Nierfunctievervangende therapie bij kritisch zieke IC-patiënten

Initiatief: NVIC Aantal modules: 7

Filteroverleving

Uitgangsvraag

Wat is de plaats van interventies om de filteroverleving te verbeteren bij kritisch zieke patiënten die continue nierfunctievervangende therapie ondergaan op de intensive care?

Aanbeveling

Kies voor regionale antistolling met citraat bij patiënten met continue nierfunctievervangende therapie op de intensive care om de filteroverleving te optimaliseren.

 

Overweeg met het oog op filteroverleving om continue nierfunctievervangende therapie te geven met CVVHD of CVVHDF in plaats van CVVH.

Overwegingen

Voor- en nadelen van de interventie en de kwaliteit van het bewijs

Voor nierfunctievervangende therapie bij IC-patiënten met acute nierinsufficiëntie (acute kidney injury, AKI) bestaan er risico’s op stolling in het extra-corporele systeem. Er is daarom literatuuronderzoek gedaan naar factoren die de levensduur van filters kunnen verlengen. Als cruciale uitkomstmaat is filteroverlevingsduur gedefinieerd. Daarnaast is gekeken naar de belangrijke uitkomstmaten mortaliteit, herstel van nierfunctie en transfusiebehoefte. In Nederland worden filters doorgaans niet langer gebruikt dan de gegarandeerde 72 uur. Elders worden filters soms langer ingezet, zodat in verschillende studies langere filterduur dan 72 uur worden beschreven (Kutsogiannis, 2005; Monchi, 2004; Wu, 2015).

 

Ten eerste is een vergelijking gemaakt tussen antistolling met citraat versus antistolling met heparine. Daarnaast is gekeken naar niet-farmacologische factoren op het gebied van filteroverleving die beschreven zijn in gerandomiseerd onderzoek.

 

Antistolling

Bij de vergelijking tussen citraat en met heparine, lijkt op basis van een meta-analyse van dertien gerandomiseerde studies filteroverlevingsduur langer bij antistolling met citraat (lage bewijskracht). Er lijkt geen effect te zijn op mortaliteit en transfusie. Herstel van nierfunctie werd niet gerapporteerd in de geïncludeerde literatuur.

 

Op basis van de literatuur zou de voorkeur uitgaan naar antistolling met citraat, met een lage algehele bewijskracht. In Nederland is de gangbare manier van antistolling tijdens continue nierfunctievervangende therapie regionale citraatantistolling. De ervaring van de werkgroep is ook dat regionale citraatantistolling een effectieve en veilige manier van ontstollen is. De aanbeveling van de werkgroep is dan ook om regionale citraatantistolling te gebruiken bij continue nierfunctie vervangende technieken.  

 

De dosis van regionale citraatantistolling is in de huidige richtlijn niet onderzocht. Er is veel spreiding in het gebruik hiervan, waarbij historisch een hoge dosering citraat werd gebruikt en de tendens is om steeds lager te doseren, tot extreem laag bij patiënten met leverfalen. Bij het gebruik van regionale citraatantistolling kan postfilter geïoniseerd calcium bepaald en opgevolgd worden. In de literatuur wordt de accuraatheid van analysers om de lage waarden van het post filter geïoniseerd calcium te meten echter bediscusseerd, omdat deze analysers geijkt zijn op de fysiologische range van het geïoniseerd calcium (Schwarzer, 2015; D’Orazio, 2016). De ideale range van postfilter geïoniseerd calcium of de correlatie met stolling in het circuit is eveneens onduidelijk (Assefi, 2023; Thanapongsator, 2023).

Regionale citraat antistolling kan tot complicaties leiden, zoals citraattoxiciteit, metabole alkalose of elektrolytstoornissen. Deze ontstaan meestal geleidelijk in de loop van uren. Gebruikelijk is om twee tot viermaal per 24 uur lab-controles ter verrichten. Patiënten met verhoogd risico op citraatcomplicaties zoals patiënten met leverfalen zijn geëxcludeerd in een aantal studies. Ook een verhoogde bloedingsneiging of contra-indicaties voor heparinetoediening vormden exclusiecriteria in diverse studies.

 

Indien er toch redenen zijn om voor heparine antistolling te kiezen lijkt de locatie van heparine toediening enige invloed te hebben op de filteroverleving. Het toedienen van heparine prefilter lijkt tot een kortere overleving te leiden dan systemische toediening. De bewijskracht hiervan is zeer laag maar kan een overweging zijn bij de individuele patiënt (Shankaranarayanan, 2020). Bijwerkingen zoals bloedingen zullen aannemelijkerwijs meer optreden bij het gebruik van heparine gezien dit in de systemische circulatie terechtkomt.

Het ontwikkelen van heparin induced trombocytopenia and trombosis (HITT) komt frequenter voor bij het gebruik van ongefractioneerde heparine. De meeste patiënten zullen tijdens regionale citraatantistolling nog wel low molecular weight heparin (LMWH) krijgen waarbij er een (lager) risico op het ontwikkelen van HITT aanwezig is. Heparineresistentie kan ook optreden, waarbij het extracorporele systeem onvoldoende ontstold is, wat de filteroverleving nadelig zal beïnvloeden.

 

Niet-farmacologische factoren

Diverse studies vergeleken niet-farmacologische factoren die invloed hebben op filteroverleving, zoals modaliteit van de behandeling, en de eigenschappen van catheters, filters en membranen. Een meta-analyse beschreef 11 vergelijkingen in 20 gerandomiseerde onderzoeken. Conclusies zijn gebaseerd op een of slechts enkele studies, veelal van lage of zeer lage bewijskracht door beperkte patiëntaantallen, beperkingen in onderzoeksopzet en inconsistentie van de resultaten. De literatuur kon onvoldoende richting geven ten aanzien van oppervlaktemodificatie of lengte van de katheter. Voor deze factoren kan ook de werkgroep geen algemeen geldende voorkeur aangeven. De literatuur was ook zeer beperkt ten aanzien van pre- of postdilutie en bloedflow. Theoretisch kan beredeneerd worden dat een lagere bloedflow minder problemen geeft met aanvoer en afvoer wat de filteroverleving ten gunste komt. Anderzijds kan een hogere bloedflow bloedstase in het extracorporele systeem voorkomen wat weer een gunstig effect kan hebben op de filteroverleving. Studies die een hogere bloedflow vergelijken met een lagere laten ook controversiele uitkomsten zien ten aanzien van filteroverleving (Ramesh, 2000; Fealy, 2017).

Hetzelfde geldt voor pre- of postdilutie; het is te beredeneren dat predilutie filteroverleving ten goede komt, wat bevestigd wordt in twee studies (van der Voort, 2005; de Pont 2006). Voor de individuele patiënt kan dit meegenomen worden in de keuze van behandeling. 

 

Modaliteit

Bij de vergelijking tussen CVVHDF en CVVH lijkt eerstgenoemde filteroverlevingsduur te verlengen (lage bewijskracht), maar is het onduidelijk of dit effect heeft op herstel van nierfunctie (zeer lage bewijskracht).  De studies laten overigens geen verschil zien in renale prognose of mortaliteit.

 

De studies die verricht zijn, zijn lastig met elkaar te vergelijken. In de studie van Davies (2008) werd relatief hoog gedoseerd CVVH vergeleken met laag gedoseerd CVVHDF, waarbij mogelijk deze lage dosis ervoor zorgt dat de CVVHDF-filteroverleving beter lijkt. Een recente studie die niet geïncludeerd is in de huidige analyse, laat zien dat CVVHD een betere filteroverleving heeft dan CVVH (Mann, 2023). Een andere recente studie vond dat filteroverleving beter is met CVVHDF ten opzichte van CVVH (Xu, 2022).  CVVHD en CVVHDF zijn niet met elkaar vergeleken in de gevonden studies.

 

Katheterplaatsing

Bij een dialyselijn wordt meer katheterdysfunctie gezien (gedefinieerd als de noodzaak tot wisselen van katheter bij het niet in staat zijn om een adequate bloedflow te handhaven) als deze wordt geplaatst in de linker vena jugularis interna ten opzichte van de rechter of een van beide venae femorales (Parienti, 2010; Brain, 2017). Daarom valt te overwegen bij het plaatsen van een dialysekatheter om primair te kiezen voor de vena jugularis rechts of de vena femoralis in plaats van de jugularis links (zie ook de richtlijn Centraal veneuze lijn).

Ten aanzien van de lengte van de lijn lijkt de filteroverleving langer te zijn bij dialyselijnen in de vena jugularis waarbij de tip in het rechteratrium ligt. Dit is verwoord in de Cochrane review als katheters ≥ 20 cm (Tsujimoto, 2021). De werkgroep is van mening dat bij korte filteroverleving er bij de individuele patiënt gekeken kan worden naar de positie van de jugularislijn, waarbij (diepe) plaatsing met de tip bij het rechteratrium voordeel kan bieden. Op basis van klinische expertise is het raadzaam om bij plaatsing van de tip bij het rechter atrium een siliconencatheter te gebruiken indien mogelijk. Dit viel buiten de zoekstrategie en vloeit voort uit de expertise van de werkgroep.

 

Waarden en voorkeuren van patiënten (en evt. hun verzorgers)

De voorkeur van de patiënt en diens naasten is niet onderzocht. Aannemelijk is dat de voorkeur van een patiënt en diens naasten uitgaat naar een zo lang mogelijke filteroverleving. Het wisselen van het RRT-circuit kan belastend zijn voor een patiënt. Anderzijds zorgen alarmen voor onrust bij de patiënt. Ook kan een korte filteroverleving terughoudendheid met mobilisatie uitlokken, omdat daarmee uit voorzorg een trigger voor aanvoeralarmen en sneuvelen van het circuit weg te nemen.

 

Kosten (middelenbeslag)

Het advies om regionale citraatantistolling bij voorkeur te gebruiken zal geen impact hebben op de kosten in de Nederlandse zorg, omdat deze al wijdverbreid ingezet wordt. Ook de aanbeveling van de modaliteit zal beperkt invloed hebben op de zorgkosten.

 

Aanvaardbaarheid, haalbaarheid en implementatie

Een korte levensduur van het filter leidt tot meer downtime, wat professionals zoveel mogelijk willen voorkomen. De werkdruk wordt verhoogd indien frequent het filter vervangen dient te worden. Daarnaast is het frequent wisselen van het filter belastend voor het milieu vanwege verbruik van materialen. De verwachting is dan ook dat interventies die de levensduur van het filter verlengen de voorkeur verdienen. Citraat antistolling is in de Nederlandse context al zeer gebruikelijk, dus de implementatie hiervan zal naar verwachting geen problemen geven. Het wisselen van behandelmodaliteit bij een individuele patiënt zal alleen aanvaardbaar en haalbaar zijn als in het betreffende centrum voldoende ervaring en exposure is met die modaliteit. De andere interventies zijn te overwegen bij een individuele patiënt waarbij de filteroverleving kort is.

 

Antistolling

Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies

Op basis van de literatuur gaat de voorkeur voor antistolling bij continue nierfunctievervangende therapie uit naar citraat, met een lage algehele bewijskracht. In Nederland is de gangbare manier van antistolling tijdens continue nierfunctievervangende therapie regionale citraatantistolling. De ervaring van de werkgroep is ook dat regionale citraatantistolling een effectieve en veilige manier van ontstollen is. De aanbeveling van de werkgroep is dan ook om regionale citraatantistolling te gebruiken bij continue nierfunctie vervangende technieken.

 

Andere factoren

Rationale van de aanbeveling: weging van argumenten voor en tegen de interventie

In de literatuur zijn veel non-farmacologische interventies onderzocht waarvan redelijkerwijs te verwachten is dat zij voordeel bieden in filteroverleving. Gezien het beperkt aantal studies per onderdeel en de zwakke bewijskracht hiervan is het onzeker welk van deze interventies daadwerkelijk effect hebben. Kijkend naar de modaliteit lijkt de literatuur een voordeel te geven voor CVVHD of CVVHDF in plaats van CVVH. Dit komt overeen met de ervaring van de werkgroepleden in de praktijk. De aanbeveling is dan ook om CVVHD of CVVHDF te overwegen als modaliteit boven CVVH met het oog op filteroverleving.

Onderbouwing

Voor nierfunctievervangende therapie bij kritisch zieke patiënten op de intensive care (IC) bestaan er risico’s op stolling in het extra-corporele systeem. Wanneer er stolling optreedt in het filter wordt deze onbruikbaar en moet deze worden vervangen. Dit leidt tot extra bloedverlies bij de patiënt en een onderbreking van de therapie (ook wel downtime genoemd). Eveneens is het arbeidsintensief om een nieuwe set op te bouwen en zijn filters kostbaar. De fabrikant geeft voor een filter een maximale garantie van 72 uur, de ervaringen in de praktijk laten zien dat de gemiddelde filteroverleving minder lang is (uiteenlopend van 20 tot 50 uur).

Er zijn diverse adviezen om de filterduur te optimaliseren, onder te verdelen in medicamenteus (vorm van antistolling) en niet medicamenteus (positie dialysekatheter, behandelmodaliteit, specifieke instellingen). Uiteraard geldt ook bij continue nierfunctievervangende therapie (continuous renal replacement therapy, CRRT), dat bij frequente blootstelling aan het uitvoeren van de behandeling en goede kennis over de behandeling en apparatuur, er verwacht wordt dat de kwaliteit van de behandeling en filteroverleving beter zal zijn. In de loop der jaren is van diverse factoren onderzocht of deze de filterduur positief beïnvloeden. In deze richtlijnmodule zal ingegaan worden op de interventies en de kwaliteit van het onderzoek. Op basis hiervan zullen aanbevelingen worden gedaan om de filteroverleving te optimaliseren.

1. Anticoagulation

Critical outcome

Low GRADE

Citrate anticoagulation may improve filter lifespan when compared with heparin anticoagulation in ICU patients undergoing continuous renal replacement therapy.

 

Source: Li, 2022.

 

Important outcomes

Low GRADE

Citrate anticoagulation may have little to no effect on mortality when compared with heparin anticoagulation in ICU patients undergoing continuous renal replacement therapy.

 

Source: Li, 2022.

 

No GRADE

No evidence was found regarding the effect of citrate anticoagulation on recovery of renal function when compared with heparin anticoagulation in ICU patients undergoing continuous renal replacement therapy.

 

Low GRADE

Citrate anticoagulation may have little to no effect on transfusion when compared with heparin anticoagulation in ICU patients undergoing continuous renal replacement therapy.

 

Source: Li, 2022.

 

2. Non-pharmacological interventions

2.1 Modality, CVVHD versus CVVH/CVVHDF

No GRADE

No evidence was found regarding the effect of CVVHD on circuit lifespan when compared with CVVH or CVVHDF in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

Very low GRADE

The evidence is very uncertain about the effect of CVVHD on mortality at 24 hours to 90 days when compared with CVVH or CVVHDF in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

Very low GRADE

The evidence is very uncertain about the effect of CVVHD on recovery of renal function at ICU discharge when compared with CVVH or CVVHDF in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of CVVHD on need for transfusion when compared with CVVH or CVVHDF in ICU patients undergoing continuous renal replacement therapy.

 

2.1 Modality, CVVHDF versus CVVH

Low GRADE

CVVHDF may increase filter lifespan when compared with CVVH in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of CVVHDF on mortality when compared with CVVH in ICU patients undergoing continuous renal replacement therapy.

 

Very low GRADE

The evidence is very uncertain about the effect of CVVHDF on recovery of renal function when compared with CVVH in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of CVVHDF on need for transfusion when compared with CVVH in ICU patients undergoing continuous renal replacement therapy.

 

2.2 Pre-dilution versus post dilution

Low GRADE

Pre-dilution may increase filter lifespan when compared with post-dilution in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of pre-dilution on mortality when compared with post-dilution in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of pre-dilution on recovery of renal function when compared with post-dilution in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of pre-dilution on need for transfusion when compared with post-dilution in ICU patients undergoing continuous renal replacement therapy.

 

2.3 Blood flow

Low GRADE

Higher blood flow may have little to no effect on filter lifespan when compared with standard blood flow in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of higher blood flow on mortality when compared with standard blood flow in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of higher blood flow on recovery of renal function when compared with standard blood flow in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of higher blood flow on need for transfusion when compared with standard blood flow in ICU patients undergoing continuous renal replacement therapy.

 

2.4 Catheter length

Low GRADE

Longer catheters (>20 cm) may increase filter lifespan when compared with short catheters (<20 cm) in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

Very low GRADE

The evidence is very uncertain about the effect of longer catheters on mortality when compared with short catheters in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of longer catheters on recovery of renal function when compared with short catheters in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of longer catheters on need for transfusion when compared with short catheters in ICU patients undergoing continuous renal replacement therapy.

 

1.5   Surface modification

Low GRADE

Surface-modified double-lumen catheters may increase filter lifespan when compared with standard double-lumen catheters in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

Very low GRADE

The evidence is very uncertain about the effect of surface-modified double-lumen catheters on mortality when compared with standard double-lumen catheters in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

Low GRADE

Surface-modified double-lumen catheters may have little to no effect on recovery of renal function when compared with standard double-lumen catheters in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of surface-modified double-lumen catheters on need for transfusion when compared with standard double-lumen catheters in ICU patients undergoing continuous renal replacement therapy.

 

2.6 Type of membrane

Low GRADE

Polyethylenimine-treated AN69ST membranes may have little to no effect on filter lifespan when compared with other membranes in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of polyethylenimine-treated AN69ST membranes on mortality when compared with other membranes in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of polyethylenimine-treated AN69ST membranes on recovery of renal function when compared with other membranes in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of polyethylenimine-treated AN69ST membranes on need for transfusion when compared with other membranes in ICU patients undergoing continuous renal replacement therapy.

 

2.7 Type of hollow fibre filter, flat versus hollow

Very low GRADE

The evidence is very uncertain about the effect of flat plate filter on filter lifespan when compared with hollow fibre filter (of the same membrane type) in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of flat plate filter on mortality when compared with hollow fibre filter (of the same membrane type) in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of flat plate filter on recovery of renal function when compared with hollow fibre filter (of the same membrane type) in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of flat plate filter on need for transfusion when compared with hollow fibre filter (of the same membrane type) in ICU patients undergoing continuous renal replacement therapy.

 

2.7 Type of hollow fiber filter, more and shorter fibers (7168 * 21 cm) versus standard

Low GRADE

Filters with more and shorter hollow fibers may increase filter lifespan when compared with standard hollow fiber filters in ICU patients undergoing continuous renal replacement therapy.

 

Source: Tsujimoto, 2021.

 

No GRADE

No evidence was found regarding the effect of filters with more and shorter hollow fibers on mortality when compared with standard hollow fiber filters in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of filters with more and shorter fibers on recovery of renal function when compared with standard hollow fiber filters in ICU patients undergoing continuous renal replacement therapy.

 

No GRADE

No evidence was found regarding the effect of filters with more and shorter hollow fibers on need for transfusion when compared with standard hollow fiber filters in ICU patients undergoing continuous renal replacement therapy.

Description of studies

1. Anticoagulation

The systematic review and meta-analysis by Li (2022) compared the efficacy and safety of citrate and heparin in CRRT for critically ill patients. The review searched the PubMed, Embase, and Cochrane Library databases from database inception until September 2021 for relevant studies, including RCTs comparing anticoagulation with citrate versus heparin in CRRT. The inclusion criteria were RCTs wherein the intervention was citrate or heparin anticoagulation and study participants were adults (aged >18 years). Thirteen RCTs were finally included with a total of 1612 patients. Study characteristics are outlined in table 1. Risk of bias of the review was low. However, risk of bias of most included studies was considered high, due to high or unclear allocation concealment, due to (possible) incomplete outcome data and because blinding of patients and medical staff was not possible.

 

Table 1. Study characteristics for anticoagulation

Study

Population

Comparison

Number of patients (citrate / heparin)

Severity (citrate / heparin)

Modality/replacement

dialysate fluid flow

Filter

Exclusion criteria

Betjes, 2007

Need for RRT; combined medical and surgical ICU, the Netherlands

Regional citrate (2.7 mmol/L blood flow,Srisawat

 ion Ca2+ 0.25– 0.35 mmol/L) vs. systemic heparin (bolus of 3000–5000 IU, maintained APTT at 50–70 s)

21 / 27

SAPS

51.4 / 51.0

CVVH; postdilution; Blood flow 150 ml/h; Fixed hemofiltration 1500 ml/h

High-flux triacetate hemofilter (UF-205; Nipro Corporation, Osaka, Japan)

Patients after cardiothoracic surgery; contraindication to heparin or citrate

Brain, 2014

AKI; ICU, Austria

Regional citrate (adjusted according to arterial ion Ca2+, serum ion Ca2+ 1.0– 1.35 mmol/L) vs. systemic heparin (bolus of 5000 IU, APTT maintained at 50 s)

19 / 11

APACHE

80 / 61

CVVHDF; predilution; Blood flow 191 ml/h (citrate)/217 ml/h (heparin)

ST-100; ST-150; M100

Contraindication to citrate or heparin, pregnancy, or lactation

Fealy, 2007

AKI; tertiary hospital ICU, Austria

Regional citrate (3.1 mmol/L of blood flow, serum ionized calcium 1.1– 1.3 mmol/L) vs. regional heparinization (1500 IU/h and protamine postfilter (15 mg/h)

10 / 10

SAPS

41 / 41

CVVH; predilution; Blood flow 150 ml/h; Fluid replacement 2000 ml/h

1.3 m2 APS650 polysulfone hollow fiber membrane (Asahi Medical, Tokyo, Japan)

Liver failure; hepatitis; contraindication to citrate or heparin

Gattas, 2015

AKI; ICU, Austria

regional citrate (2.5– 3.3 mmol/L blood flow, serum ion Ca2+ 1.0–1.2 or 0.91–1.1 mmol/L) vs. reginal heparin (1000 or 1500 IU/h, protamine [15 or 10 mg/h])

105 / 107

APACHE

25.6 / 25.0

CVVHDF/CVVH; Predilution; Blood flow 150/200 ml/h

Aquarius or Prismaflex

Stay in ICU less than 24 h; age <18 years; pregnant or breastfeeding; ischemic hepatitis or liver failure; allergy to heparin or protamine; HIT; chronic kidney disease requiring dialysis prior to ICU admission.

Hetzel, 2011

AKI; university hospital ICU, Germany

Regional citrate (HF-citrate solution flow based on 42 ml/kg/h in predilution; Equivalent to ca. 4 mmol citrate per 1 L blood) vs. systemic Heparin (HFsolution flow based on 42 ml/kg/h in predilution)

87 / 83

SOFA

9.95 / 9.95

APACHE

21.8 / 22.04

CVVH; predilution; Blood/HF-solution flow 3:1

AV600S high-flux membrane, surface area 1.4 m2, Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany

Contraindications to either intervention, metabolic alkalosis, pregnancy or lactation, chronic dialysis, other therapeutic anticoagulation, HIT

Kutsogiannis, 2005

AKI; Tertiary and

community

hospital ICU, Canada

Regional citrate (maintain posthemofilter ion Ca2+ 0.25 and 0.35 mmol/L) vs. systemic heparin (initial bolus of 50 U/kg, maintain APTT at 45–65 s)

16 / 14

LODC

7.75 / 9.42

CVVHDF; predilution; Blood flow 125 ml/min; Dialysate flow rates 1000 ml/hr; hemofiltration rates 1000 ml/h.

PRISMA M-100 AN69 (polyacrylonitrile) hemofilter

Liver failure; contraindication to citrate or heparin

Monchi, 2004

AKI; medical and

surgical ICU, Belgium

Regional citrate (starting rate of 4.3 mmol/1 of  blood flow, maintain the serum ionized calcium concentration below 0.3 mmol/1 in the circuit) vs.systemic heparin (infusion of heparin was commenced at an initial rate of 1000 U/ h, and adjusted between 500 and 2000 U/h to maintain APTT at 60–80 s)

8 / 12

SAPS

40 / 42

CVVH; postdilution; Blood flow 175 ml/min

1.6 m2 highly permeable polysulfone membrane

Cirrhosis, severe coagulopathy, high risk of bleeding

Oudemans-Van Straaten, 2009

AKI; teaching hospital ICU, the Netherlands

Regional citrate (3 mmol/L blood flow, serum ionized calcium 0.9–1.0 mmol/L) vs. systemic nadroparin (bolus of 2850 IU/h; maintenance of 380 IU/h, BW > 100 kg:3800 IU at initial, followed by 456 IU/ h)

97 / 103

SAPS

59 / 61

APACHE

28 / 28

CVVH; postdilution; Blood flow 220 ml/h; Filtrate flow of 4000 ml/h

1.9 m2 cellulose triacetate hollow fiber membrane (UF 205, Nipro, Osaka, Japan)

Cirrhosis, bleeding, HIT, chronic dialysis, contraindication to citrate or heparin; therapeutic anticoagulation

Schilder, 2014

AKI, uraemia, multiorgan failure; ICU, the Netherlands

Regional citrate (3 mmol/L blood flow, targeting systemic ionized calcium levels of 1.0–1.35 mmol/L) vs. systemic heparin (a heparin bolus of 5000 IU at the start of CVVH a separate heparin pump (20 000 IU/48 ml) (2.0 ml/h); APTT maintained at 50 s)

66 / 73

SOFA

10 / 11

APACHE

23 / 25

CVVH; predilution; Blood flow 180 ml/min

Not reported

High bleeding risk; other therapeutic anticoagulation; HIT

Stucker, 2015

AKI; University hospital ICU, Switzerland

regional citrate (adjust the citrate solution flow rate to the patients' blood flow rate to target a blood citrate concentration of 3 mmol/L, postfilter ion Ca2+ 0.25– 0.30 mmol/L) H: Systemic heparin (a minimal dose of 500 UI/h)

54 / 49

SOFA

63 / 65

APACHE

28 / 29

CVVHDF; 2/3 predilution and; Dialysate flow 10 ml/kg/h; Blood flow 100–200 ml/min

Biocompatible high-flux membrane measuring 1.5 m2 (ST-150; Gambro)

Hemorrhagic disorders; severe thrombocytopenia; heparin-induced thrombocytopenia; liver failure; liver transplantation

Wu, 2015

AKI; hospital ICU, China

Regional citrate (dose of 4 L/h with a fixed citrate infusion rate of 28 mmol/h) vs. systemic heparin (loading dose, 40 IU/kg; maintenance dose, 4 IU/kg per h)

15 / 19

APACHE

16.2 / 17.0

CVVH; Blood flow 180–200 ml/min

high flux AV600S (polysulfone, 1.4 m2, Fresenius Medical Care)

INR >1.8; PT >50% above the upper limit of normal values; PLT <50 x 109/L; liver failure; other therapeutic anticoagulation

Zarbock, 2020

AKI, sepsis, septic shock; 26 centers,

Germany

Regional citrate (30 ml/kg/ h, delivered dose: 20– 25 ml/kg/h; target ion Ca2+ 0.25–0.35 mmol/L) vs. systemic heparin (target APTT: 45–60 s)

300 / 296

SOFA

11.5 / 11.5

APACHE

28.4 / 28.5

CVVH/CVVHDF; postdilution; Blood flow 10 ml/h (citrate)/110 ml/h (heparin); Dialysate flow 1593.1 ml/h (citrate)/1603.2 ml/h (heparin)

Not reported

Bleeding risk or an active bleeding; disease or organ damage related to hemorrhagic diathesis; dialysis-dependent chronic kidney insufficiency; lactate acidosis; kidney transplant within the last 12 months; pregnant or breastfeeding; Abortus imminens

 

2. Non-pharmacological interventions

In a Cochrane review, Tsujimoto (2021) compared non-pharmacological interventions for preventing clotting of extracorporeal circuits during CRRT. The review searched the Cochrane Kidney and Transplant Register of Studies up to 25 January 2021 which includes records identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal, and ClinicalTrials.gov, and subsequently included all randomised controlled trials (RCTs) (parallel-group and cross-over studies), cluster RCTs and quasi-RCTs that examined non-pharmacological interventions to prevent clotting of extracorporeal circuits during CRRT. A total of 20 studies involving 1143 randomised participants were included in the review. Risk of bias of the review was low. However, the methodological quality of the included studies was low, mainly due to the unclear randomisation process and blinding of the intervention. The review found evidence on the following 11 comparisons: (i) continuous venovenous haemodialysis (CVVHD) versus continuous venovenous haemofiltration (CVVH) or continuous venovenous haemodiafiltration (CVVHDF); (ii) CVVHDF versus CVVH; (iii) higher blood flow (P 250 mL/minute) versus standard blood flow (< 250 mL/minute); (iv) Oxiris AN69 membrane (AN69ST) versus other membranes; (v) pre-dilution versus post-dilution; (vi) a longer catheter (>20 cm) placing the tip targeting the right atrium versus a shorter catheter (F 20 cm) placing the tip in the superior vena cava; (vii) surface-modified double-lumen catheter versus standard double-lumen catheter with identical geometry and flow design; (viii) single-site infusion anticoagulation versus double-site infusion anticoagulation; (ix) flat plate filter versus hollow fibre filter of the same membrane type; (x) a filter with a larger membrane surface area versus a smaller one; and (xi) a filter with more and shorter hollow fibre versus a standard filter of the same membrane type. Table 2 outlines the study characteristics.  Two studies reported in the review were excluded from the current analysis; Maxvold (2000) reported a pediatric population and Saudan (2006) compared 2 groups in which both modality and intensity were different (higher intensity CVVHDF versus lower intensity CVVH).

 

Table 2. Study characteristics for non-pharmacological interventions

Study

Population

Comparison

Number of patients (intervention / control)

Severity (intervention / control)

Anti-coagulationto

Alamartine, 1994

not reported; France

CVVHDF with convection that was obtained by a 2 L/hour pre-dilutional infusion vs. CVVHD without convection

7/6

APACHE 2 score: 24 ± 6 / 20 ± 4

Heparin, different between groups

Baldwin, 2002

critically ill patients with AKI requiring CKRT; Australia

1. Flat plate filter vs. hollow fibre filter of the same membrane type; 2. Administration of heparin equally divided into the venous air-chamber (50%) and into the standard prefilter port (50%) vs. complete (100%) infusion into the standard prefilter port alone; 3. filter with a larger membrane surface area (Filtral 12, Hospal, Lyon, France; surface area: 1.3 m2) vs. filter with a smaller membrane surface area (Filtral 8, Hospal, Lyon, France; surface area: 0.75 mR)

38

(cross-over RCT)

not reported

Heparin, predefined protocol

Broman, 2019

adult ICU patients who had septic shock, with a blood culture positive for a gramnegative

bacteria or suspected to be caused by a gram-negative agent; endotoxin level > 0.03 EU/mL;

associated KDIGO stage 3 AKI; Sweden

CVVHDF with an oXiris™ (AN69ST) filter vs. CVVHDF with a standard filter

16

(cross-over RCT)

SAPS 3: 73.8 ± 11.5

Not reported

Daud 2006

critically ill on ventilatory support in ICU or coronary care unit with AKI; Malaysia

CVVH with ultrafiltration of 2 L/hour vs. CVVHD with the dialysate outflow rate of 1.7 L/hour

11/9

SAPS 2: 65.1 ± 15.5 / 66.5 ± 11

Not reported

Davies, 2008

Inclusion criteria: ≥18 years of age admitted to the ICU requiring CKRT; Australia

CVVH with ultrafiltrate dose of 35 mL/kg/hour vs. CVVHDF with a fixed pre-dilution volume of 600 mL/hour replacement fluid with a dialysate dose of 1 L/hour

45

(cross-over RCT)

APACHE 2: 25.53 ± 6.2

Heparin, predefined protocol

De Pont, 2006

critically-ill adults with an indication for CKRT; the Netherlands

pre-dilution with the total flow through the haemofilter constant at 200 mL/min vs. post-dilution with the total flow through the haemofilter constant at 200 mL/min

8

(cross-over RCT)

APACHE 2: 23 ± 8

Heparin, equally administered to both arms

Dungen, 2001

adults in ICU with AKI due to septic shock; Germany

CVVH with handmade filter with more and shorter hollow fibres (number of hollow fibres, 7168; and length 21 cm) vs. CVVH with standard filter (number of hollow fibres, 4608; and length 30 cm)

6

(cross-over RCT)

APACHE 3: 57 (range 43 to 72)

No difference in anticoagulants

Fealy, 2007

critically ill in ICU and fulfilled 3 criteria: 1) ≥18 years; 2) AKI requiring CKRT; and 3)

vascular access was via the femoral vein for standardization; Australia

BFR: 250 mL/min vs. BFR: 150 mL/min

49/51

APACHE 3: 87.21 ± 26.28 / 85.65 ± 23.17

predefined ICU protocol

Kellum 1998

both severe SIRS and AKI who needed KRT; USA

CVVH with haemofiltration rate of 2 L/hour using a 0.6-m AN69 haemofilter vs. CVVHD with the dialysate outflow rate of 2 L/hour using a 0.6-m AN69 haemofilter

13

(cross-over RCT)

Not reported

Not reported

Meier, 2011

critically ill; ≥18 years; AKI defined according to the RIFLE classification; Switzerland

Film-coated domain structured (surface-modified) double lumen catheter (GamCath Dolphin® Protect

1320, Gambro, Hechingen, Germany) vs. Standard double lumen catheter (GamCath® GDK-1320, Gambro, Hechingen, Germany)

118/118

APACHE 2: 29 ± 8 / 28 ± 5

Heparin, different between groups

OMAKI 2012

critically ill adults (≥16 years) with AKI; Canada

CVVH vs. CVVHD

38/35

not reported

citrate

or unfractionated heparin

Plata-Menchaca 2017

critically ill adults with sepsis and AKI who met CKRT initiation criteria; Spain

CVVH + adsorption membrane (AN69-ST-150) vs. CVVHD + adsorption membrane (AN69-ST-150)

49/57

APACHE 2: 25 ± 9

not reported

RADICAL, 2012

critically ill adults requiring CKRT; Australia

Longer catheter: 20 cm if inserted in a right great thoracic vein and 24 cm if inserted in a left great thoracic vein vs. Shorter catheter: 15 cm if inserted through a right great thoracic vein and 20 cm if inserted through a left great thoracic vein

50/50

APACHE 2: 25 ± 7 / 26 ± 8

unfractionated heparin

Ramesh Prasad, 2000

receiving CVVHD in an ICU; USA

BFR was set at 200 to 250 mL/min and 100 mL fluid boluses were administered at 30-minute intervals vs. BFR was set at 125 mL/min and a prefilter flush with 0.9% saline or other electrolyte solution infused

as a 100 mL bolus once/hour

16/18

not reported

Use of anticoagulants was left to the discretion of the attending physician

Schetz, 2012

adults requiring CKRT and weighing between 30 and 120 kg; Belgium

AN69ST surface-treated membrane (ST100) vs. AN69 original membrane (M100)

19/20

APACHE 2: 26 ± 5

without systemic anticoagulant

Van der Voort, 2005

mechanically ventilated, in ICU with AKI who had not been treated with CVVH or HD before; the Netherlands

1. one filter run in pre-dilution CVVH vs. one filter run with systemic nadroparin (475 IU/hour by continuous infusion prefilter); 2. one filter run in post-dilution CVVH vs. one filter run with heparin (prefilter) and protamine (post-filter)

20/16; 20/15

APACHE 2:  median 27, IQR 22 to 37; 31, 23 to 37

Standardised protocol

Wynkel, 2004

critically ill patients with SAPS II scores < 85 and who were suffering from AKI; France

CVVHD vs. Pre-dilution CVVH or Post-dilution CVVH

18

(cross-over RCT)

SAPS 2: 59.5 ± 14.3

predefined anti-coagulation

Yin, 2015

ICU aged ≥16 years; meet CKRT treatment indications and cannot respond anticoagulation

with whole body; body weight 30 to 120 kg; China

Each study subject was treated with 4 filters: 2 AN69 ST membrane filters (A) and 2 conventional AN69 membrane filters (B); A-B-A-B sequential treatment vs. treatment in the order of B-A-B-A

17

(cross-over RCT)

APACHE 2): 18.53 ± 2.67

without systemic anticoagulant

 

  1. Anticoagulation

Results

 

Filter lifespan

Twelve studies reported filter lifespan (Figure 1). The mean difference (MD) between the anticoagulation interventions was 16.67 hours in favour of citrate, with a 95% confidence interval (CI) from 9.87 to 23.56 (N=1912 filters in the citrate group versus 2171 filters in the heparin group). The number of filters in the study by Zarbock was extracted from the original study, as an error was found in the meta-analysis. The difference was considered clinically relevant. In three studies (Kutsogiannis, 2005; Monchi, 2004; Wu, 2015), the filters were not routinely changed after 72 hours.

 

Figure 1. Filter lifespan with citrate versus heparin anticoagulation

Filter lifespan in hours. Random effects model. Z: p-value of pooled effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval.

 

Mortality

Nine studies reported mortality (Figure 2). Taken together, mortality was 327/765 (43%) in the citrate group, versus 341/763 (45%) in the heparin group. The risk ratio (RR) of 0.96, with a 95% confidence interval (CI) of 0.86 to 1.07, was not considered clinically relevant.

 

Figure 2. Mortality with citrate versus heparin anticoagulation

Random effects model. Z: p-value of pooled effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval.

 

Recovery of renal function

Li (2022) did not report recovery of renal function.

 

Need for transfusion

Five studies reported transfusion events (Figure 3). Transfusion was performed in 322/532 (61%) patients with citrate anticoagulation versus 319/538 (59%) with heparin treatment, resulting in a RR of 1.01 (95% CI 0.88 to 1.16). The difference in favour of citrate was not considered clinically relevant.

 

Figure 3. Transfusions with citrate versus heparin anticoagulation

Random effects model. Z: p-value of pooled effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval.

 

Level of evidence of the literature

The level of evidence regarding all outcome measures was based on randomized controlled studies and therefore started at high.

 

For the outcome measure filter lifespan, the level of evidence was downgraded by 2 levels to LOW because of study limitations (high or unclear risk of bias in most studies for allocation concealment, incomplete outcome data and/or other bias, -1) and conflicting results (inconsistency, -1).

 

For the outcome measures mortality and transfusions, the level of evidence was downgraded by 2 levels to LOW because of study limitations (high or unclear risk of bias in most studies for allocation concealment, incomplete outcome data and other bias, -1) and because the confidence interval crossed the clinical decision threshold (imprecision, -1).

 

  1. Non-pharmacological interventions

Results

 

2.1 Modality

Circuit lifespan

When comparing CVVHDF versus CVVH, Davies (2008) reported a mean ± SD circuit lifespan of 18.7 ± 13.05 hours (N=31) versus 8.55 ± 5.58 hours (N=31), respectively, a mean difference of 10.15 (95% CI 5.15 to 15.15) in favor of CVVHDF. Notably, CRRT dose was lower in the CVVHDF group in this study.

 

Circuit lifespan for the comparison CVVHD versus CVVH or CVVHDF was not reported.

 

Mortality

Four studies reported mortality comparing treatment with CVVHD versus treatment with CVVH or CVVHDF. As presented in Table 3, all studies reported death at different time points. Taken together, the pooled RR was 0.76 (95% CI 0.41 to 1.39).

 

Table 3. Death from any cause

Study

Outcome

CVVHD

CVVH/CVVHDF

RR (95% CI)

events

total

events

total

Kellum 1998

Death at 24 hours

1

7

2

6

0.43 (0.05, 3.64)

OMAKI 2012

Death at 60 days

21

38

22

39

0.98 (0.66, 1.46)

Plata-Menchaca 2017

Death at 90 days

13

57

28

49

0.40 (0.23 , 0.68)

Daud 2006

Death in ICU

10

11

7

9

1.17 (0.79 , 1.74)

Pooled

Death from any cause

45

113

59

103

0.76 (0.41 , 1.39)

in favour of CVVHD

 

Recovery of renal function

Two studies reported recovery of renal function comparing treatment with CVVHD versus treatment with CVVH or CVVHDF. Daud (2006) found recovery in 1/11 patients treated with CVVHD versus 1/9 patients treated with CVVH/CVVHDF. The OMAKI trial (2012) reported recovery in 7/38 patients in the CVVHD group versus 7/35 in the CVVH/CVVHDF group.

 

Need for transfusion

Tsujimoto (2021) did not report need for transfusion.

 

2.2 Pre-dilution versus post dilution

Circuit lifespan

Two studies reported circuit lifespan comparing pre-dilution and post dilution (as defined by study investigators). Van der Voort (2005) reported 36.6 ± 25.7 hours (N=16) in the pre-dilution group versus 20.9 ± 20.7 hours (N=16) in the post dilution group (MD 15.70, 95% CI -0.47, 31.87). For the same comparison, de Pont (2006) reported 27.5 ± 9.8 (N=8) versus 24 ± 18.7 (N=7), respectively (MD 3.50, 95% CI -11.91 to 18.91).

 

Mortality

The studies did not report mortality for this comparison.

 

Recovery of renal function

The studies did not report recovery of renal function for this comparison.

 

Need for transfusion

Tsujimoto (2021) did not report need for transfusion.

 

2.3 Blood flow

Circuit lifespan

Two studies reported circuit lifespan comparing higher blood flow with normal blood flow. Ramesh Prasad (2000) found a mean ± SD circuit lifespan of 24 ± 8.6 hours with higher blood flow (N=60) versus 21 ± 13.4 hours with normal blood flow (N=70). In contrast, Fealy (2017) reported 12.2 ± 8.6 hours with higher blood flow (N=173) versus 13.3 ± 13.4 hours with normal blood flow (N=196).

 

Mortality

The studies did not report mortality for this comparison.

 

Recovery of renal function

The studies did not report recovery of renal function for this comparison.

 

Need for transfusion

Tsujimoto (2021) did not report need for transfusion.

 

2.4 Catheter length

One study (RADICAL, 2012) compared longer (> 20 cm) versus shorter (≤ 20 cm) catheter length.

 

Circuit lifespan

Mean ± SD circuit lifespan in the RADICAL trial (2012) was 24 ± 30.1 hours with long catheters (N=166) versus 17.5 ± 16.1 with short catheters (N=236), resulting in a mean difference of 6.50 (95% CI 1.48 to 11.52).

 

Mortality

The RADICAL trial (2012) reported death from any cause at day 28 and found 11/47 events (23%) in the long catheter group versus 8/47 (17%) in the short catheter group, resulting in a RR of 1.38 in favor of shorter catheters (95% CI 0.61 to 3.11).

 

Recovery of renal function

The study did not report recovery of renal function for this comparison.

 

Need for transfusion

Tsujimoto (2021) did not report need for transfusion.

 

2.5 Surface modification

Meier (2011) compared surface-modified versus standard double-lumen catheter with identical geometry and flow design.

 

Circuit lifespan

Circuit lifespan was 134 ± 12.7 hours when surface-modified catheters were used (N=126), versus 118 ± 7.0 hours for standard catheters (N=136), with a MD of 16 (95% CI 13.49 to 18.51).

 

Mortality

Meier (2011) reported death from any cause at day 28 and found 42/118 events (36%) in the surface-modified group versus 39/118 (33%) in the standard catheter group, resulting in a RR of 1.08 in favor of standard surface (95% CI 0.76 to 1.53).

 

Recovery of renal function

Meier (2011) reported recovery of renal function in 53/118 patients (45%) with surface-modified catheters versus 58/118 (49%) with standard catheters, resulting in a RR of 0.91 (95% CI 0.70 to 1.20).

 

Need for transfusion

Tsujimoto (2021) did not report need for transfusion.

 

2.6 Type of membrane

Circuit lifespan

Yin (2015) and Schetz (2012) compared polyethylenimine-treated AN69 membrane (AN69ST) versus other membranes, and reported increased circuit lifespan with the AN69ST membrane of 3.60 hours (95% CI -8.22 to 15.42) and 0.80 hours (95% CI -6.27 to 7.87), respectively. The differences were not considered clinically relevant.

 

Mortality

The outcome mortality was not reported for this comparison.

 

Recovery of renal function

The outcome recovery of renal function was not reported for this comparison.

 

Need for transfusion

Tsujimoto (2021) did not report need for transfusion.

 

2.7 Type of hollow fibre filter

Circuit lifespan

Baldwin (2002) compared flat plate versus hollow fibre filter of the same membrane type and reported a difference of -1.40 (95% CI -12.12 to 9.32) in favour of hollow filter. The difference was not considered clinically relevant. Dungen (2001) compared handmade filters with more fibers (7168) of shorter length (21 cm) versus standard hollow fibre filters of the same membrane type, and reported increased circuit lifespan with more and shorter filter of 5.87 hours (95% CI 1.56 to 10.18) compared to the standard filter. The difference was considered clinically relevant.

 

Mortality

The outcome mortality was not reported for this comparison.

 

Recovery of renal function

The outcome recovery of renal function was not reported for this comparison.

 

Need for transfusion

Tsujimoto (2021) did not report need for transfusion.

 

Level of evidence of the literature

The level of evidence regarding all outcome measures was based on randomized controlled studies and therefore started at high.

 

2.1 Modality, CVVH versus CVVH/CVVHDF

For the outcome measures filter lifespan and need for transfusion, the level of evidence could not be graded due to a lack of data.

 

For the outcome measure mortality, the level of evidence was downgraded to VERY LOW due to study limitations (risk of bias, -1), conflicting results (inconsistency, -1), and very serious imprecision (-2).

 

For the outcome measure recovery of renal function, the level of evidence was downgraded with 3 levels to VERY LOW due to study limitations (high or unclear risk of bias, -1) and very serious imprecision (-2).

 

CVVHDF versus CVVH

For the outcome measure filter lifespan, the level of evidence was downgraded with 2 levels to LOW due to study limitations (risk of bias, -1) and conflicting results (inconsistency, -1).

 

For the outcome measure mortality, the level of evidence was downgraded with 3 levels to VERY LOW due to study limitations (risk of bias, -1), serious imprecision (-1) and concerns for publication bias (-1).

 

For the outcome measure recovery of renal function, the level of evidence was downgraded with 3 levels to VERY LOW due to serious study limitations (risk of bias, participants were excluded from analyses if died, -2) and serious imprecision (-1).

 

For the outcome measure need for transfusion, the level of evidence could not be graded due to a lack of data.

 

2.2 Pre-dilution versus post dilution

For the outcome measure filter lifespan, the level of evidence was downgraded with 2 levels to LOW due to study limitations (risk of bias, -1) and serious imprecision (-1).

 

For the outcome measures mortality, recovery of renal function and need for transfusion, the level of evidence could not be graded due to a lack of data.

 

2.3 Blood flow

For the outcome measure filter lifespan, the level of evidence was downgraded with 2 levels to LOW due to study limitations (risk of bias, -1) and conflicting results (inconsistency, -1).

 

For the outcome measures mortality, recovery of renal function and need for transfusion, the level of evidence could not be graded due to a lack of data.

 

2.4 Catheter length

For the outcome measure filter lifespan, the level of evidence was downgraded with 2 levels to LOW due to study limitations (risk of bias, -1) and serious imprecision (-1).

 

For the outcome measure mortality, the level of evidence was downgraded with 3 levels to VERY LOW due to serious indirectness (used ICU death as a surrogate endpoint, -1) and very serious imprecision (-2).

 

For the outcome measures recovery of renal function and need for transfusion, the level of evidence could not be graded due to a lack of data.

 

2.5 Surface modification

For the outcome measures filter lifespan and recovery of renal function, the level of evidence was downgraded with 2 levels to LOW due to study limitations (risk of bias, -1) and serious imprecision (-1).

 

For the outcome measure mortality, the level of evidence was downgraded with 3 levels to VERY LOW due to study limitations (risk of bias, -1), serious indirectness (used ICU death as a surrogate endpoint, 1) and serious imprecision (-1).

 

For the outcome measure need for transfusion, the level of evidence could not be graded due to a lack of data.

 

2.6 Type of membrane

For the outcome measure filter lifespan, the level of evidence was downgraded with 2 levels to LOW due to very serious imprecision (-2).

 

For the outcome measures mortality, recovery of renal function and need for transfusion, the level of evidence could not be graded due to a lack of data.

 

2.7 Type of hollow fibre filter, flat versus hollow

For the outcome measure filter lifespan, the level of evidence was downgraded with 3 levels to VERY LOW due to study limitations (risk of bias, -1) and very serious imprecision (-2).

 

For the outcome measures mortality, recovery of renal function and need for transfusion, the level of evidence could not be graded due to a lack of data.

 

2.7 Type of hollow fibre filter, more and shorter versus standard

For the outcome measure filter lifespan, the level of evidence was downgraded with 2 levels to LOW due to study limitations (risk of bias, -1) and serious imprecision (-1).

 

For the outcome measures mortality, recovery of renal function and need for transfusion, the level of evidence could not be graded due to a lack of data.

A systematic review of the literature was performed to answer the following questions:

1. What are the benefits and harms of citrate anticoagulation when compared with heparin coagulation during continuous renal replacement therapy (CRRT)?

 

P: patients with acute kidney injury (AKI) undergoing continuous renal replacement therapy

I: citrate anticoagulation

C: heparin anticoagulation

O: filter lifespan, mortality, recovery of renal function, need for transfusion

 

2. Which non-pharmacological interventions are effective in increasing the extracorporeal circuit lifespan and mortality during CRRT?

 

P: patients with AKI undergoing continuous renal replacement therapy

I: presence of treatment factors affecting extracorporeal filter lifespan

C: absence of treatment factors affecting extracorporeal filter lifespan

O: filter lifespan, mortality, recovery of renal function, need for transfusion

 

Relevant outcome measures

The guideline development group considered circuit lifespan as a critical outcome measure for decision making; and mortality, recovery of renal function and need for transfusion as important outcome measures for decision making.

 

The working group did not define the outcome measure listed above a priori, but followed the definitions used in the studies.

 

The working group defined 5 hours as a minimal clinically patient important difference for filter lifespan, and 10% (0.9 < RR < 1.1) for mortality, recovery of renal function and need for transfusion.

 

Search and select (Methods)

The search was combined for both PICOs. Although the second search question is prognostic in nature, the working group decided to look for strategies to increase filter lifespan already investigated in clinical trials, as reported in meta-analyses of RCTs. As such, the body of evidence may not be completely up to date, but it allows a broader overview of relevant strategies tested in clinical trials.

 

On the 30th of November 2022, relevant search terms were used to search for systematic reviews about the effects of anticoagulation and nonpharmacological interventions on the lifespan of filters used for critically ill patients receiving CRRT in the databases Embase.com and Ovid/Medline. The search resulted in 222 unique hits.

 

Studies were selected based on the following criteria: meta-analysis of RCTs investigating the effect of anticoagulation or non-pharmacological interventions on filter lifespan. Based on title and abstract screening, nine studies were initially selected. After reading the full text, seven studies were excluded (see the table with reasons for exclusion under the tab Methods), and two studies were included.

 

Results

Two studies were included in the analysis of the literature. Important study characteristics and results are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.

  1. Assefi M, Leurent A, Blanchard F, Quemeneur C, Deransy R, Monsel A, Constantin JM. Impact of increasing post-filter ionized calcium target on filter lifespan in renal replacement therapy with regional citrate anticoagulation: A before-and-after study. J Crit Care. 2023 Dec;78:154364. Doi: 10.1016/j.jcrc.2023.154364. Epub 2023 Jun 26. PMID: 37379797.
  2. Davies HT, Leslie G, Pereira SM, Webb SA. A randomized comparative crossover study to assess the aKect on circuit life of varying pre-dilution volume associated with CVVH and CVVHDF. International Journal of Artificial Organs 2008;31(3):221-7. [MEDLINE: 18373315]
  3. D'Orazio P, Visnick H, Balasubramanian S. Accuracy of commercial blood gas analyzers for monitoring ionized calcium at low concentrations. Clin Chim Acta. 2016 Oct 1;461:34-40. Doi: 10.1016/j.cca.2016.07.010. Epub 2016 Jul 19. PMID: 27451145.
  4. Dissanayake CU, Bharat CI, Roberts BL, Anstey MH. A cost comparison of regional citrate versus low-dose systemic heparin anticoagulation in continuous renal replacement therapy. Anaesth Intensive Care. 2019 May;47(3):281-287. Doi: 10.1177/0310057X18824596. Epub 2019 Jun 13. PMID: 31195799.
  5. Kutsogiannis DJ, Gibney RT, Stollery D, Gao J. Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int. 2005;67(6): 2361-7.
  6. Li R, Gao X, Zhou T, Li Y, Wang J, Zhang P. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: A meta-analysis of randomized controlled trials. Ther Apher Dial. 2022 Dec;26(6):1086-1097. Doi: 10.1111/1744-9987.13850. Epub 2022 Apr 20. PMID: 35385216.
  7. Mann L, Ten Eyck P, Wu C, Story M, Jenigiri S, Patel J, Honkanen I, O'Connor K, Tener J, Sambharia M, Fraer M, Nourredine L, Somers D, Nizar J, Antes L, Kuppachi S, Swee M, Kuo E, Huang CL, Jalal DI, Griffin BR. CVVHD results in longer filter life than pre-filter CVVH: Results of a quasi-randomized clinical trial. PloS One. 2023 Jan 11;18(1):e0278550. Doi: 10.1371/journal.pone.0278550. PMID: 36630406; PMCID: PMC9833553.
  8. Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30(2):260–5.
  9. Morgan D, Ho K, Murray C, Davies H, Louw J. A randomized trial of catheters of different lengths to achieve right atrium versus superior vena cava placement for continuous renal replacement therapy. Am J Kidney Dis Off J Natl Kidney Found. 2012;60:272–9
  10. Schwarzer P, Kuhn SO, Stracke S, Gründling M, Knigge S, Selleng S, Helm M, Friesecke S, Abel P, Kallner A, Nauck M, Petersmann A. Discrepant post filter ionized calcium concentrations by common blood gas analyzers in CRRT using regional citrate anticoagulation. Crit Care. 2015 Sep 8;19(1):321. Doi: 10.1186/s13054-015-1027-1. PMID: 26353802; PMCID: PMC4563947.
  11. Shankaranarayanan D, Muthukumar T, Barbar T, Bhasin A, Gerardine S, Lamba P, Leuprecht L, Neupane SP, Salinas T, Shimonov D, Varma E, Liu F. Anticoagulation Strategies and Filter Life in COVID-19 Patients Receiving Continuous Renal Replacement Therapy: A Single-Center Experience. Clin J Am Soc Nephrol. 2020 Dec 31;16(1):124-126. Doi: 10.2215/CJN.08430520. Epub 2020 Sep 17. PMID: 32943397; PMCID: PMC7792651.
  12. Thanapongsatorn P, Sinjira T, Kaewdoungtien P, Kusirisin P, Kulvichit W, Sirivongrangson P, Peerapornratana S, Lumlertgul N, Srisawat N. Standard versus no post-filter ionized calcium monitoring in regional citrate anticoagulation for continuous renal replacement therapy (NPC trial). Clin Kidney J. 2023 Mar 31;16(9):1469-1479. Doi: 10.1093/ckj/sfad069. PMID: 37664560; PMCID: PMC10468745.
  13. Tsujimoto Y, Miki S, Shimada H, Tsujimoto H, Yasuda H, Kataoka Y, Fujii T. Non-pharmacological interventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy. Cochrane Database Syst Rev. 2021 Sep 14;9(9):CD013330. doi: 10.1002/14651858.CD013330.pub2. PMID: 34519356; PMCID: PMC8438600.
  14. Wu B, Zhang K, Xu B, Ji D, Liu Z, Gong D. Randomized controlled trial to evaluate regional citrate anticoagulation plus low-dose of Dalteparin in continuous Veno-venous hemofiltration. Blood Purif. 2015;39(4):306-12.
  15. Xu Q, Jiang B, Li J, Lu W, Li J. Comparison of filter life span and solute removal during continuous renal replacement therapy: convection versus diffusion - A randomized controlled trial. Ther Apher Dial. 2022 Oct;26(5):1030-1039. doi: 10.1111/1744-9987.13787. Epub 2022 Jan 12. PMID: 34967496.

Evidence table for systematic review of RCTs and observational studies (intervention studies)

 

Study reference

Study characteristics

Patient characteristics

Intervention (I)

Comparison / control (C)

 

Follow-up

Outcome measures and effect size

Comments

Li, 2022

Meta-analysis of RCTs

 

Literature search up to September 2021

 

A: Zarbock, 2020

B: Gattas, 2015

C: Stucker, 2015

D: Buyun Wu, 2015

E: Brain, 2014

F: Schilder, 2014

G: Hetzel, 2011

H: Tiranathanagul, 2011

I: Oudemans-van Straaten, 2009

J: Fealy, 2007

K: Betjes, 2007

L: Kutsogiannis, 2005

M: Monchi, 2004

 

Study design: RCT

 

Setting and Country:

A: Germany, 26 centers across Germany

B: Australia, ICUs of seven hospitals

C: Switzerland, The Geneva University

Hospitals ICU

D: China, ICU of Jinling Hospital (Nanjing, China)

E: Australia, A large metropolitan ICU

F: Netherlands, 10 ICUs in the Netherlands

G: Germanry, Nine intensive care units at university hospitals in Germany

H: Thailand, Adult mixed ICU

I: Netherlands, ICU of a teaching hospital

J: Australia, ICU of tertiary hospital

K: Netherlands, combined medical and surgical ICU

L: Canada, Tertiary and community hospital ICU

M: Belgium, 32-Bed medical and surgical ICU

 

Source of funding and conflicts of interest:

The source of funding was not reported. The authors reported there were no conflicts of interest to declare.

Inclusion criteria

SR: RCTs wherein the intervention was citrate or heparin anticoagulation and study participants were adults (aged >18 years).

 

Exclusion criteria

SR: patients with

liver failure or hemorrhagic disease, duplicate reports, or

poor-quality studies. Studies in which required data could

not be extracted from the published results were also

excluded.

 

13 studies included

 

Important patient characteristics at baseline

N, mean age intervention; N, mean age comparison:

A: I: 300 patients, 67.5 yrs; C: 296 patients, 67.6 yrs

B: I: 105 patients, 66.4 yrs; C: 107 patients, 66.8 yrs

C: I: 54 patients, 60 yrs; C: 49 patients,65 yrs

D: I: 15 patients, 48.1 yrs; C: 19 patients, 45.2 yrs

E: I: 19 patients, 64 yrs; C: 11 patients, 55 yrs

F: I: 66 patients, 67 yrs; C: 73 patients, 67 yrs

G: I: 87 patients, 61.72 yrs; C: 83 patients, 65.11 yrs

H: I: 10 patients, 69.5 yrs; C: 10 patients 75.5 yrs

I: I: 97 patients, 73 yrs; C: 103 patients, 73 years

J: I: 10 patients, 70.5 yrs; C: 10 patients, 70.5 yrs

K: I: 21 patients, 57.8 yrs; C: 27 patients, 55.2 yrs

L: I: 16 patients, 66.5 yrs; C: 14 patients, 63.9 yrs

M: I: 8 patients, 67 yrs; C: 12 patients, 64 yrs

 

Sex:

Not reported.

 

 

Disease:

A: AKI, Sepsis, Septic shock

B: AKI

C: AKI, kidney failure

D: AKI

E: AKI

F: AKI, Uraemia, Multiorgan failure

G: AKI

H: AKI

I: AKI

J: AKI

K: need for RRT

L: AKI

M: AKI

 

Severity:

A: SOFA

I: 11.5 ± 3.0

C: 11.5 ± 3.0

APACHE

I:28.4 ± 6.9

C:28.5 ± 7.1

B: APACHE

I:25.6 ± 7.6

C:25.0 ± 6.9

C: SOFA

I: 63 ± 18

C: 65 ± 18

APACHE

I: 28 ± 9

C: 29 ± 9

D: APACHE

I:16.2 ± 3.6

C:17. ± 3.5

E: APACHE

I:80 (58–99)

C:61 (52.5–91.5)

F: SOFA

I:10 (2–19)

C:11 (3–18)

APACHE

I:23 (11–53)

C:25(6–43)

G: SOFA

I: 9.95 ± 2.95

C: 9.95 ± 2.59

APACHE

I: 21.8 ± 5.1

C: 22.04 ± 5.5

H: APACHE

I:21 (18–29)

C:22 (15–29)

I: SAPS

I: 59 (55–62)

C: 61(58–64)

APACHE

I: 28 (27–30)

C: 28 (27–29)

J: SAPS

I: 41 (31–43)

C: 41 (31–43)

K: SAPS

I: 51.4 ± 4.1

C: 51.0 ± 2.6

L: LODC

I:7.75 ± 3.53

C:9.42 ± 2.31

M: SAPS

I: 40 (31–53)

C: 42 (33–55)

 

Modality:

A: CVVH/CVVHDF

B: CVVHDF/CVVH

C: CVVHDF

D: CVVH

E: CVVHDF

F: CVVH

G: CVVH

H: CVVH

I: CVVH

J: CVVH

K: CVVH

L: CVVHDF

M: CVVH

 

Intervention:

Citrate anticoagulation

 

A: regional citrate (30 ml/kg/h, delivered dose: 20–25 ml/kg/h; target ion Ca2+ 0.25–0.35 mmol/L)

B: regional citrate (2.5–3.3 mmol/L blood flow, serum ion Ca2+ 1.0–1.2 or 0.91–1.1 mmol/L)

C: regional citrate (adjust the citrate solution flow rate to the patients' blood flow rate to target a blood citrate concentration of 3 mmol/L, postfilter ion Ca2+ 0.25–0.30 mmol/L)

D: regional citrate (dose of 4 L/h with a fixed citrate infusion rate of 28 mmol/h)

E: regional citrate (adjusted according to arterial ion Ca2+, serum ion Ca2+ 1.0–1.35 mmol/L)

F: regional citrate (3 mmol/L blood flow, targeting systemic ionized calcium levels of 1.0–1.35 mmol/L)

G: regional citrate (HF-citrate solution flow based on 42 ml/kg/h in predilution; Equivalent to ca. 4 mmol citrate per 1 L blood)

H: regional citrate (2.5 mmol/L blood flow, keep prefilter ion Ca2+ ranging 0.9–1.2 mmol/L)

I: regional citrate (3 mmol/L blood flow, serum ionized calcium 0.9–1.0 mmol/L)

J: regional citrate (3.1 mmol/L of blood flow, serum ionized calcium 1.1–1.3 mmol/L)

K: regional citrate (2.7 mmol/L blood flow, postfilter ion Ca2+ 0.25–0.35 mmol/L)

L: regional citrate (maintain post-hemofilter ion Ca2+ 0.25 and 0.35 mmol/L)

M: regional citrate (starting rate of 4.3 mmol/1 of blood flow, maintain the serum ionized calcium concentration below 0.3 mmol/1 in the circuit)

 

Comparison:

Heparin coagulation

 

A: systemic heparin (target APTT: 45–60 s)

B: Reginal heparin (1000 or 1500 IU/h, protamine [15 or 10 mg/h])

C: Systemic heparin (a minimal dose of 500 UI/h)

D: Systemic heparin (loading dose, 40 IU/kg; maintenance dose, 4 IU/kg per h)

E: Systemic heparin (bolus of 5000 IU, APTT maintained at 50 s)

F: Systemic heparin (a heparin bolus of 5000 IU at the start of CVVH a separate heparin pump (20 000 IU/48 ml) (2.0 ml/h); APTT maintained at 50 s

G: Systemic Heparin (HF-solution flow based on 42 ml/kg/h in predilution)

H: Systemic heparin (a bolus of 1000 IU and a continuous infusion of 500 IU/h to keep aPTT value of 1.5X)

I: Systemic nadroparin (bolus of 2850 IU/h; maintenance of 380 IU/h, BW > 100 kg:3800 IU at initial, followed by 456 IU/h)

J: regional heparinization (1500 IU/h and protamine postfilter (15 mg/h)

K: Systemic heparin (bolus of 3000–5000 IU, maintained APTT at 50–70 s)

L: Systemic heparin (initial bolus of 50 U/kg, maintain APTT at 45–65 s)

M: Systemic heparin (infusion of heparin was commenced at an initial rate of 1000 U/h, and adjusted between 500 and 2000 U/h to maintain APTT at 60–80 s)

 

End-point of follow-up:

A: 28 days/60 days/90 days/365 days.

B: Not reported.

C: 28/90 days

D: 90 days.

E: 28 days.

F: 90 days.

G: 30 days.

H: 60 days.

I: 90 days.

J: Not reported.

K: Not reported.

L: Discharge or death.

M: Not reported.

 

For how many participants were no complete outcome data available?

(intervention/control)

Not specified.

Filter life span:

Filter life span reported in hours. Citrate vs heparin: mean difference [95% CI].

A: 11.60 [7.42, 15.78]

B: 16.30 [15.01, 17.59]

C: 21.00 [10.94, 31.06]

D: -3.90 [-16.67, 8.87]

E: 3.30 [-5.57, 12.17]

F: 23.60 [14.92, 32.28]

G: 11.40 [5.07, 17.73]

H: Not reported.

I: 3.80 [-0.51, 8.11]

J: -0.50 [-6.54, 5.54]

K: -3.30 [-8.14, 1.54]

L: 83.80 [73.04, 94.56]

M: 49.70 [32.44, 66.96]

 

Analyses showed that the filter life was 16.98 h longer in the citrate group than in the heparin group without considering the renal replacement therapy mode (95% CI 9.04–24.92, p < 0.0001).

 

Mortality:

Citrate vs heparin (events/total): RR [95% CI]

 

A: (150/300 vs 156/296): 0.95 [0.81, 1.11]

B: (28/105 vs 25/107): 1.14 [0.72, 1.82]

C: (14/54 vs 14/49): 0.91 [0.48, 1.71]

D: Not reported.

E: (7/19 vs 3/11): 1.35 [0.44, 4.18]

F: (27/66 vs 29/73): 1.03 [0.69, 1.54]

G: (41/87 vs 34/83): 1.15 [0.82, 1.62]

H: Not reported.

I: (47/97 vs 65/103): 0.77 [0.60, 0.99]

J: Not reported.

K: (0/21 vs 3/11): 0.12 [0.01, 1.98]

L: (13/16 vs 10/14): 1.14 [0.76, 1.71]

M: Not reported.

 

There was no difference in mortality rates between the citrate and heparin groups (RR = 0.95, 95% CI 0.85–1.06, p = 0.40).

 

Recovery of renal function

Not reported.

 

Need for transfusion

Citrate vs heparin (events/total): OR [95% CI]

 

A: (197/293 vs 184/290): 1.18 [0.84, 1.66]

B: (52/101 vs 48/103): 1.22 [0.70, 2.11]

C: Not reported.

D: (8/15 vs 10/19): 1.03 [0.26, 3.99]

E: Not reported.

F: Not reported.

G: Not reported.

H: Not reported.

I: (56/97 vs 62/103): 0.90 [0.51, 1.59]

J: Not reported.

K: Not reported.

L: Not reported.

M: (9/26 vs 15/23): 0.28 [0.09, 0.92]

 

There was no significant difference in the number of transfusions between the two groups (RR = 1.05, 95% CI 0.82–1.34, p = 0.70).

Authors’ conclusion:

There was no difference in the effect of anticoagulation with citrate or heparin on mortality, circuit loss, or blood transfusion during continuous renal replacement therapy. Compared with heparin anticoagulation, citrate anticoagulation considerably extended the filter life and was associated with lower risks for bleeding and heparin-induced thrombocytopenia. Although citrate anticoagulation was associated with more episodes of hypocalcemia, it was easily controlled and did not have significant adverse effects. Therefore, citrate anticoagulant therapy should have priority for continuous renal replacement therapy in most critically ill patients.

 

Study reference

Study characteristics

Patient characteristics

Intervention (I)

Comparison / control (C)

 

Follow-up

Outcome measures and effect size

Comments

Tsujimoto, 2021

SR and meta-analysis of RCTs

 

Literature search up to 25 January 2021

 

A: Allamartine, 1994

B: Baldwin, 2002

C: Broman, 2019

D: Daud, 2006

E: Davies, 2008

F: De Pont, 2006

G: Dungen, 2001

H: Fealy, 2017

I: Kellum, 1998

J: Maxvold, 2000

K: Meier, 2011

L: Wald, 2012

M: Plata-Menchaca, 2017

N: Morgan, 2012

O: Ramesh Prasad, 2000

P: Saudan, 2006

Q: Schetz, 2012

R: Van der Voort, 2005

S: Wynckel, 2004

T: Yin, 2015

 

Study design: RCT

 

Setting and Country:

A: ICU, France

B: ICU, Australia

C: ICU, multicentre (number of sites not reported), Sweden.

D: ICU, multicentre, Malaysia

E: ICU, single centre, Australia

F: ICU, Netherlands

G: ICU, single centre, Germany

H: ICU, single centre, Australia

I: ICU, single centre, USA

J: single centre/paediatric ICU, USA

K: ICU, single centre, Switzerland

L: ICU, multicentre, Canada

M: ICU, multicentre (2 sites), Spain

N: ICU, single centre, Australia

O: ICU, single centre, USA

P: ICU, single centre, Switzerland

Q: ICU, single centre, Belgium

R: ICU, single centre, Netherlands

S: ICU, single centre, France

T: ICU, single centre, China

 

Source of funding and conflicts of interest:

 

Internal sources

• Kyoritsu Hospital, Japan: Salary to YT

• Sumitomo Hospital, Japan: Salary to SM

• Hyogo Prefectural Amagasaki General Medical Center, Japan: Salary to HS and YK

• Kameda Medical Center, Japan: Salary to HY

• Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University,

Australia: Salary to TF in 2019

• Jikei University Hospital, Jikei University School of Medicine, Japan: Salary to TF in 2020

 

External sources

• No sources of support provided.

 

Yasushi Tsujimoto, Sho Miki, Hiraku Tsujimoto, Hiroki Shimada, Hideto Yasuda and Yuki Kataoka declared that they have no conflict of interest. Tomoko Fujii: supported by Japan Society for the Promotion of Science (JSPS) and has received a grant from JSPS. JSPS played no role in the review design, collection, management, analysis, and interpretation of data, writing of the review or the decision to submit the review for editorial approval.

 

Inclusion criteria

SR:

People with AKI who received CKRT in the ICU settings regardless of age or sex. In this review, the author’s defined AKI according to the Kidney Disease: Improving Global Outcomes (KDIGO) definition and staging system.

 

Exclusion criteria

SR:

 

20 studies included

 

Important patient characteristics at baseline

N, mean age:

A: I: 7 patients, C: 6 patients, age not reported.

B: 38 patients, age not reported.

C: (randomised /analysed): 20/16, Mean age 69.4 yrs

D: I: 11 patients, 49.9 yrs; C: 9 patients, 52.0 yrs.

E: 45 patients, 56.7 yrs

F: 8 patients, 63 yrs

G: 6 patients, 66 yrs

H: I: 49 patients, 60.77 yrs; C: 51 patients, 61.08 yrs

I: 13 patients, age not reported.

J: 6 patients, 131.5 months

K: I: 118 patients, 55.4 yrs; C: 118 patients, 58.4 yrs

L: (randomised/ analysed): I: (39/38) patients, 64.3 yrs; C: (39/35) patients, 58.8 yrs

M: I: 49 patients, C: 57 patients, 64 yrs

N: I: 50 patients, 58 yrs, C: 50 patients, 60 yrs

O: I: 16 patients, 55.3 yrs; C: 18 patients, 57.7 yrs

P: I: 104 patients, 62 yrs; C: 102 patients, 65 yrs

Q: I: 19 patients, C: 20 patients, mean age 59.2 yrs

R: Study 1 (randomised/ analysed): 20/16 patients, median age 75 yrs. Study 2 (randomised/ analysed): 20/15, median age 68 yrs.

S: 18 patients, 61.2 yrs

T: 17 patients, 63.1 yrs

 

Sex:

A: Not reported.

B: Not reported.

C: (M/F): 10/6

D: (males): treatment group (63.6%); control group (55.6%)

E: (M/F): 24/21

F: (M/F): 3/5

G: (M/F): 5/1

H: (M/F): treatment group (24/23); control group (24/15)

I: Not reported.

J: (M/F): 2/4

K: (M/F): treatment group (67/51); control group (70/48)

L: (M/F): treatment group (22/16); control group (25/14)

M: (M/F): 70/36

N: (M/F): treatment group (30/17); control group (25/22)

O: (M/F): treatment group (12/4); control group (14/4)

P: (M/F): treatment group (57/47); control group (65/37)

Q: (M/F): 30/9

R: (M/F): study 1 (11/9); study 2 (9/11)

S: Not reported.

T: (M/F): 15/2

 

Severity:

A: Mean severity ± SD (APACHE 2 score): treatment group (24 ± 6); control group (20 ± 4)

B: Not reported.

C: Mean severity ± SD (SAPS 3): 73.8 ± 11.5

D: Mean severity ± SD (SAPS 2): treatment group (65.1 ± 15.5); control group(66.5 ± 11)

E: Mean severity ± SD (APACHE 2): 25.53 ± 6.2

F: Mean severity ± SD (APACHE 2): 23 ± 8

G: Median severity (range (APACHE 3): 57 (43 to 72)

H: Mean severity ± SD (APACHE 3): treatment group (87.21 ± 26.28); control group (85.65 ± 23.17)

I: Not reported.

J: Not reported.

K: Mean severity ± SD (APACHE 2): treatment group (29 ± 8); control group (28 ± 5)

L: Not reported.

M: Mean severity ± SD (APACHE 2): 25 ± 9

N: Mean severity ± SD (APACHE 2): treatment group (25 ± 7); control group(26 ± 8)

O: Not reported.

P: Mean severity SD (APACHE 2): treatment group (24 ± 9); control group (26± 9)

Q: Mean severity ± SD (APACHE 2): 26 ± 5

R: Median severity, IQR (APACHE 2): study 1 (27, 22 to 37); study 2 (31, 23 to 37)

S: Mean severity ± SD (SAPS 2): 59.5 ± 14.3

T: Mean severity ± SD (APACHE 2): 18.53 ± 2.67

 

Intervention:

Presence of treatment factors affecting extracorporeal filter lifespan.

 

A: CVVHDF with convection that was obtained by a 2 L/hour pre-dilutional infusion

B: Group 1: Flat plate filter, group 2: Administration of heparin equally divided into the venous air-chamber (50%) and into the standard prefilter port (50%), group 3: Filter with a larger membrane surface area (Filtral 12, Hospal, Lyon, France; surface area: 1.3 m2)

C: CVVHDF with an oXiris™ (AN69ST) filter

D: CVVH with ultrafiltration of 2 L/hour

E: CVVH with ultrafiltrate dose of 35 mL/kg/hour

F: pre-dilution with the total flow through the haemofilter constant at 200 mL/min

G: CVVH with handmade filter with more and shorter hollow fibres (number of hollow fibres, 7168; and length 21 cm)

H: BFR: 250 mL/min

I: CVVH with haemofiltration rate of 2 L/hour using a 0.6-m AN69 haemofilter

J: CVVH

K: Film-coated domain structured (surface-modified) double lumen catheter (GamCath Dolphin® Protect

1320, Gambro, Hechingen, Germany)

L: CVVH

M: CVVH + adsorption membrane (AN69-ST-150) N: Longer catheter: 20 cm if inserted in a right great thoracic vein and 24 cm if inserted in a left great thoracic vein

O: BFR was set at 200 to 250 mL/min and 100 mL fluid boluses were administered at 30-minute intervals

P: In addition to the ultrafiltration rate, dialysate flow rate was added between 1 and 1.5 L/hour for participants weighing F 70 kg. Owing to the effluent bag capacity, 2.5 L was the maximum hourly ultrafiltration rate if participants were randomised in the CVVHDF group and also received 1.5 L/hour of dialysate

Q: AN69ST surface-treated membrane (ST100)

R: Study 1: one filter run in pre-dilution CVVH. Study 2: one filter run with systemic nadroparin (475 IU/hour by continuous infusion prefilter)

S: CVVHD

T: Each study subject was treated with 4 filters: 2 AN69 ST membrane filters (A) and 2 conventional AN69 membrane filters (B), divided into group Ⅰ according to the random number table method (according to A-B-A-B sequential treatment)

 

Comparison:

Absence of treatment factors affecting extracorporeal filter lifespan.

 

A: CVVHD without convection

B: Group 1: Hollow fibre filter of the same membrane type as the intervention group, group 2: Complete (100%) infusion into the standard prefilter port alone, group 3: Filter with a smaller membrane surface area (Filtral 8, Hospal, Lyon, France; surface area: 0.75 m2)

C: CVVHDF with a standard filter

D: CVVHD with the dialysate outflow rate of 1.7 L/hour

E: CVVHDF with a fixed pre-dilution volume of 600 mL/hour replacement fluid with a dialysate dose

of 1 L/hour

F: Post-dilution with the total flow through the haemofilter constant at 200 mL/min

G: CVVH with standard filter (number of hollow fibres, 4608; and length 30 cm)

H: BFR: 150 mL/min

I: CVVHD with the dialysate outflow rate of 2 L/hour using a 0.6-m AN69 haemofilter

J: CVVHD

K: Standard double lumen catheter (GamCath® GDK-1320, Gambro, Hechingen, Germany)

L: CVVHD

M: CVVHD + adsorption membrane (AN69-ST-150)

N: Shorter catheter: 15 cm if inserted through a right great thoracic vein and 20 cm if inserted through a left great thoracic vein

O: BFR was set at 125 mL/min and a prefilter flush with 0.9% saline or other electrolyte solution infused

as a 100 mL bolus once/hour

P: Ultrafiltration flow rate (1 to 2.5 L/hour) was determined according to participant’s estimated urea distribution volume (60% of their body weight at enrolment), so that this estimated volume could be cleared within 24 hours, for example, an 80 kg subject will have an ultrafiltration flow rate of 2 L/hour. For the purposes of simplification, hourly ultrafiltration flow rate was rounded off to the upper 500 mL level within the interval from 1 to 2.5 L

Q: AN69 original membrane (M100)

R: Study 1: one filter run in post-dilution CVVH. Study 2: one filter run with heparin (prefilter) and protamine (post-filter)

S: Pre-dilution CVVH, Post-dilution CVVH

T: Group Ⅱ (treatment in the order of B-A-B-A)

 

End-point of follow-up:

A: Not reported.

B: Not reported.

C: Not reported.

D: Follow-up period: during ICU stay.

E: Not reported.

F: Not reported.

G: Not reported.

H: Not reported.

I: Not reported.

J: Not reported.

K: Not reported.

L: 61 days.

M: 90 days.

N: Not reported.

O: Not reported.

P: 90 days.

Q: 72 hours.

R: Not reported.

S: Not reported.

T: Not reported.

 

For how many participants were no complete outcome data available?

(intervention/control)

Not specified.

 

Need for transfusion:

Not reported in SR.

 

A, J and S did not report any of the relevant outcomes. C did not examine the prespecified outcome measure.  J, S, and T reported death, but the number in each group was not reported due to the crossover trial design.

 

Outcomes (circuit lifespan, mortality, recovery of renal function) per comparison groups:

 

Dialysis modalities: CVVHD vs CVVH or CVVHDF: D, I, L, M.

 

Circuit lifespan

Not reported.

 

Mortality

Events/total CVVHD vs CVVH or CVVHDF, RR [95%CI]:

I (death at 24 hours): 1/7 vs 2/6, 0.43 [0.05, 3.64].

L (death at 60 days): 21/38 vs 22/39, 0.98 [0.66, 1.46].

M (death at 90 days): 13/57 vs 28/49, 0.40 [0.23, 0.68].

D (death in ICU): 10/11 vs 7/9, 1.17 [0.79, 1.74].

 

Overall: 45/113 vs 59/103, 0.76 [0.41, 1.39].

 

Recovery of renal function

Events/total CVVHD vs CVVH or CVVHDF, RR [95%CI]:

D (complete kidney recovery at ICU discharge): 1/11 vs 1/9, 0.82 [0.06, 11.33].

L: 7/38 vs 7/35. 0.92 [0.36, 2.36].

 

Overall: 8/49 vs 8/44, 0.91, [0.37, 2.21].

 

Dialysis modalities: CVVHDF vs CVVH:  E, P.

 

Circuit lifespan

Mean difference in hours CVVHDF vs CVVH [95% CI]:

E: 10.15 [5.15, 15.15].

 

Mortality

Events/total CVVHDF vs CVVH, RR [95% CI]

P: (death from any cause at 28 days): 43/104 vs 62/102, 0.68 [0.52, 0.90].

 

Recovery of renal function

Events/total CVVHDF vs CVVH, RR [95%CI]:

P (recovery of renal function at day 90): 48/61 vs 25/35, 1.10 [0.86, 1.41].

 

Dialysis modalities: Pre- vs post-dilution: F,R.

 

Circuit lifespan

Mean difference in hours pre vs post dilution [95% CI]:

R: 15.70 [-0.47, 31.87].

F: 3.50 [-11.91, 18.91].

 

Overall: 9.34 [-2.60, 21.29].

 

Mortality

Not reported.

 

Recovery of renal function

Not reported.

 

Blood flow rate: Higher vs standard: H, O.

 

Circuit lifespan

Mean difference in hours higher vs standard [95% CI]:

O: 3.00 [-0.83, 6.83].

H: -1.13 [-3.41, 1.14].

 

Overall: 0.64 [-3.37, 4.64].

 

Mortality

Not reported.

 

Recovery of renal function

Not reported.

 

Catheter types: Longer vs shorter: N.

 

Circuit lifespan

Mean difference in hours shorter vs longer [95% CI]:

N: 6.50 [1.48, 11.52].

 

Mortality

Events/total longer vs shorter, RR [95% CI]:

N (ICU death, hospital death): 11/47 vs 8/47, 1.38 [0.61, 3.11].

 

Recovery of renal function

Not reported.

 

Surface-modified vs standard double-lumen catheter: K.

 

Circuit lifespan

Mean difference in hours surface-modified vs standard  [95% CI]:

K: 16.00 [13.49, 18.51].

 

Mortality

Events/total surface-modified vs standard, RR [95% CI]:

K (ICU death): 42/118 vs 39/118, 1.08 [0.76, 1/53].

 

Recovery of renal function

Events/total surface-modified vs standard, RR [95% CI]:

K: 53/118 vs 58/118, 0.91 [0.70, 1.20].

 

Membrane types: AN69ST vs other membranes: C, Q, T (C did not examine the prespecified outcome measures).

 

Circuit lifespan

Mean difference in hours AN69ST vs other [95% CI]:

T: 3.60 [-8.22, 15.42].

Q: 0.80 [-6.27, 7.87].

 

Overall: 1.54 [-4.53, 7.60].

 

Mortality

Not reported.

 

Recovery of renal function

Not reported.

 

Membrane types: Flat plate vs hollow fibre filters of the same membrane type: B.

 

Circuit lifespan

Mean difference in hours flat vs hollow [95% CI]:

B: -1.40 [-12.12, 9.32].

 

Mortality

Not reported.

 

Recovery of renal function

Not reported.

 

Membrane types: More and shorter hollow fibre vs standard filters: G.

 

Circuit lifespan

Mean difference in hours more and shorter vs standard [95% CI]:

G: -5.87 [-10.18, -1.56].

 

Mortality

Not reported.

 

Recovery of renal function

Not reported.

 

Membrane types: Filters with a larger vs smaller membrane surface area: B.

 

Circuit lifespan

B reported circuit lifespan did not differ between larger versus smaller membrane surface areas (15.8 hours (SE 14.3) versus 16.8 hours (SE 13.1), respectively). However, the precise numbers of participants involved in these two analyses were not reported.

 

Mortality

Not reported.

 

Recovery of renal function

Not reported.

Authors’ conclusion:

Current evidence shows that the following non-pharmacological strategies: CVVHDF, pre-dilution haemofiltration, longer catheter, and surface-modified double-lumen catheter, may extend circuit lifespan during CKRT. On the other hand, a filter with more and shorter hollow fibres may reduce circuit lifespan. Analyses revealed that applying a higher blood flow may not alter circuit life. The available evidence is limited and thus the authors were unable to draw any solid conclusions in regards to the role and impact of the other non-pharmacological interventions for preventing circuit clotting amongst people receiving CKRT.

 

Table of quality assessment for systematic reviews of RCTs and observational studies

Based on AMSTAR checklist (Shea et al.; 2007, BMC Methodol 7: 10; doi:10.1186/1471-2288-7-10) and PRISMA checklist  (Moher et al 2009, PLoS Med 6: e1000097; doi:10.1371/journal.pmed1000097)

Study

 

 

 

 

First author, year

Appropriate and clearly focused question?

 

 

Yes/no/unclear

Comprehensive and systematic literature search?

 

 

Yes/no/unclear

Description of included and excluded studies?

 

 

Yes/no/unclear

Description of relevant characteristics of included studies?

 

 

Yes/no/unclear

Appropriate adjustment for potential confounders in observational studies?

 

 

Yes/no/unclear/notapplicable

Assessment of scientific quality of included studies?

 

 

Yes/no/unclear

Enough similarities between studies to make combining them reasonable?

 

Yes/no/unclear

Potential risk of publication bias taken into account?

 

 

Yes/no/unclear

Potential conflicts of interest reported?

 

 

 

Yes/no/unclear

Li, 2022

Yes

Yes

No

Excluded studies were not.described.

Yes

N/A

Yes

Yes

Yes

Unclear

Not specified for included studies

Tsujimoto, 2021

Yes

Yes

Yes

Yes

N/A

Yes

 

 

 

 

Table of excluded studies

Reference

Reason for exclusion

Bai M, Zhou M, He L, Ma F, Li Y, Yu Y, Wang P, Li L, Jing R, Zhao L, Sun S. Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. Intensive Care Med. 2015 Dec;41(12):2098-110. doi: 10.1007/s00134-015-4099-0. PMID: 26482411.

more recent meta-analysis used

Brain M, Winson E, Roodenburg O, McNeil J. Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): a systematic review and meta-analysis. BMC Nephrol. 2017 Feb 20;18(1):69. doi: 10.1186/s12882-017-0445-5. PMID: 28219324; PMCID: PMC5319031.

more recent meta-analysis used

Liao YJ, Zhang L, Zeng XX, Fu P. Citrate versus unfractionated heparin for anticoagulation in continuous renal replacement therapy. Chin Med J (Engl). 2013 Apr;126(7):1344-9. PMID: 23557569.

more recent meta-analysis used

Zhang W, Bai M, Yu Y, Chen X, Zhao L, Chen X. Continuous renal replacement therapy without anticoagulation in critically ill patients at high risk of bleeding: A systematic review and meta-analysis. Semin Dial. 2021 May;34(3):196-208. doi: 10.1111/sdi.12946. Epub 2021 Jan 5. PMID: 33400846.

wrong population

Huang H, Zhou Q, Chen MH. High-volume hemofiltration reduces short-term mortality with no influence on the incidence of MODS, hospital stay, and hospitalization cost in patients with severe-acute pancreatitis: A meta-analysis. Artif Organs. 2021 Dec;45(12):1456-1465. doi: 10.1111/aor.14016. Epub 2021 Jul 9. PMID: 34240469.

wrong population

Friedrich JO, Wald R, Bagshaw SM, Burns KE, Adhikari NK. Hemofiltration compared to hemodialysis for acute kidney injury: systematic review and meta-analysis. Crit Care. 2012 Aug 6;16(4):R146. doi: 10.1186/cc11458. PMID: 22867021; PMCID: PMC3580734.

more recent meta-analysis used

Wu MY, Hsu YH, Bai CH, Lin YF, Wu CH, Tam KW. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2012 Jun;59(6):810-8. doi: 10.1053/j.ajkd.2011.11.030. Epub 2012 Jan 5. PMID: 22226564.

more recent meta-analysis used

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 18-06-2024

Laatst geautoriseerd  : 18-06-2024

Geplande herbeoordeling  : 01-07-2027

Initiatief en autorisatie

Initiatief:
  • Nederlandse Vereniging voor Intensive Care
Geautoriseerd door:
  • Nederlandse Internisten Vereniging
  • Nederlandse Vereniging voor Intensive Care
  • Stichting Family and patient Centered Intensive Care en IC Connect
  • Verpleegkundigen en Verzorgenden Nederland (afdeling intensive care)

Algemene gegevens

De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten. (www.demedischspecialist.nl/kennisinstituut) en werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS) en/of andere bron.

De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.

Samenstelling werkgroep

Voor het ontwikkelen van de richtlijn is in 2022 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de zorg voor kritisch zieke patiënten die in aanmerking komen voor continue nierfunctievervangende therapie op de intensive care.

 

Werkgroep

drs. M. (Meint) Volbeda, internist-intensivist, UMCG Groningen, NVIC (voorzitter)

drs. P.M. (Pauline) Klooster, internist-intensivist, HMC den Haag, NVIC

dr. C.S.C. (Catherine) Bouman, internist-intensivist, Amsterdam UMC locatie AMC, NVIC

drs. C.V. (Carlos) Elzo Kraemer, internist-intensivist, LUMC Leiden, NVIC

dr. C.F.M. (Casper) Franssen, internist-nefroloog, UMCG Groningen, NIV

drs. A.J. (Arend-Jan) Meinders, internist-intensivist, st. Antonius Ziekenhuis, NIV

drs. K. (Koen) de Blok, internist-nefroloog-intensivist, Flevoziekenhuis Almere, NIV

drs. L. (Lea) Duijvenbode – den Dekker, IC-verpleegkundige, Amphia Ziekenhuis, V&VN

 

Klankbordgroep

Frans van Nynatten, renal practicioner, Amphia Ziekenhuis, V&VN

Dr. H.A. (Harmke) Polinder-Bos, Klinisch Geriater Erasmus MC, NVKG

D.M.C.T. (Daphne) Bolman, FCIC en IC connect

Dr. L. (Lilian) Vloet, Lector Acute Intensieve Zorg, FCIC en IC connect

 

Met ondersteuning van

drs. F.M. (Femke) Janssen, junior adviseur, Kennisinstituut van de Federatie Medisch Specialisten

dr. M.S. (Matthijs) Ruiter, senior adviseur, Kennisinstituut van de Federatie Medisch Specialisten

Belangenverklaringen

De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.

Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

Volbeda, voorzitter

Internist-intensivist, Intensive Care Volwassenen UMCG.

Geen

In 2021 eenmalig betaald deelgenomen aan een digitale meeting van Baxter BV waarin nieuwe ontwikkelingen m.b.t. "blood purification" werden besproken.

Extern gefinancierd onderzoek: Does a novel citrate based CRRT protocol lead to improved therapy performance? Financier: Baxter. Rol: project coördinator.

Restrictie ten aanzien van besluitvorming m.b.t. antistollingsmiddelen. Er is een vice-voorzitter aangesteld voor het bespreken van de betreffende module.

Elzo Kraemer (vice-voorzitter)

internist-intensivist, LUMC

Lid NVIC ECLS commissie

Geen

Geen restricties

Meinders

Internist-intensivist St. Antoniusziekenhuis

Geen

Geen

Geen restricties

Franssen

Internist-nefroloog in UMCG

Geen

In 2021 eenmalig betaald deelgenomen aan een digitale meeting van Baxter BV waarin nieuwe ontwikkelingen m.b.t. "blood purification" werden besproken.

Extern gefinancierd onderzoek: Does a novel citrate based CRRT protocol lead to improved therapy performance? Financier: Baxter. Rol: principal investigator.

Restrictie ten aanzien van besluitvorming m.b.t. antistollingsmiddelen

Bouman

Internist-intensivist Amsterdam UMC

Geen

Geen

Geen restricties

De Blok

Internist-nefroloog bij Flevoziekenhuis Almere

Geen

Geen

Geen restricties

Duijvenbode - den Dekker

IC-verpleegkundige

Docent Erasmus MC academie

Assessor en portfolio begeleider EVC

Bestuurslid V&VN IC

Bestuurslid NKIC & visiteur kwaliteitsvisitaties IC

Projectlid Samen Beslissen

Geen

Geen restricties

Klooster

Intensivist HMC IC

Instructeur ATLS bij stichting ALSG (betaald)

docent Care Training Group (onbetaald)

auteur hoofdstuk nefrologie voor Intensive Care voor de IC-verpleegkundige (onbetaald)

Geen

Geen restricties

Janssen

Junior adviseur Kennisinstituut

Geen

Geen

Geen restricties

Ruiter

Senior adviseur Kennisinstituut

Geen

Geen

Geen restricties

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief door het uitvragen van knelpunten in de schriftelijke knelpunteninventarisatie bij patiëntenorganisatie Stichting Family and patient Centered Intensive Care en IC Connect (FCIC en IC Connect) en Nierpatiëntenvereniging Nederland. Het verslag hiervan (zie bijlage 2) is besproken in de werkgroep. De verkregen input is meegenomen bij het opstellen van de uitgangsvragen, de keuze voor de uitkomstmaten en bij het opstellen van de overwegingen. Daarnaast was een patiëntvertegenwoordiger van deze organisatie afgevaardigd in de klankbordgroep, en is de conceptrichtlijn voor commentaar voorgelegd aan FCIC en IC Connect en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.

 

Kwalitatieve raming van mogelijke financiële gevolgen in het kader van de Wkkgz

Bij de richtlijn is conform de Wet kwaliteit, klachten en geschillen zorg (Wkkgz) een kwalitatieve raming uitgevoerd of de aanbevelingen mogelijk leiden tot substantiële financiële gevolgen. Bij het uitvoeren van deze beoordeling zijn de richtlijnmodules op verschillende domeinen getoetst (zie het stroomschema op de Richtlijnendatabase).

 

Uit de kwalitatieve raming blijkt dat er waarschijnlijk geen substantiële financiële gevolgen zijn, zie onderstaande tabel.

 

Module

Uitkomst raming

Toelichting

Module Filteroverleving

geen financiële gevolgen

Het betreft geen nieuwe manier van zorgverlening of andere organisatie van zorgverlening. Er worden daarom geen substantiële financiële gevolgen verwacht.

Werkwijze

AGREE

Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).

 

Knelpuntenanalyse en uitgangsvragen

Tijdens de voorbereidende fase inventariseerde de werkgroep de knelpunten in de zorg voor kritisch zieke patiënten met een indicatie voor nierfunctievervangende therapie. Tevens zijn schriftelijk knelpunten aangedragen door Nierpatiënten Vereniging Nederland. Een terugkoppeling hiervan is opgenomen onder bijlagen. Op basis van de uitkomsten van de knelpuntenanalyse zijn door de werkgroep concept-uitgangsvragen opgesteld en definitief vastgesteld.

 

Uitkomstmaten

Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Methode literatuursamenvatting

Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. Indien mogelijk werd de data uit verschillende studies gepoold in een random-effects model. Review Manager 5.4 werd gebruikt voor de statistische analyses. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • het is mogelijk dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • er is een reële kans dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • de literatuurconclusie is zeer onzeker.

 

Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.

In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.

 

Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers

 

 

Sterke aanbeveling

Zwakke (conditionele) aanbeveling

Voor patiënten

De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet.

Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet. 

Voor behandelaars

De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen.

Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren.

Voor beleidsmakers

De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid.

Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen. 

 

Organisatie van zorg

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module Organisatie van zorg.

 

Commentaar- en autorisatiefase

De conceptrichtlijn werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Literatuur

Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.

 

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.

 

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.

 

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.

 

Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.

 

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html

 

Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.

 

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Organisatie van zorg