 25 times bigger CO ₂		uncertainty test
	Critical review:		Raw material extraction,	and blades a combination	footprint compared to the		undertaken, however that
	Peer reviewed, not a	Setting and country:	production, packaging,	of manufacturer	reusable version (1.41 kg CO ₂ eq		is not the case.
	specific LCA journal.	US	transport, use, reuse,	specifications,	and 1.60 kg CO ₂ eq for the		
			disposal	deconstruction, and	plastic and metal handles,		
		Facility:	Stated excluded	density testing were used,	respectively). The most		
		Yale-New Haven Hospital,	components:	and after each material	favorable scenario for the blades		
		New Haven, CT, USA	Machinery and capital	was weighed. Foreground	is the reusable steel tongue		
			equipment; building	data specific to Yale-New	blade treated to (the minimum)		
		Years of data collection:	operations	Haven Hospital (YNHH)	HDL standards. Sterilization will		
		-	Inventory database:	were collected, including	lead to a 400% increase (0.22 kg		
			Ecolnvent, US-El	transportation mode and	CO ₂ eq per use) compared to		
		Surgical discipline(s):		distance; washer and	HDL (0.06 kg CO₂ eq per use).		
		Anesthesiology	Allocation: No	autoclave-related energy,	Single-use options for the blades		
			Normalization &	water, and chemical use	will result in an 6-8 times		
		Funding and conflict of	Weighting: No	(based on machine	increase of CO ₂ footprint (0.38		
		interest:	Impacts reported: Yes	specification and	kg CO ₂ eq and 0.44 kg CO ₂ eq for		
		The authors declare no	Contribution analysis: Yes,	apportioned based on an	the plastic and metal blades,		
		conflict of interest. J.D.S.	only GWP	assumed full-load).	respectively).		
		was supported by an	Scenario analysis: Yes,	Reusable components			
		Anesthesia Patient Safety	various cleaning options	were assumed to have a	2. <u>Waste</u>		
		Foundation award. L.A.R.	Comparative analysis:: Yes	lifespan of 4000 uses and	No results in this study.		
		was supported by a	Sensitivity analysis: Yes,	require refurbishment			
		Provost's award for	assuming a 100% recycling	every 40 uses, according	3. Acidification		
		undergraduate research at	scenario (figure 2)	to rated lifetimes of each	Sherman (2018) reported		
		Northeastern University.	Uncertainty analysis: No	component (i.e. 1/4000th	outcomes on acidification on		
		M.J.E. was supported by	Variance analysis: No	of the manufacturing,	both laryngoscope handles and		
		departmental start-up	·	transportation, and	blades (reusable or single-use)		
		funds at Northeastern		disposal impacts were	as well as on different cleaning		
		University.		assigned to 1 use of a	scenarios (low-level disinfection		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
				reusable device). Standard	levels (LDL), high-level		
				US waste management	disinfection levels (HDL) and		
				was assumed: 6% of	sterilization). The most favorable		
				plastics are recycled, 30%-	scenario for the handles is the		
				70% of metals, and	reusable stainless steel handle,		
				remaining solid waste is	treated to HDL. Choosing LDL		
				either landfilled (80%) or	will result in a 70% increase of		
				incinerated (20%).	the CO2 footprint. Sterilization		
					will lead to a 200% increase. The		
				Characterization methods:	single-use handle has a 33 times		
				TRACI	bigger CO2 footprint compared		
					to the reusable version. The		
					most favorable scenario for the		
					blades is the reusable steel		
					tongue blade treated to (the		
					minimum) HDL standards.		
					Sterilization will lead to a 350%		
					increase compared to HDL.		
					Single-use options for the blades		
					will result in an 5-10 times		
					increase of CO2 footprint.		
					4. <u>Eutrophication</u>		
					Sherman (2018) reported		
					outcomes on eutrophication on		
					both laryngoscope handles and		
					blades (reusable or single-use)		
					as well as on different cleaning		
					scenarios (low-level disinfection		
					levels (LDL), high-level		
					disinfection levels (HDL) and		
					sterilization). The most favorable		
					scenario for the handles is the		
					reusable stainless steel handle,		
					treated to HDL. Choosing LDL		
					will result in a 160% increase of		
					the CO2 footprint. Sterilization		
					will lead to a 100% increase. The		
					single-use handle has a 65 times		
					bigger CO2 footprint compared		
					to the reusable version. The		
					most favorable scenario for the		
					blades is the reusable steel		
					tongue blade treated to (the		
					minimum) HDL standards.		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					Sterilization will lead to a 150%		
					increase compared to HDL.		
					Single-use options for the blades		
					will result in an 8-15 times		
					increase of CO2 footprint.		
					5. <u>Human Toxicity</u>		
					Sherman (2018) reported		
					outcomes on human toxicity on		
					both laryngoscope handles and		
					blades (reusable or single-use)		
					as well as on different cleaning		
					scenarios (low-level disinfection		
					levels (LDL), high-level		
					disinfection levels (HDL) and		
					sterilization). This outcome is		
					divided in carcinogenics as well		
					as noncarcinogenics. For the		
					carcinogenics, the most		
					favorable scenario for the		
					handles is the reusable stainless		
					steel handle, treated to HDL.		
					Choosing LDL will result in a		
					200% increase of the CO2		
					footprint. Sterilization will lead		
					to a 150% increase. The single-		
					use handle has a 45 (plastic) and		
					250 (steel) times bigger CO2		
					footprint compared to the		
					reusable version. The most		
					favorable scenario for the blades		
					is the reusable steel tongue		
					blade treated to (the minimum)		
					HDL standards. Sterilization will		
					lead to a 150% increase		
					compared to HDL. Single-use		
					options for the blades will result		
					in an 7-160 times increase of		
					CO2 footprint. For the		
					noncarcinogenics, the most		
					favorable scenario for the		
					handles is the reusable stainless		
					steel handle, treated to HDL.		
					Choosing LDL will result in a		
					100% increase of the CO2		
	1	1			100% Increase of the CO2		l

	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					footprint. Sterilization will lead		
					to a 150% increase. The single-		
					use handle has a 135 (plastic)		
					and 180 (steel) times bigger CO2		
					footprint compared to the		
					reusable version. The most		
					favorable scenario for the blades		
					is the reusable steel tongue		
					blade treated to (the minimum)		
					HDL standards. Sterilization will		
					lead to a 200% increase		
					compared to HDL. Single-use		
					options for the blades will result		
					in an 10-42 times increase of		
					CO2 footprint.		
					6. <u>Ecotoxicity</u>		
					Sherman (2018) reported		
					outcomes on ecotoxicity on both		
					laryngoscope handles and		
					blades (reusable or single-use)		
					as well as on different cleaning		
					scenarios (low-level disinfection		
					levels (LDL), high-level		
					disinfection levels (HDL) and		
					sterilization). This outcome is		
					divided in carcinogenics as well		
					as noncarcinogenics. For the		
					carcinogenics, the most		
1					favorable scenario for the		
					handles is the reusable stainless		
					steel handle, treated to HDL.		
					Choosing LDL will result in a		
					400% increase of the CO2		
					footprint. Sterilization will lead		
					to a 100% increase. The single-		
					use handle has a 130 (plastic)		
					and 225 (steel) times bigger CO2		
					footprint compared to the		
					reusable version. The most		
					favorable scenario for the blades		
					is the reusable steel tongue		
					blade treated to (the minimum)		
					HDL standards. Sterilization will		
					lead to a 150% increase		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					compared to HDL. Single-use		
1					options for the blades will result		
1					in an 13-95 times increase of		
l					CO2 footprint.		
1							
1					7. Ozone Depletion		
1					Sherman (2018) reported		
1					outcomes on ozone depletion		
1					on both laryngoscope handles		
1					and blades (reusable or single-		
1					use) as well as on different		
l					cleaning scenarios (low-level		
1					disinfection levels (LDL), high-		
1					level disinfection levels (HDL)		
1					and sterilization). This outcome		
1					is divided in carcinogenics as		
1					well as noncarcinogenics. For		
1					the carcinogenics, the most		
1					favorable scenario for the		
l I					handles is the reusable stainless		
1					steel handle, treated to HDL.		
l I					Choosing LDL will result in a		
1					3000% increase of the CO2		
l I					footprint. Sterilization will lead		
1					to a 200% increase. The single-		
l					use handle has a 17 times bigger		
1					CO2 footprint compared to the		
1					reusable version. The most		
1					favorable scenario for the blades		
l					is the reusable steel tongue		
l					blade treated to (the minimum)		
I					HDL standards. Sterilization will		
l					lead to a 300% increase		
I					compared to HDL. Single-use		
l					options for the blades will result		
I					in an 3-7 times increase of CO2		
					footprint.		

¹Goals and scope: 'Phase of life cycle assessment in which the aim of the study, and in relation to that, the breadth and depth of the study is established' ²Functional unit: Quantified description of the function of a product or process that serves as the reference basis for all calculations regarding impact assessment