Diagnostiek VTE
Uitgangsvraag
Wat is de optimale diagnostiek van volwassen patiënten met een klinische verdenking van een Veneuze Trombo-Embolie (VTE)?
Aanbeveling
DVT
Voor volwassen patiënten met een verdenking op een eerste DVT
Pas een klinische beslisregel toe bij patiënten met een klinische verdenking van een DVT. Volg hierbij de stappen uit het stroomschema ‘Diagnostiek bij vermoeden op een (recidief) DVT’:
1. Hoge waarschijnlijkheid DVT op basis van klinische beslisregel
Voer compressie-echografie uit om de aanwezigheid van een proximale DVT aan te tonen dan wel uit te sluiten.
2. Lage waarschijnlijkheid DVT op basis van klinische beslisregel
Voer een D-dimeer test uit.
- Indien D-dimeer test > 500 µg/L: Voer compressie-echografie uit om de aanwezigheid van een proximale DVT aan te tonen dan wel uit te sluiten.
- Indien D-dimeer test ≤ 500 µg/L: proximale DVT is uitgesloten
Indien echografie laagdrempelig beschikbaar is: Overweeg om de combinatie klinische beslisregel/D-dimeer test over te slaan en direct een 2-punts compressie-echografie te verrichten om een proximale DVT uit te sluiten of aan te tonen.
Voor volwassen patiënten met een verdenking op een recidief DVT
Pas een klinische beslisregel toe bij patiënten met een klinische verdenking van een recidief DVT. Volg hierbij de stappen uit het stroomschema ‘Diagnostiek bij vermoeden op een (recidief) DVT’:
1. Hoge waarschijnlijkheid DVT op basis van klinische beslisregel
Voer compressie-echografie uit om de aanwezigheid van een proximale DVT aan te tonen dan wel uit te sluiten. Er is sprake van een recidief proximale DVT in het geval van een abnormale 2-punts compressie-echografie in een nieuw veneus segment of indien het niet comprimeerbare oude veneuze segment met ≥ 4 mm is toegenomen.
2. Lage waarschijnlijkheid DVT op basis van klinische beslisregel
Voer een D-dimeer test uit.
- Indien D-dimeer test > 500 µg/L: Voer compressie-echografie uit om de aanwezigheid van een proximale DVT aan te tonen dan wel uit te sluiten. Er is sprake van een recidief proximale DVT in het geval van een abnormale 2-punts compressie-echografie in een nieuw veneus segment of indien het oude niet comprimeerbare veneuze segment met ≥ 4 mm is toegenomen.
- Indien D-dimeer test ≤ 500 µg/L: proximale DVT uitgesloten
Indien de compressie echografie niet eenduidig is: overweeg om een MRDTI toe te passen teneinde een recidief DVT aan te tonen dan wel uit te sluiten.
Indien echografie laagdrempelig beschikbaar is: Overweeg om de combinatie klinische beslisregel/D-dimeer test over te slaan en direct een 2-punts compressie-echografie te verrichten om een recidief proximale DVT uit te sluiten, - of aan te tonen.
Longembolie
Sluit een eerste of herhaalde episode van longembolie uit met behulp van een lage klinische voorafkans (vastgesteld met een beslisregel) en een normale D-dimeer test bij patiënten met een verdenking op een longembolie. Overweeg hierbij om het YEARS-algoritme te gebruiken.
Sluit een eerste of herhaalde episode van een longembolie uit of toon een longembolie aan met een CTPA bij patiënten met een hoge klinische waarschijnlijkheid of afwijkende D-dimeer test.
Volg hierbij de stappen uit het stroomschema ‘Diagnostiek bij verdenking op een longembolie’.
Overwegingen
Voor- en nadelen van de interventie en de kwaliteit van het bewijs
DVT
Bij patiënten met een klinische verdenking op DVT hebben klinische beslisregels – waarvan de Wells-regel de meest gebruikte is (Wells, 2003) – in combinatie met een D-dimeer test mogelijk een hoge negatief voorspellende waarde (NPV) en hoge sensitiviteit om een proximale DVT uit te sluiten, maar een lage specificiteit om de diagnose DVT vast te stellen. De bewijskracht hiervoor is laag door de verschillende prevalenties (12% in Parpia (2019) en 26% in Geersing (2014)), toegepaste referentiestandaarden en indextesten (mix kwalitatieve en kwantitatieve D-dimeer assay) in de studies. Voor de NPV kon per diagnostische strategie alleen een puntschatting worden berekend, waardoor informatie over de spreiding en heterogeniteit niet te bepalen was.
De hoge sensitiviteit en NPV betekent dat patiënten met een negatieve uitslag geen diagnostisch vervolgonderzoek (echografie) hoeven te ondergaan. De lagere specificiteit betekent dat fout positieven kunnen optreden als alleen klinische beslisregels in combinatie met een D-dimeer test wordt gehanteerd om een DVT aan te tonen, dus dat vervolgonderzoek vereist is om een diagnose te stellen.
Twee-punts compressie-echografie heeft een hoge sensitiviteit (90,1% (95% BI: 86,5 tot 92,8) om een eerste episode van proximale DVT uit te sluiten en een hoge specificiteit 98,5% (95% BI 97,6 tot 99,1%) om een eerste episode van proximale DVT aan te tonen (Lensing, 1989 en Bhatt, 2020). Dit is dus het beeldvormend vervolgonderzoek van keuze om DVT aan te tonen of uit te sluiten. Omdat 2-punts compressie-echografie veelal laagdrempelig beschikbaar is, steeds meer met point-of-care echomachines uitgevoerd wordt, goedkoop is en geen nadelige effecten op de patiënt heeft, kan ervoor gekozen worden om de stap met de voorafkans bepaling en D-dimeer test over te slaan. Als alternatief kan een zogenaamde complete compressie-echografie worden uitgevoerd. Deze methode is arbeidsintensiever omdat meer veneuze segmenten in het bovenbeen en onderbeen onderzocht moeten worden. Daarnaast is het potentiële probleem van overdiagnostiek van geïsoleerde kuit(spier)vene tromboses waarvan de noodzaak voor behandeling wordt betwijfeld (Bernardi, 2008). De NHG-Standaard kiest daarom voor een 2-punts compressie-echografie (CUS). Indien men kiest om een complete CUS uit te voeren en deze niet beschikbaar is buiten kantooruren kan alsnog een 2-punts compressie-echografie worden uitgevoerd volgens het stroomschema.
Bij klinische verdenking op een recidief DVT is de echografie minder specifiek door het frequent voorkomen van persisterende stolselresten na een eerste DVT. Zo bleek in een retrospectieve studie, dat bij 29 van de 90 patiënten (32%) bij wie een CUS was verricht vanwege een verdenking van een recidief ipsilaterale DVT, de diagnose niet met zekerheid kon worden gesteld door ontbreken van eerder aanwezige CUS-uitslagen, met als gevolg dat deze patiënten mogelijk onterecht met langdurige antistolling behandeld werden. (Tan, 2010). De persisterende stolselresten kunnen vaak niet goed onderscheiden worden van een nieuwe DVT-episode, tenzij er een uitgangsechografie aanwezig is die aantoont dat een stolsel is ontstaan in een nieuw veneus segment, of dat de comprimeerbaarheid van het vat met tenminste 2-4 mm is afgenomen. Het maken van een uitgangscompressie-echografie in alle patiënten die stoppen met antistolling na een eerste DVT in de Nederlandse situatie is echter niet kosteneffectief gebleken (de Jong, 2023). Uit onderzoek blijkt dat ‘MR direct thrombus imaging’ (MRDTI) een vers stolsel kan onderscheiden van stromend bloed of een chronisch reststolsel, door de metabole omzetting van hemoglobine in methemoglobine (Tan, 2014 en van Dam, 2020). Indien compressie echografie geen zekerheid geeft, kan MRDTI worden toegepast om een finale diagnose te stellen. In de Nederlandse situatie is aangetoond dat het gebruik van deze techniek kosteneffectief is (van Dam, 2021). De MRDTI kan vanaf een half jaar na de index DVT-diagnose gebruikt worden (voor die tijd kan de MRDTI nog positief zijn), en wordt het best ingezet in de eerste dagen tot twee weken het na ontstaan van de symptomen (van Dam, 2020).
Longembolie
Bij patiënten met een klinische verdenking op een longembolie, met klachten die minder dan twee weken geleden zijn ontstaan, hebben klinische beslisregels in combinatie met een D-dimeer test mogelijk een hoge negatief voorspellende waarde en hoge sensitiviteit voor het uitsluiten, maar een lage specificiteit om de diagnose longembolie vast te stellen. Het YEARS-algoritme is een veilig, efficiënt en kosteneffectief diagnostisch algoritme (Van der Pol, 2018). Het merendeel (86%) van de patiënten presenteerde zich op de spoedeisende hulp. In subgroep analyses is de NPV lager in patiënten met kanker of een verleden van eerder doorgemaakte VTE. De bewijskracht hiervoor is laag door verschillen in prevalentie, de referentiestandaard en gebruikte indextest in de studies. Voor de NPV kon per diagnostische strategie alleen een puntschatting worden berekend, waardoor informatie over de spreiding en heterogeniteit niet te bepalen was. Het YEARS-algoritme is eenvoudig te gebruiken in de dagelijkse praktijk en wordt in Nederlandse ziekenhuizen veel toegepast. Ook worden juist in jongere patiënten CT-scans voorkomen, in tegenstelling tot de leeftijdsafhankelijke D-dimeer afkapwaarde. Om deze redenen verdient dit algoritme de voorkeur.
De hoge sensitiviteit en NPV betekent dat patiënten met een negatieve uitslag geen diagnostisch vervolgonderzoek (CT-scan) hoeven te ondergaan. De lagere specificiteit betekent dat fout positieven kunnen optreden als alleen klinische beslisregels in combinatie met een D-dimeer test wordt gehanteerd om een longembolie vast te stellen, dus dat vervolgonderzoek vereist is om een diagnose te stellen. De interpretatie van de hogere incidentie van fout-negatieve uitslagen bij patiënten met een voorgeschiedenis van VTE en kanker is complex. Allereerst is de achtergrond incidentie van (nieuwe) VTE in deze patiëntengroep duidelijk hoger dan in personen zonder deze voorgeschiedenis. Dat blijkt ook uit de observatie dat de incidentie van een fout-negatieve CT-uitslag ook hoger is bij deze patiënten (Stals, 2022 en van der Pol, 2018). Voor de berekening van de proportie van fout-negatieve uitslagen wordt gekeken in een periode van drie maanden, waarbij het de vraag is of een nieuwe VTE na twee maanden follow-up daadwerkelijk een gemiste diagnose is, of een nieuwe episode. De hoogste proportie van fout-negatieve uitslagen wordt gevonden in de meer recent ontworpen diagnostische algoritmes zoals YEARS. Dat wordt mogelijk voor een deel verklaard door een werkelijk hoger aantal gemiste diagnoses omdat het aantal CT-scans dat wordt gemaakt veel lager ligt, maar ook omdat een deel van de gemiste diagnoses kleine, subsegmentele longembolieën betreffen, waarvan de relevantie onduidelijk is (van der Pol, 2018). Het is dus de vraag of dit geen overdiagnostiek betreft, en het werkelijk relevante diagnostische missers zijn. In studies, waarin de nieuwe algoritmes daadwerkelijk zijn toegepast, was er geen belangrijk signaal van een opvallend hoog aantal gemiste diagnoses als op basis van YEARS de diagnose zonder beeldvorming was uitgesloten. Een laatste argument is dat, vooral in de groep patiënten met een actieve maligniteit, onverwacht overlijden tijdens de studie frequent voorkwam en in de regel op conservatieve wijze geduid werd als recidief longembolie (Stals, 2022). In algoritmes waar een lagere proportie van patiënten aan een CT-scan wordt onderworpen, neemt het aantal overlijdens -en dus vaak meegetelde diagnostische missers- proportioneel toe in de groep die geen CT-scan kreeg.
CT-pulmonalis angiografie (CTPA) heeft een hoge sensitiviteit (83-100%) om zowel een eerste als herhaalde episode van longembolie uit te sluiten en een hoge specificiteit (89-97-%) om zowel een eerste als herhaalde episode van longembolie aan te tonen (Remy-Jardin, 2007). Deze scan is in alle Nederlandse ziekenhuizen laagdrempelig beschikbaar en geldt als eerste keus beeldvormende test bij verdenking longembolie. Het voordeel van CTPA boven nucleair onderzoek (ventilatie-perfusie scan) is het lagere aantal niet-diagnostische uitslagen, de betere mogelijkheid om met deze beeldvorming gelijktijdig een alternatieve diagnose te stellen en de informatie over hartfunctie – rechter-linker ventrikel ratio - die geëxtraheerd kan worden en prognostische relevantie heeft voor patiënten met een aangetoonde longembolie. Het nadeel van CTPA ten opzichte van nucleair onderzoek is dat er meer ioniserende stralen aan te pas komen, wat voornamelijk bij jongere personen en vrouwen een zorg is. Daarnaast kunnen soms ernstige allergische reacties optreden bij toediening van het contrast. Vanwege deze - en logistieke redenen is het beperken van het aantal CTPA-scans een prioriteit. In de afweging over welke diagnostische strategie preferentieel gebruikt wordt, is de efficiëntie van het algoritme dan ook relevant.
In de IPDMA van patiënten met verdenking longembolie zoals in deze module besproken, waren geen zwangere vrouwen geïncludeerd. Een alternatieve diagnostische regel (LEFt) voor zwangere patiënten met een klinische verdenking van DVT wordt momenteel prospectief gevalideerd, maar is dus formeel niet inzetbaar in de dagelijkse praktijk. Bij zwangeren met een hoge verdenking op een DVT maar een normale echo moet gedacht worden aan een geïsoleerde bekkenvene trombose. Aanwijzingen daarvoor kunnen gevonden worden met doppler echografie. Ook de MRDTI-scan is uitermate geschikt voor het stellen van deze diagnose omdat er geen contrast voor nodig is en niet gepaard gaat met ioniserende straling.
Voor zwangere patiënten met verdenking longembolie geldt dat de diagnostische algoritmen van de niet zwangere patiënten gevolgd kunnen worden (van der Pol, 2019). Voor kinderen gelden andere algoritmen (buiten het bestek van deze module). Bij patiënten met kanker is de kans op een nieuwe diagnose DVT of longembolie na het uitsluiten van een longembolie (zowel middels beslisregel/D-dimeer test als CT-scan) twee tot vier keer hoger dan bij patiënten zonder kanker. Er loopt onderzoek om vast te stellen wat de meerwaarde is van het volgen van het YEARS-algoritme boven direct en alleen een CT-scan in alle patiënten. Patiënten met kanker zijn meegenomen in de studies waarin de diagnostische algoritmes met een beslisregel en D-dimeer test zijn getest. Om die reden en tot deze studie afgerond is, kan de diagnostiek bij hen ook volgens het routine algoritme verlopen.
Patiënten die therapeutische antistolling gebruiken op het moment van verdenking op VTE dienen meteen verwezen te worden voor een beeldvormende test: de D-dimeer test kan door de antistolling een lage waarde geven, waarmee de sensitiviteit en daarmee de NPV ruimschoots buiten de gestelde veiligheidsnorm vallen.
Waarden en voorkeuren van patiënten (en evt. hun verzorgers)
Het belangrijkste doel van het diagnostische traject bij een vermoeden op een VTE is het op veilige wijze uitsluiten dan wel aantonen van een diepe veneuze trombose of een longembolie. Het belangrijkste voordeel van het diagnostisch algoritme is dat in een groot deel van de patiënten geen radiologisch onderzoek nodig is. Bij de diagnostiek van longembolie betekent dit dat er geen CT-scan nodig is (wat gepaard gaat met stralenbelasting), dat de doorlooptijd op de spoedeisende hulp korter is en dat de patiënt sneller duidelijkheid heeft over de diagnose.
Kosten (middelenbeslag)
Er is aangetoond dat het invoeren van het YEARS-algoritme ten opzichte van het gebruik van de Wells-regel en een D-dimeer test met een vaste afkapwaarde resulteert in een kostenbesparing op de Spoedeisende hulp (van der Pol, 2018). Een formele kosteneffectiviteitsanalyse ontbreekt in de literatuur.
Aanvaardbaarheid, haalbaarheid en implementatie
Er is geen kwantitatief of kwalitatief onderzoek gedaan naar de aanvaardbaarheid en haalbaarheid van de diagnostische procedures. Met betrekking tot diagnostische procedures wordt er in de praktijk altijd een afweging gemaakt tussen veiligheid (het al dan niet missen van een aandoening) en efficiëntie (geen onnodige diagnostische procedures).
De aanbevolen diagnostische algoritmen die besproken worden in deze richtlijn, worden momenteel gebruikt door het grootste deel van de Nederlandse ziekenhuizen. Veel van de studies zijn uitgevoerd in de Nederlandse setting, wat de validiteit van de resultaten voor de Nederlandse setting onderstreept. De werkgroep verwacht daarom geen problemen ten aanzien van de haalbaarheid, aanvaardbaarheid en implementatie.
DVT
Rationale van de aanbeveling: weging van argumenten voor en tegen de diagnostische procedure
De combinatie van een klinische beslisregel en een D-dimeer test is een eenvoudige, veilige en non-invasieve manier om een proximale DVT uit te sluiten. Het voordeel hiervan is dat deze combinatie van testen aan het bed van de patiënt kan worden uitgevoerd en er geen noodzaak is om beeldvorming te verrichten. Voor het aantonen en het uitsluiten van een DVT bij een patiënt met een hoge klinische waarschijnlijkheid op de aandoening is een compressie-echografie noodzakelijk. Compressie-echografie neemt weinig tijd in beslag en is laagdrempelig beschikbaar.
Longembolie
Rationale van de aanbeveling: weging van argumenten voor en tegen de diagnostische procedure
De combinatie van een klinische beslisregel en een D-dimeer test is een eenvoudige, veilige en non-invasieve manier om een longembolie uit te sluiten indien de klinische waarschijnlijkheid op deze aandoening niet hoog is. Het voordeel hiervan is dat deze combinatie van testen aan het bed van de patiënt kan worden uitgevoerd en er geen noodzaak is om een imaging test uit te voeren. Voor het aantonen en uitsluiten van een longembolie bij een patiënt met een hoge klinische waarschijnlijkheid op de aandoening is een CTPA noodzakelijk. CTPA is laagdrempelig beschikbaar en is de meest gebruikte radiologische modaliteit. De werkgroep adviseert om te overwegen hierbij het YEARS-algoritme te gebruiken. Ondanks een lagere NPV in de subgroepen van patiënten met kanker en patiënten met een VTE in de voorgeschiedenis, is er naar de mening van de werkgroep onvoldoende aanleiding om het YEARS-algoritme niet aan te bevelen in deze groepen.
Onderbouwing
Achtergrond
It has become routine to start the diagnostic process in patients suspected of deep vein thrombosis (DVT) or pulmonary embolism (PE) with a clinical decision rule and a D-dimer test. Based on the results of these two tests, selective imaging is applied to exclude or confirm a diagnosis. This means that patients with a negative result of the clinical decision rule and D-dimer test do not need expensive and time-consuming diagnostic follow-up examination (i.e. radiological imaging). It is important to determine the accuracy of the clinical decision rules in combination with D-dimer testing. It is important that a negative test result really excludes the diagnosis, so has a high negative predictive value (NPV).
Conclusies / Summary of Findings
Part I: Deep vein thrombosis (DVT)
Negative predictive value
Low GRADE |
The evidence suggests that clinical decision rules plus d-dimer testing may have a high negative predictive value in patients suspected of having deep vein thrombosis in the referred secondary care setting.
Sources: Geersing, 2014; Parpia, 2019 |
Specificity and sensitivity
Low GRADE |
The evidence suggests that clinical decision rules plus d-dimer testing may be sensitive but not specific in diagnosing patients suspected of having deep vein thrombosis.
Source: Parpia, 2019 |
Part II: Pulmonary embolism (PE)
Negative predictive value
Overall
Low GRADE |
The evidence suggests that clinical decision rules plus d-dimer testing may have a high negative predictive value in patients suspected of having pulmonary embolism in the referred secondary care setting.
Source: Geersing 2022 |
Subgroups
Low GRADE |
In patients with cancer or a history of VTE, the evidence suggests that clinical decision rules plus d-dimer testing may have a lower negative predictive value for patients suspected of having pulmonary embolism in the hospital setting than the patients without cancer and/or a history of VTE.
Source: Stals 2022 |
Specificity and sensitivity
Moderate GRADE |
The evidence suggests that clinical decision rules plus d-dimer testing likely are sensitive but not specific in diagnosing patients suspected of having pulmonary embolism in the referred secondary care setting.
Source: Geersing 2022 |
Samenvatting literatuur
Description of studies
Part I: Deep vein thrombosis (DVT)
Geersing (2014) performed an IPD meta-analysis to assess the safety of an unlikely score on the Wells rule combined with a negative D-dimer test result for excluding DVT in outpatients. The authors report the diagnostic failure rate and efficiency for different settings, including in the secondary/hospital setting. Studies were included if they (1) included outpatients with clinically suspected DVT, (2) assessed variables to calculate the Wells rule, (3) had a prospective follow-up design, and (4) applied a reference standard of imaging and/or clinical follow-up for three months in those in whom DVT was ruled out without imaging. A previous meta-analysis and literature search to update the results from 2006 yielded 13 studies that fulfilled these criteria, resulting in a sample size of 10,002 patients. A DVT diagnosis was present in 1864 (19%) of all patients; the prevalence varied from 5% to 39% between studies. 62% were female and the median age was 59 years. The subgroup analysis for hospital care for studies with D-dimer data included 4,511 patients from 5 studies with a prevalence varying from 16% to 39%. For D-dimer testing both qualitative and quantitative assays were used, with a mix of thresholds for the quantitative assays (the threshold used within the study). The IPD meta-analysis was performed on imputed data with multilevel logistic regression models involving a random intercept for study (to account for the clustering of patients within studies). Two outcome measures were reported by the authors: (1) diagnostic failure rate: the mean predicted probability of DVT in patients with a score ≤1 on the Wells rule combined with a negative D-dimer test result and (2) efficiency: the proportion of individuals classified by the strategy as DVT considered excluded without imaging. Thus, the failure rate is similar to a false negative test result (i.e. 1 minus negative predictive value) and efficiency is similar to the true negatives plus false negatives as proportion of the total study population.
Parpia (2019) performed an IPD meta-analysis to assess the accuracy of different clinical decision rules (CDRs) for excluding DVT in outpatients. The CDRs investigated were Wells score ≤ 1 combined with either a fixed (500 μg/L) or age-adjusted D-dimer thresholds (age x 10 μg/L in patients aged >50 years). This study used three studies that quantitatively measured D-dimer levels from the IPD database established by Geersing (2014) plus one additional study performed by their group. Studies were included if they (1) included outpatients with clinically suspected DVT, (2) assessed variables to calculate Wells rule, (3) had a prospective follow-up design, (4) applied a reference standard of imaging and/or clinical follow-up for three months in those in whom DVT was ruled out without imaging at initial presentation and (5) used quantitative D-dimer assays. Four studies with 3,368 patients fulfilled these criteria. 814 patients with a Wells score of >2 were excluded as D-dimer is not recommended to exclude DVT in these patients. Ultimately, 2554 patients were included in the analysis. A DVT diagnosis was present in 12% of all patients; this prevalence varied from 5% to 31% between studies. Distribution of patients in Wells 0 or 1-2 also varied across studies. 64% of all patients were female, the mean age was 59 years and 44% had a low CPTP. Three studies were performed in the secondary care setting and one study in the primary care setting. The authors performed a two-stage meta-analysis, first obtaining summary estimates for each separate study, and second combining these using a meta-analysis model.
Part II: Pulmonary embolism(PE)
Geersing (2022) performed a systematic review and IPD meta-analysis to examine the use of different CDRs for ruling out acute PE in a variety of healthcare settings. The CDRs investigated were Wells and revised Geneva scores combined with D-dimer interpretations either using a fixed cut-off (using either qualitative or quantitative D-dimer testing), adjusted to pretest probability (PTP), or age-adjusted D-dimer thresholds (age x 10 μg/L in patients aged >50 years), as well as the YEARS algorithm. In the YEARS algorithm the D-dimer threshold depends on clinical pretest probability (CPTP) assessment (as in: higher D-dimer threshold for patients with a low CPTP). For the PTP adjusted D-dimer levels, low probability (Wells score of ≤4 or Geneva score of ≤5) has a D-dimer cut-off of 1000 ng/ml and moderate probability (Wells score of > 4 or Geneva score of ≥6) has a D-dimer cut-off of 500 ng/ml. If PE could not be ruled out based on the combination of CDR and D-dimer testing, a computed tomography pulmonary angiography (CTPA) was ordered to confirm or refute the diagnosis. Studies were included if they (1) included patients with clinically suspected PE, (2) assessed variables to calculate at least 1 of the CDRs of interest, (3) had a prospective follow-up or cross-sectional study design, (4) provided a clear description of the healthcare setting, (5) involved at least 50 patients with confirmed VTE and (6) applied a reference standard of either imaging or a clinical follow-up of at least 1 month in those in whom PE was ruled out at initial presentation without imaging. In addition, studies were excluded if only qualitative D-dimer measurements were performed and patients with only low clinical pretest probability were included. A literature search from 1 January 1995 until 1 November 2021 in MEDLINE yielded 23 studies that fulfilled these criteria, accumulating to 35,248 patients available for analysis. For referred secondary care, the analysis included 14 studies with 17,052 patients and a mean baseline PE prevalence of 20%. This prevalence varied from 14% to 41% between studies. Four outcome measures were reported by the authors: (1) diagnostic failure rate: “the predicted 3-month VTE incidence after exclusion of PE without imaging at baseline”; (2) efficiency: “the proportion of individuals classified by the strategy as PE considered excluded without imaging tests”; (3) sensitivity and (4) specificity. The IPD meta-analysis was performed on imputed data with multilevel logistic regression models involving a random intercept for study (to account for the clustering of patients within studies) for failure rate and efficiency. For sensitivity and specificity, univariate random effects modeling was used due to nonconvergence issues encountered in bivariate random effects modeling.
Stals (2022) performed a systematic review and IPD meta-analysis using the same dataset as the Geersing study described above, to examine the use of different CDRs for ruling out acute PE in important patient subgroups. The CDRs investigated were Wells and revised Geneva scores combined with fixed (500 μg/L) and age-adjusted D-dimer thresholds (age x 10 μg/L in patients aged >50 years), as well as the YEARS algorithm. In the YEARS algorithm the D-dimer threshold depends on clinical pretest probability (CPTP) assessment (as in: higher D-dimer threshold for patients with a low CPTP). If PE could not be ruled out based on the combination of CDR and D-dimer testing, a computed tomography pulmonary angiography (CTPA) was ordered to confirm or refute the diagnosis. Studies were included if they (1) included patients with clinically suspected PE, (2) assessed variables to calculate at least 1 of the CDRs of interest, (3) had a prospective follow-up or cross-sectional study design and (4) applied a reference standard of either imaging or clinical follow-up in those in whom PE was ruled out without imaging. In addition, studies were excluded if only qualitative D-dimer measurements were performed and patients with only low clinical pretest probability were included. A literature search from 1 January 1995 until 1 January 2021 in MEDLINE yielded 16 studies that fulfilled these criteria, accumulating to 20 553 patients available for analysis. A VTE diagnosis was present in 3932 (19%) of all patients; this prevalence varied from 7.4% to 41% between studies. The IPD meta-analysis was performed on imputed data with multilevel logistic regression models with a random intercept for study (to account for the clustering of patients within studies). Two outcome measures were reported by the authors: (1) diagnostic failure rate: “the predicted 3-month VTE incidence after exclusion of PE without imaging at baseline.” and (2) efficiency: “the proportion of individuals classified by the strategy as PE considered excluded without imaging tests”. The authors performed pre-defined subgroup analyses for active cancer (as defined in the original studies) and history of VTE.
Results
Part I: Deep vein thrombosis (DVT)
Negative predictive value
In the study of Geersing (2014), 4,511 patients were analysed in an IPD meta-analysis to assess the accuracy of an unlikely score on the Wells rule (≤1) combined with a negative D-dimer test result for excluding DVT.
Enough information was available to post hoc estimate the negative predictive value (NPV) as following: NPV = 1 – failure rate. Results are shown in Table 1.
In the study of Parpia (2019), 2,554 patients with low (≤0) or moderate (1-2) Wells scores were analysed in an IPD meta-analysis to assess the accuracy of different CDRs for excluding DVT in hospital and primary care outpatients. Restricting to a population with low or moderate Wells-pre-test probability means a lower prevalence of DVT, which can lead to higher NPV estimates. Results are shown in Table 1.
Sensitivity and specificity
In the study of Parpia (2019), 2,554 patients with low (≤0) or moderate (1-2) Wells scores were analysed in an IPD meta-analysis to assess the accuracy of different CDRs for excluding DVT in hospital and primary care outpatients. Results are shown in Table 1.
Table 1. Failure rate, efficiency, negative predictive value (NPV), sensitivity and specificity for an unlikely score on the Wells rule combined with a negative D-dimer test result for ruling out DVT (Geersing, 2014 and Parpia, 2019)
Study |
Clinical decision rule |
N |
Prevalence DVT |
Failure rate (% (95%CI)) |
Efficiency (% (95%CI)) |
NPV (% (95%CI)) |
Sensitivity (% (95%CI)) |
Specificity (% (95%CI)) |
Geersing (2014) |
Wells score (≤1) and negative D-dimer test |
4511 |
26% |
0.9 (0.0 to 1.9) |
23.1% (12.8 to 38.3) |
99.1** |
- |
- |
Parpia (2019)* |
Wells score (≤0) and D-dimer <500 μg/L |
2554 |
12% |
0.2** |
38.9 (29.1 to 48.7) |
99.8 (99.5 to 100) |
99.0 (97.8 to 100.0) |
45.2 (39.6 to 50.9) |
Wells score (≤0) and age- adjusted D-dimer (age x 10 μg/L for >50 years) |
2554 |
12% |
0.3** |
47.4 (35.3 to 59.3) |
99.7 (99.4 to 100.0) |
98.0 (96.3 to 99.5) |
54.7 (48.3 to 61.2) |
* Parpia (2019) only included patients with low or moderate clinical pre-test probability on the Wells score. The lower prevalence of DVT can lead to higher NPV estimates.
** Enough information was available to post hoc estimate the negative predictive value (NPV) or failure rate as following: NPV = 1 - failure rate
Part II: Pulmonary embolism (PE)
Negative predictive value overall
In the study of Geersing (2022), 17,052 patients were analysed in an individual patient data meta-analysis to examine the use of different CDRs for ruling out acute PE in referred secondary care. Enough information was available to post hoc estimate the negative predictive value (NPV) for different CDRs as following: NPV = 1 - failure rate. Results are shown in Table 2. Using the Wells score with PTP adjusted D-dimer resulted in a NPV of 96.9, which is just below the minimally clinically relevant threshold of 97%.
Table 2. Failure rate, efficiency, negative predictive value (NPV), sensitivity and specificity for different clinical decision rules for ruling out acute PE (Geersing, 2022)
Clinical decision rule |
N |
Failure rate (% (95%CI)) |
Efficiency (% (95%CI)) |
NPV (%)* |
Sensitivity (% (95%CI)) |
Specificity (% (95%CI)) |
Wells score with qualitative/fixed D-dimer threshold <500 μg/L |
15 531 |
0.75 (0.50 to 1.13) |
29.57 (25.39 to 34.12) |
99.3 |
98.38 (95.87 to 99.41) |
36.89 (32.53 to 41.47) |
Wells score with fixed D-dimer threshold <500 μg/L |
15 114 |
0.32 (0.17 to 0.60) |
27.77 (23.05 to 33.03) |
99.7 |
99.59 (99.10 to 99.82) |
35.21 (30.19 to 40.57) |
Wells score with age-adjusted D-dimer threshold (age x 10 μg/L for >50 years) |
15 114 |
0.65 (0.43 to 0.99) |
32.91 (27.85 to 38.39) |
99.4 |
98.93 (98.15 to 99.39) |
41.58 (36.42 to 46.93) |
Wells score with PTP adjusted D-dimer |
15 114 |
3.06 (2.47 to 3.78) |
48.78 (43.64 to 53.94) |
96.9 |
93.25 (91.91 to 94.38) |
60.80 (56.24 to 65.19) |
Revised Geneva score with qualitative/fixed D-dimer threshold <500 μg/L |
13 245 |
1.17 (0.79 to 1.74)
|
30.46 (26.75 to 34.44)
|
98.8 |
97.75 (93.86 to 99.27)
|
39.25 (34.57 to 44.14) |
Revised Geneva score with fixed D-dimer threshold <500 μg/L |
12 828 |
0.37 (0.19 to 0.74) |
28.77 (26.20 to 31.48) |
99.6 |
99.53 (98.88 to 99.80) |
37.23 (34.00 to 40.57) |
Revised Geneva score with age-adjusted D-dimer threshold (age x 10 μg/L for >50 years) |
12 828 |
0.81 (0.51 to 1.27) |
35.25 (32.76 to 37.82) |
99.2 |
98.51 (97.37 to 99.16) |
45.27 (42.63 to 47.95) |
Revised Geneva score with PTP adjusted D-dimer |
12 828 |
2.95 (2.34 to 3.71) |
43.02 (38.28 to 47.31) |
97.1 |
98.51 (97.37 to 99.16) |
45.27 (42.63 to 47.95) |
YEARS algorithm (D-dimer threshold, 1000 μg/L if 0 YEARS items and D-dimer 500 μg/L if 1–3 YEARS items) |
15 114 |
2.10 (1.59 to 2.75) |
43.38 (38.86 to 48.01) |
97.9 |
96.15 (94.87 to 97.12) |
54.39 (49.87 to 58.85) |
* Enough information was available to post hoc estimate the negative predictive value (NPV) for different CDRs as following: NPV = 1 - failure rate
Negative predictive value in two subgroup analyses
Two subgroups were analysed: patients with cancer and history of VTE. These subgroups were arbitrarily chosen because their patient characteristics may influence the performance of the diagnostic algorithms. In particular, the prevalence of VTE is often higher, and as a result the NPV is lower. As a result, certain algorithms may be less safe. In the study of Stals (2022), 20,553 patients were analysed in an individual patient data meta-analysis to examine the use of different CDRs for ruling out acute PE. Sufficient information was available to post-hoc estimate the negative predictive value (NPV) for different CDRs as follows: NPV = 1 - failure rate. Results for the subgroup analyses for active cancer are shown in Table 3. Results for the subgroup analyses for history of VTE are shown in Table 4. In cancer patients and patients with a history of VTE, the NPV is slightly below the minimally clinically relevant threshold of 97%, when using the YEARS algorithm. However, as the baseline prevalence of PE is considerably higher in those specific subgroups and the sensitivity was above 90% (data not reported in Stals (2022) but retrieved by personal communication), these NPV’s (96.6 and 96.5, respectively) are within the acceptable range (Dronkers, 2021).
Table 3. Failure rate, efficiency, and negative predictive value (NPV) for different clinical decision rules for ruling out acute PE in patients with and without cancer (Stals, 2022)
Clinical decision rule |
No cancer (N = 18,334)
|
Cancer (N = 2,219)
|
||||
|
Failure rate (% (95%CI)) |
Efficiency (% (95%CI)) |
NPV* |
Failure rate (% (95%CI)) |
Efficiency (% (95%CI)) |
NPV* |
Wells score with fixed D-dimer threshold (500 μg/L) |
0.36 (0.14–0.94) |
28 (12–53) |
99.6 |
No failures |
9.6 (3.4–24) |
100 |
Wells score with age-adjusted D-dimer threshold (age x 10 μg/L for >50 years) |
0.74 (0.32–1.7) |
34 (17–56) |
99.3 |
1.1 (0.25–4.7) |
15 (6.2–31) |
98.9 |
Revised Geneva score with fixed D-dimer threshold (500 μg/L) |
0.5(0.21–1.4) |
33 (15–57) |
99.4 |
1.3 (0.26–6.6) |
12 (4.6–27) |
98.7 |
Revised Geneva score with age-adjusted D-dimer threshold (age x 10 μg/L for >50 years) |
1 (0.43–2.5) |
39 (22–60) |
99 |
2.5 (0.73–8.0) |
18 (8.5–34) |
97.5 |
YEARS algorithm (D-dimer threshold, 1000 μg/L if 0 YEARS items and D-dimer 500 μg/L if 1–3 YEARS items) |
1.7 (0.74–4.0) |
44 (24–66) |
98.3 |
3.4 (1.2–9.0) |
21 (9.6–39) |
96.6 |
* Enough information was available to post hoc estimate the negative predictive value (NPV) for different CDRs as following: NPV = 1 -failure rate
Table 4. Failure rate, efficiency, and negative predictive value (NPV) for different clinical decision rules for ruling out acute PE in patients with and without a history of VTE (Stals, 2022)
Clinical decision rule |
No history of VTE (N = 17611)
|
History of VTE (N = 2942)
|
||||
|
Failure rate (% (95%CI)) |
Efficiency (% (95%CI)) |
NPV* |
Failure rate (% (95%CI)) |
Efficiency (% (95%CI)) |
NPV* |
Wells score with fixed D-dimer threshold (500 μg/L) |
0.33 (0.14–0.77) |
30 (13–55) |
99.7 |
0.48 (0.07–3.4) |
12 (4.5–28) |
99.5 |
Wells score with age-adjusted D-dimer threshold (age x 10 μg/L for >50 years) |
0.70 (0.35–1.4) |
36 (19–57) |
99.3 |
1.0 (0.23–4.3) |
15 (6.7–30) |
99 |
Revised Geneva score with fixed D-dimer threshold (500 μg/L) |
0.48 (0.21–1.1) |
33 (15–58) |
99.5 |
1.2 (0.39–3.3) |
21 (8.6–43) |
98.8 |
Revised Geneva score with age-adjusted D-dimer threshold (age x 10 μg/L for >50 years) |
0.87 (0.43–1.7) |
39 (21–60) |
99.1 |
2.5 (1.1–5.7) |
27 (14–47) |
97.5 |
YEARS algorithm (D-dimer threshold, 1000 μg/L if 0 YEARS items and D-dimer 500 μg/L if 1–3 YEARS items) |
1.5 (0.77–2.9) |
44 (24–66) |
98.5 |
3.5 (1.7–7.2) |
32 (16–54) |
96.5 |
* Enough information was available to post hoc estimate the negative predictive value (NPV) for different CDRs as follows: NPV = 1 - failure rate
Sensitivity and specificity
In the study of Geersing (2022), 17,052 patients were analysed in an individual patient data meta-analysis to examine the use of different CDRs for ruling out acute PE in referred secondary care. Results are shown in Table 2.
Level of evidence of the literature
Part I: Deep vein thrombosis (DVT)
The evidence was derived from one systematic review with an IPD meta-analysis and a second follow-up IPD meta-analysis. The level of evidence for all reported outcome measures started at ‘high quality’.
Negative predictive value
The level of evidence regarding the critical outcome measure negative predictive value was downgraded by two levels to low, because of: study limitations including differences in the index test (mix qualitative and quantitative D-dimer assays with different thresholds), heterogeneity in DVT prevalence, lack of blinding of the reference standard assessor, only point estimates for NPV could be post hoc estimated from the reported information, and exclusion of patients with a Wells score >2 in the study of Parpia et al (2019) (-2 risk of bias).
Sensitivity and specificity
The level of evidence regarding the important outcome measure sensitivity was downgraded by two levels to low because of: study limitations including different settings (one of four studies included in meta-analysis in the primary care setting), heterogeneity in DVT prevalence and distribution of patients in Wells 0 or 1-2, lack of blinding of the reference standard assessor, and exclusion of patients with a Wells score >2 (-2 risk of bias).
The level of evidence regarding the important outcome measure specificity was downgraded by two levels to low because of: study limitations including different settings (primary and secondary care), heterogeneity in DVT prevalence and distribution of patients in Wells 0 or 1-2, lack of blinding of the reference standard assessor, and exclusion of patients with a Wells score >2 (-2 risk of bias).
Part II: Pulmonary embolism
The evidence was derived from two systematic reviews and IPD meta-analyses. The level of evidence for all reported outcome measures started at ‘high quality’.
Negative predictive value overall
For the main results, the level of evidence regarding the critical outcome measure negative predictive value was downgraded by two levels to low because of: study limitations including heterogeneity in prevalence, only point estimates for NPV could be post hoc estimated from the reported information, unclear reference standard, and index test issues (-2 risk of bias).
Negative predictive value subgroup analyses
For the subgroup results, the level of evidence regarding the critical outcome measure negative predictive value was downgraded by two levels to low because of: study limitations including heterogeneity in prevalence, only point estimates for NPV could be post hoc estimated from the reported information, unclear reference standard, and index test issues (-2 risk of bias).
Sensitivity and specificity
The level of evidence regarding the important outcome measure sensitivity was downgraded by one level to moderate because of: study limitations including heterogeneity in prevalence, unclear reference standard, and index test issues (-1 risk of bias).
The level of evidence regarding the important outcome measure specificity was downgraded by one level to moderate because of: study limitations including heterogeneity in prevalence, unclear reference standard, and index test issues (-1 risk of bias).
Zoeken en selecteren
A systematic review of the literature was performed to answer the following two questions:
Subquestion 1: What is the safety and efficiency of diagnostic algorithms consisting of a clinical decision rule, D-dimer and imaging in patients with a suspected first episode or a recurrent episode of deep vein thrombosis (DVT)?
P (Patients): | Adult patients with suspected first episode or relapsed DVT |
I (Index test): | Positive outcome clinical decision rule + d-dimer |
C (Comparison): | Negative outcome clinical decision rule + d-dimer |
R (Reference): | Number of patients with DVT based on compression ultrasonography/Magnetic Resonance Direct Thrombus Imaging or during 3 months follow up |
O (Outcomes): | Negative predictive value, sensitivity, specificity |
T/S (Timing/setting): | Hospital |
Subquestion 2: What is the safety and efficiency of diagnostic algorithms consisting of a clinical decision rule, D-dimer and imaging in patients with a suspected first episode or a recurrent episode of recurrent pulmonary embolism (PE)?
P (Patients): | Adult patients with suspected first episode or relapsed pulmonary embolism |
I (Index test): | Positive outcome clinical decision rule + d-dimer |
C (Comparison): | Negative outcome clinical decision rule + d-dimer |
R (Reference): | Number of patients with pulmonary embolism based on CTPA, V-Q long scan of SPECT, or during 3 months follow up |
O (Outcomes): | Negative predictive value, sensitivity, specificity |
T/S (Timing/setting): | Hospital |
Relevant outcome measures
The guideline development group considered negative predictive value (safety) as a critical outcome measure for decision making, and sensitivity and specificity as important outcome measures for decision making.
A priori, the working group did not define the outcome measures listed above but used the definitions used in the studies.
Per outcome, the working group defined the following minimal clinically important differences:
- Negative predictive value (NPV) of ≥97%
- Sensitivity of ≥90%
- Efficiency/specificity as high as possible
With respect to the NPV, a prevalence dependent cut-off value was applied in the discussion and recommendations, as recommended by the International Society on Thrombosis and Haemostasis (Dronkers, 2021). The combination of a clinical decision rule and a D-dimer test cannot confirm the diagnosis, and follow-up imaging is necessary to do this. Therefore the working group did not a priori define a minimal clinically important difference for efficiency/specificity.
For DVT, the NPV of a diagnostic algorithm in excluding proximal DVT was analysed (distal DVT was not taken into account). Proximal DVT is defined as a DVT at the level of the popliteal vein and/or located more proximal.
Search and select (Methods)
The databases Embase and Ovid/Medline were searched with relevant search terms from 2009 until 15-12-2022. The detailed search strategy is depicted under the tab Methods. The systematic literature search resulted in 508 hits. Studies were selected based on the following criteria:
- systematic reviews (searched in at least two databases, and detailed search strategy, risk of bias assessment and results of individual studies available), randomized controlled trials, or observational comparative studies,
- full-text English language publication,
- adult patients with suspected first episode or relapsed pulmonary embolism or DVT, and
- studies according to the PICO.
30 studies were initially selected based on title and abstract screening. After reading the full text, 26 studies were excluded (see the table with reasons for exclusion under the tab Methods), and four studies were included.
Results
Four studies were included in the analysis of the literature. For DVT, two IPD meta-analyses were included. The second IPD meta-analysis by Parpia (2019) is a follow-up that reported on additional outcome measures (sensitivity and specificity) in a subsample of the first IPD meta-analysis (Geersing, 2014). For pulmonary embolism, two systematic reviews and individual-patient data (IPD) meta-analysis were included (Geersing, 2022; Stals 2022). Both studies report comparable results based on similar measures in an almost identical dataset. The two studies complement each other for the outcomes and subgroup analyses of interest for this guideline. Geersing (2022) was used as the main study since it also reports sensitivity and specificity, thus encompassing all outcomes of interest. From Stals (2022), 2 subgroup analyses are included, i.e. patients with cancer and those with suspected recurrent VTE . Important study characteristics and results of the four studies are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.
Referenties
- Bernardi E, Camporese G, Büller HR, Siragusa S, Imberti D, Berchio A, Ghirarduzzi A, Verlato F, Anastasio R, Prati C, Piccioli A, Pesavento R, Bova C, Maltempi P, Zanatta N, Cogo A, Cappelli R, Bucherini E, Cuppini S, Noventa F, Prandoni P; Erasmus Study Group. Serial 2-point ultrasonography plus D-dimer vs whole-leg color-coded Doppler ultrasonography for diagnosing suspected symptomatic deep vein thrombosis: a randomized controlled trial. JAMA. 2008 Oct 8;300(14):1653-9. doi: 10.1001/jama.300.14.1653. PMID: 18840838.
- Bhatt M, Braun C, Patel P, Patel P, Begum H, Wiercioch W, Varghese J, Wooldridge D, Alturkmani HJ, Thomas M, Baig M, Bahaj W, Khatib R, Kehar R, Ponnapureddy R, Sethi A, Mustafa A, Nieuwlaat R, Lim W, Bates SM, Lang E, Le Gal G, Righini M, Husainat NM, Kalot MA, Al Jabiri YN, Schünemann HJ, Mustafa RA. Diagnosis of deep vein thrombosis of the lower extremity: a systematic review and meta-analysis of test accuracy. Blood Adv. 2020 Apr 14;4(7):1250-1264. doi: 10.1182/bloodadvances.2019000960. PMID: 32227213; PMCID: PMC7160276.
- Van Dam LF, Dronkers CEA, Gautam G, Eckerbom Å, Ghanima W, Gleditsch J, von Heijne A, Hofstee HMA, Hovens MMC, Huisman MV, Kolman S, Mairuhu ATA, Nijkeuter M, van de Ree MA, van Rooden CJ, Westerbeek RE, Westerink J, Westerlund E, Kroft LJM, Klok FA; Theia Study Group. Magnetic resonance imaging for diagnosis of recurrent ipsilateral deep vein thrombosis. Blood. 2020 Apr 16;135(16):1377-1385. Doi: 10.1182/blood.2019004114. PMID: 32016390.
- van Dam LF, van den Hout WB, Gautam G, Dronkers CEA, Ghanima W, Gleditsch J, von Heijne A, Hofstee HMA, Hovens MMC, Huisman MV, Kolman S, Mairuhu ATA, Nijkeuter M, van de Ree MA, van Rooden CJ, Westerbeek RE, Westerink J, Westerlund E, Kroft LJM, Klok FA. Cost-effectiveness of magnetic resonance imaging for diagnosing recurrent ipsilateral deep vein thrombosis. Blood Adv. 2021 Mar 9;5(5):1369-1378. doi: 10.1182/bloodadvances.2020003849. PMID: 33661297; PMCID: PMC7948280.
- Dronkers CEA, van der Hulle T, Le Gal G, Kyrle PA, Huisman MV, Cannegieter SC, Klok FA. Toward a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: Communication from the SSC of the ISTH. J Thromb Haemost. 2021 Jul;19(7):1834-1835. doi: 10.1111/jth.15357. PMID: 34176217.
- Geersing, G. J., Zuithoff, N. P., Kearon, C., Anderson, D. R., Ten Cate-Hoek, A. J., Elf, J. L., Bates, S. M., Hoes, A. W., Kraaijenhagen, R. A., Oudega, R., Schutgens, R. E., Stevens, S. M., Woller, S. C., Wells, P. S., & Moons, K. G. (2014). Exclusion of deep vein thrombosis using the Wells rule in clinically important subgroups: individual patient data meta-analysis. BMJ (Clinical research ed.), 348, g1340. https://doi.org/10.1136/bmj.g1340.
- Geersing, G. J., Takada, T., Klok, F. A., Büller, H. R., Courtney, D. M., Freund, Y., Galipienzo, J., Le Gal, G., Ghanima, W., Kline, J. A., Huisman, M. V., Moons, K. G. M., Perrier, A., Parpia, S., Robert-Ebadi, H., Righini, M., Roy, P. M., van Smeden, M., Stals, M. A. M., Wells, P. S., … van Es, N. (2022). Ruling out pulmonary embolism across different healthcare settings: A systematic review and individual patient data meta-analysis. PLoS medicine, 19(1), e1003905. https://doi.org/10.1371/journal.pmed.1003905.
- de Jong CMM, van den Hout W, van Dijk CE, Heim N, van Dam LF, Dronkers C, Gautam G, Ghanima W, Gleditsch J, von Heijne A, Hofstee H, Hovens M, Huisman MV, Kolman S, Mairuhu ATA, van Mens TE, Nijkeuter M, van de Ree M, van Rooden JK, Westerbeek RE, Westerink J, Westerlund E, Kroft L, Klok FA. Cost-effectiveness of performing reference ultrasonography in patients with deep vein thrombosis. Thromb Haemost. 2023 Nov 20. doi: 10.1055/a-2213-9230. Epub ahead of print. PMID: 37984402.
- Lensing AW, Prandoni P, Brandjes D, Huisman PM, Vigo M, Tomasella G, Krekt J, Wouter Ten Cate J, Huisman MV, Büller HR. Detection of deep-vein thrombosis by real-time B-mode ultrasonography. N Engl J Med. 1989 Feb 9;320(6):342-5. doi: 10.1056/NEJM198902093200602. PMID: 2643771.
- van der Pol LM, Bistervels IM, van Mens TE, van der Hulle T, Beenen LFM, den Exter PL, Kroft LJM, Mairuhu ATA, Middeldorp S, van Werkhoven JM, Ten Wolde M, Huisman MV, Klok FA. Lower prevalence of subsegmental pulmonary embolism after application of the YEARS diagnostic algorithm. Br J Haematol. 2018 Nov;183(4):629-635. doi: 10.1111/bjh.15556. Epub 2018 Sep 10. PMID: 30198551; PMCID: PMC6282699.
- van der Pol LM, Tromeur C, Bistervels IM, Ni Ainle F, van Bemmel T, Bertoletti L, Couturaud F, van Dooren YPA, Elias A, Faber LM, Hofstee HMA, van der Hulle T, Kruip MJHA, Maignan M, Mairuhu ATA, Middeldorp S, Nijkeuter M, Roy PM, Sanchez O, Schmidt J, Ten Wolde M, Klok FA, Huisman MV; Artemis Study Investigators. Pregnancy-Adapted YEARS Algorithm for Diagnosis of Suspected Pulmonary Embolism. N Engl J Med. 2019 Mar 21;380(12):1139-1149. doi: 10.1056/NEJMoa1813865. PMID: 30893534.
- Parpia S, Takach Lapner S, Schutgens R, Elf J, Geersing GJ, Kearon C. Clinical pre-test probability adjusted versus age-adjusted D-dimer interpretation strategy for DVT diagnosis: A diagnostic individual patient data meta-analysis. J Thromb Haemost. 2020 Mar;18(3):669-675. doi: 10.1111/jth.14718. Epub 2020 Jan 14. PMID: 31869505.
- Remy-Jardin M, Pistolesi M, Goodman LR, Gefter WB, Gottschalk A, Mayo JR, Sostman HD. Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology. 2007 Nov;245(2):315-29. doi: 10.1148/radiol.2452070397. Epub 2007 Sep 11. PMID: 17848685.
- Stals, M. A. M., Takada, T., Kraaijpoel, N., van Es, N., Büller, H. R., Courtney, D. M., Freund, Y., Galipienzo, J., Le Gal, G., Ghanima, W., Huisman, M. V., Kline, J. A., Moons, K. G. M., Parpia, S., Perrier, A., Righini, M., Robert-Ebadi, H., Roy, P. M., van Smeden, M., Wells, P. S., … Klok, F. A. (2022). Safety and Efficiency of Diagnostic Strategies for Ruling Out Pulmonary Embolism in Clinically Relevant Patient Subgroups : A Systematic Review and Individual-Patient Data Meta-analysis. Annals of Internal medicine, 175(2), 244–255. https://doi.org/10.7326/M21-2625.
- Tan M, Mol GC, van Rooden CJ, Klok FA, Westerbeek RE, Iglesias Del Sol A, van de Ree MA, de Roos A, Huisman MV. Magnetic resonance direct thrombus imaging differentiates acute recurrent ipsilateral deep vein thrombosis from residual thrombosis. Blood. 2014 Jul 24;124(4):623-7. doi: 10.1182/blood-2014-04-566380. Epub 2014 Jun 13. PMID: 24928859.
- Tan M, Velthuis SI, Westerbeek RE, VAN Rooden CJ, VAN DER Meer FJ, Huisman MV. High percentage of non-diagnostic compression ultrasonography results and the diagnosis of ipsilateral recurrent proximal deep vein thrombosis. J Thromb Haemost. 2010 Apr;8(4):848-50. doi: 10.1111/j.1538-7836.2010.03758.x. PMID: 20398187.
- Wells PS, Anderson DR, Rodger M, Forgie M, Kearon C, Dreyer J, Kovacs G, Mitchell M, Lewandowski B, Kovacs MJ. Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis. N Engl J Med. 2003 Sep 25;349(13):1227-35. doi: 10.1056/NEJMoa023153. PMID: 14507948.
Evidence tabellen
Evidence table for systematic reviews of diagnostic test accuracy studies
Research question:
Subquestion-1: What is the diagnostic value of clinical decision rules in patients with suspected first episode or relapsed deep vein thrombosis (DVT)?
Subquestion-2: What is the diagnostic value of clinical decision rules in patients with suspected first episode or relapsed pulmonary embolism (PE)?
Study reference |
Study characteristics |
Patient characteristics
|
Index test (test of interest) |
Reference test
|
Follow-up |
Outcome measures and effect size |
Comments |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Geersing, 2022
Study characteristics and results for individual studies are extracted from the SR Geersing, 2022 (unless stated otherwise) |
SR and Individual-Patient Data (IPD) meta-analysis
Literature search from 1 January 1995 until 1 November 2021
A: Sanson, 2000 B: Wicki, 2001 C: Perrier, 2004 D: Ghanima, 2005 E: Perrier, 2005 F: van Belle, 2006 G: Goekoop, 2007 H: Righini, 2008 I: Douma, 2011 J: Galipienzo, 2012 K: Mos, 2014 L: Righini, 2014 M: Penaloza, 2017 N: van der Hulle T, 2017 O: Kline, 2002 P: Kearon, 2006 Q: Kline, 2006 R: Runyon, 2007 S: Geersing, 2012 T: Kline, 2012 U: Kline, 2008 V: Schouten, 2014 W: Kearon, 2019
Study design: IPD meta-analysis of studies with a prospective follow-up or cross-sectional design
Setting and Country: Different countries and settings
Source of funding and conflicts of interest: The study was funded by personal Vidi grant from the Dutch Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
One author received grants from several pharmaceutical companies, the Dutch thrombosis association, The Netherlands Organisation for Health Research and Development and the Dutch Heart foundation. One author has participated in advisory boards from several pharmaceutical companies, receive lecture honoraria and grants from several pharmaceutical companies. |
Inclusion criteria SR: patients with clinically suspected PE, at least 1 of the clinical decision rules (CDRs) of interest assessed and as a reference standard: imaging or clinical follow-up for those not receiving anticoagulant treatment.
Exclusion criteria SR: More than 80% missing data for variables necessary for imputation (5 studies excluded for >80% missing D-dimer data)
23 studies were included in the IPDA meta-analysis with 14 studies in the referred secondary care setting (A-N).
Important patient characteristics:
|
IPD meta-analysis: Several diagnostic strategies were compared. Clinical decision rules included the Wells score, revised Geneva score, and the YEARS algorithm. The D-dimer threshold was either fixed (500 μg/L), age-adjusted (age x 10 μg/L in patients aged >50 years) or dependent on pretest probability (PPT) for Wells and Geneva. For the PTP adjusted D-dimer levels low probability (Wells score of ≤4 or Geneva score of ≤5) has a D-dimer cut-off of 1000 ng/ml and moderate probability (score of ≥6) has a D-dimer cut-off of 500 ng/ml. In the YEARS algorithm the D-dimer threshold is dependent on clinical pretest probability (CPTP) assessment (with a higher D-dimer threshold for patients with a low CPTP).
|
Imaging or clinical follow-up in those in whom PE was ruled out without imaging and who thus did not receive anticoagulant treatment.
Prevalence (%) [based on refence test at specified cut-off point] A: 30.9 B: 27.2 C: 23.7 D: 22.0 E: 26.1 F: 21.2 G: 12.6 H: 21.3 I: 23.8 J: 26.3 K: 40.9 L: 19.2 M: 21.7 N: 13.7 O: 19.6 P: 15.0 Q: 4.8 R: 3.3 S: 12.2 T: 17.0 U: 7.1 V: 39.8 W: 7.4
Complete data: Unclear from the information provided in the study for how many participants complete outcome data was available. Authors include % missing data per variable. This indicates no missing data for VTE diagnosis at baseline or follow-up except for study E (Schouten, 2014) with 0.3% missing values. No reason was given for the missing values.
In case of missing values in the diagnostic strategies and outcomes, imputation was used. Multilevel chained equations included all items in the diagnostic strategies and the outcome. Ten imputation data sets were created, and the analysis results were combined using the Rubin rule. |
All studies had 3 months follow-up periods. |
Negative predictive value (NPV) can be post hoc estimated from the two outcomes measures reported by the authors:
Point estimates as well as 95% prediction intervals (CI) were given.
NPV point estimates and 95% CI were calculated with: as following: NPV = 1 -failure rate.
Sensitivity and specificity
|
Study quality (ROB): QUADAS-2 was used to report risk of bias per individual study. Most studies had low risk of bias and applicability concerns, with most common being an unclear risk of bias for the reference standard (four studies: B, C, E, G). C and E were the only two studies with high risk of patient selection and index test. M also had unclear risk of bias in the index test. For the index test there is also unclear (study M) or high (studies C and E) applicability concerns. Finally risk of bias in flow and timing was high for studies C and D and unclear for study M.
Place of the index test in the clinical pathway: replacement of scan.
Choice of cut-off point: Important to reliably exclude individuals for further diagnostic testing with (expensive) scans while identifying all relevant patients. Thus, interested in a high number of true negatives and a low number of false negatives. The 500 μg/L threshold has less false negatives but results in more scans. The age-adjusted D-dimer threshold and YEARS algorithm set higher D-dimer threshold depending on age or clinical information to avoid unnecessary testing.
The authors conclude that all strategies have acceptable safety (low predicted failure rates). Efficiency was higher for adapted D-dimer thresholds.
To avoid exclusion of entire studies, 1-stage multilevel chained equations were used to impute missing values. Multilevel chained equations included all items in the diagnostic strategies and the outcome. Ten imputation data sets were created, and the analysis results were combined using the Rubin rule.
Subgroup analyses were done by sex, age, cancer, and previous venous thromboembolism (VTE).
Heterogeneity: In general, patient characteristics and reference specification were similar. There is heterogeneity in the availability and definition of items included in the diagnostic strategies. Most studies used Wells rules or collected these variables based on Geneva scoring items. Various D-dimer assays were used, but with the same threshold >500 ng/mL.
A sensitivity analysis was performed including only studies with data on all diagnostic strategies. This resulted in similar failure rate and efficiency estimates (see table below).
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stals, 2022
Study characteristics and results for individual studies are extracted from the SR Stals, 2022 (unless stated otherwise) |
SR and Individual-Patient Data (IPD) meta-analysis
Literature search from 1 January 1995 until 1 January 2021
A: Kline, 2012 B: Douma, 2011 C: Goekoop, 2007 D: Righini, 2014 E: Schouten, 2014 F: van Belle, 2006 G: Van der Hulle, 2017 H: Mos, 2014 I: Wicki, 2001 J: Perrier, 2004 K: Perrier, 2005 L: Righini, 2008 M: Kearon, 2019 N: Galipienzo, 2012 O: Ghanima, 2005 P: Penaloza, 2017
Study design: IPD meta-analysis of studies with a prospective follow-up or cross-sectional design
Setting and Country: Different countries, but in hospital patients (mostly outpatients, but some inpatients included)
Source of funding and conflicts of interest: The study was funded by the Dutch Research Council. The sponsor was not involved in the study and the authors had final responsibility for study design, oversight, data verification, analyses and accuracy and completeness of the manuscript. Two authors disclosed receiving personal fees for consulting and payment or honoraria for educational events such as presentations from Sobi, Pfizer, UCB, Argenx, Amgen, Sanofi, Bayer, Novartis in the 36 months preceding publication of the study. |
Inclusion criteria SR: patients with clinically suspected PE, at least 1 of the clinical decision rules (CDRs) of interest assessed and as a reference standard: imaging or clinical follow-up for those not receiving anticoagulant treatment.
Exclusion criteria SR: only qualitative D-dimer measurements performed and patients with only low clinical pretest probability.
16 studies included
Important patient characteristics:
|
IPD meta-analysis: Several diagnostic strategies were compared. Clinical decision rules included the Wells score, revised Geneva score, and the YEARS algorithm. The D-dimer threshold was either fixed (500 μg/L) or age-adjusted (age x 10 μg/L in patients aged >50 years) for Wells and Geneva. In the YEARS algorithm the D-dimer threshold is dependent on clinical pretest probability (CPTP) assessment (with a higher D-dimer threshold for patients with a low CPTP).
Per study: A: Wells score and revised Geneva score with D-dimer threshold 1000 μg/L for “PE unlikely” patients B: Wells rule and revised Geneva score (both original and simplified version) with D-dimer testing (threshold, 500 μg/L). All four CDRs negative for PE to be unlikely. C: Dichotomized Wells score combined with D-dimer testing (threshold, 500 μg/L) "D: Wells or revised Geneva score combined with D-dimer testing (threshold of 500 μg/L in patients aged <50 y and age-adjusted threshold in patients aged ≥50 y) " E: Wells score with D-dimer testing (set-up with qualitative assay, but quantitative data was collected in 50% of the participants) F: Dichotomized Wells score combined with D-dimer testing (threshold, 500 μg/L) G: YEARS score with D-dimer (threshold, 1000 μg/L if 0 YEARS items and 500 μg/L if 1–3 YEARS items) H: Dichotomized Wells score combined with D-dimer testing (threshold, 500 μg/L) I: Geneva score with D-dimer testing J: Geneva score with D-dimer testing (threshold, 500 μg/L) K: Geneva score with D-dimer testing (threshold, 500 μg/L) L: Geneva score with D-dimer testing (threshold, 500 μg/L) M: Wells score with D-dimer testing (threshold, 1000 μg/L for low clinical probability and 500 μg/L for moderate clinical probability) N: Dichotomized Wells score combined with D-dimer testing (threshold, 500 μg/L) O: Algorithm based on the Hyers criteria combined with D- dimer testing (threshold, 400 μg/L) P: Pulmonary embolism rule-out criteria (PERC) with D-dimer testing |
Imaging or clinical follow-up in those in whom PE was ruled out without imaging and who thus did not receive anticoagulant treatment.
Reference test and cut-off point(s): A: CTPA or 30 days clinical follow-up B: CTPA or 3 months clinical follow-up C: CTPA or V/Q or 3 months clinical follow-up D: CTPA or 3 months clinical follow-up E: CTPA or V/Q or 3 months clinical follow-up F: CTPA or 3 months clinical follow-up G: CTPA or 3 months clinical follow-up H: CTPA or 3 months clinical follow-up I: Lung scan J: CTPA or 3 months clinical follow-up K: Multidetector row CT and CUS or 3 months clinical follow-up L: CTPA or 3 months clinical follow-up M: CTPA or 3 months clinical follow-up N: CTPA or 3 months clinical follow-up O: MSCTor 3 months clinical follow-up P: CTPA or V/Q or 3 months clinical follow-up
Prevalence (%) [based on refence test at specified cut-off point] A: 23 B: 24 C: 13 D: 19 E: 28 F: 21 G: 14 H: 41 I: 27 J: 24 K: 21 L: 26 M: 7,4 N: 26 O: 22 P: 22
Complete data: Unclear from the information provided in the study for how many participants complete outcome data was available. Authors include % missing data per variable. This indicates no missing data for VTE diagnosis at baseline or follow-up except for study E (Schouten, 2014) with 0.3% missing values. No reason was given for the missing values.
In case of missing values in the diagnostic strategies and outcomes, imputation was used. Multilevel chained equations included all items in the diagnostic strategies and the outcome. Ten imputation data sets were created, and the analysis results were combined using the Rubin rule. |
Only A (Kline 2012) had a follow-up of 30 days, all other studies had 3 months follow-up periods. |
Not enough information was provided to report on sensitivity or specificity.
Negative predictive value (NPV) can be post hoc estimated from the two outcomes measures reported by the authors:
Point estimates as well as 95% prediction intervals (CI) were given.
NPV point estimates and 95% CI were calculated as following: NPV = 1 -failure rate.
Wells plus fixed D-dimer NPV point estimate = (26-0.36)/26 = 0.986 NPV 95% CI = 0.981-0.987
Wells plus age-adjusted D-dimer NPV point estimate = (32-0.76)/32 = 0.976 NPV 95% CI = 0.969 - 0.978
YEARS NPV point estimate = (41-1.8)/41= 0.956 NPV 95% CI = 0.934-0.965
|
Study quality (ROB): QUADAS-2 was used to report risk of bias per individual study. Most studies had low risk of bias and applicability concerns, with most common being an unclear risk of bias for the reference standard (five studies: C, E, I, J, L ). J and K were the only two studies with high risk of patient selection and index test. A and P also had unclear risk of bias in the index test. For the index test there is also unclear (study P) or high (studies J and K) applicability concerns. Finally risk of bias in flow and timing was high for studies O and J and unclear for study M.
Place of the index test in the clinical pathway: replacement of scan.
Choice of cut-off point: Important to reliably exclude individuals for further diagnostic testing with (expensive) scans while identifying all relevant patients. Thus, interested in a high number of true negatives and a low number of false negatives. The 500 μg/L threshold has less false negatives but results in more scans. The age-adjusted D-dimer threshold and YEARS algorithm set higher D-dimer threshold depending on age or clinical information to avoid unnecessary testing.
The authors conclude that all strategies have acceptable safety (low predicted failure rates). Efficiency was higher for adapted D-dimer thresholds.
To avoid exclusion of entire studies, 1-stage multilevel chained equations were used to impute missing values (including systematically missing values). Multilevel chained equations included all items in the diagnostic strategies and the outcome. Ten imputation data sets were created, and the analysis results were combined using the Rubin rule.
Subgroup analyses were done by sex, age, cancer, and previous venous thromboembolism (VTE).
VTE detected during follow-up could be a new event and thus unrelated to the index presentation. The authors performed a sensitivity analysis in which only VTE events diagnosed at baseline with imaging was used as the outcome. This sensitivity analysis resulted in slightly lower point estimates for failure rate.
Heterogeneity: In general, patient characteristics and reference specification were similar. There is heterogeneity in the availability and definition of items included in the diagnostic strategies. Most studies used Wells rules or collected these variables based on Geneva scoring items. Various D-dimer assays were used and D-dimer threshold can vary between studies, most used >500 μg/L. For the IPD meta-analysis raw D-dimer assay data was used to calculate estimates based on the D-dimer thresholds specified by the authors. The authors made forest plots and gave I2 statistics for the subgroup analyses. Based on these forest plots there was considerable between study heterogeneity for both failure rate and efficiency of each diagnostic strategy. With wider confidence intervals for patients with cancer and patients with a history of VTE.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Geersing, 2014
Study characteristics and results for individual studies are extracted from the SR Geersing, 2014 (unless stated otherwise) |
IPD meta-analysis
Literature search from 2006 to supplement studies from previous meta-analysis
A: Anderson 2000 B: Kraaijenhagen 2002 C: Schutgens 2003 D: Wells 2003 E: Elf 2009 F: Kearon 2001 G: Anderson 2003 H: Bates 2003 I: Stevens 2004 J: Kearon 2005 K: Oudega 2005 L: Toll 2006 M: AMUSE study 2009
Study design: IPD meta-analysis of studies with a prospective follow-up design
Setting and Country: 13 studies in Canada, the Netherlands, the United States, and Sweden. Outpatients in the primary and hospital setting (with subgroup analysis for care setting)
Source of funding and conflicts of interest: The study received no funding. The authors declare: “no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years, no other relationships or activities that could appear to have influenced the submitted work.” |
Inclusion criteria SR: consecutive outpatients with suspected DVT; have the results of any D-dimer testing before reference testing; data on all predictors that form the Wells rule; categorised patients with the Wells rule before venous imaging (reference test); document the presence or absence of proximal DVT by an acceptable reference test.
Exclusion criteria SR: None mentioned (besides the inclusion criteria). For the current guideline only studies in the secondary/hospital patients were included.
13 studies were included in the IPDA meta-analysis with 10 studies in the hospital outpatient setting (A-J).
Important patient characteristics: Of the 10 002 patients in the IPD meta-analysis, 1864 (19%) had proximal DVT. The median age was 59 years and 62% of patients were female.
|
A low score on the Wells rule (≤1) combined with a negative D-dimer test (quantitative or qualitative). For quantitative D-dimer assays the cut-off as reported in the original study was used (most studies <500 µg/L). For qualitative D-dimer (point of care) assays, only a positive or negative test result was reported. |
Reference tests were either compression ultrasonography (CUS) or venography at initial presentation, or, if venous imaging was not performed, an uneventful follow-up for at least three months.
Reference test and cut-off point(s): A: CUS or venography at baseline or 3 months uneventful follow-up B: CUS at baseline or 3 months uneventful follow-up C: CUS at baseline or 3 months uneventful follow-up D: CUS at baseline or 3 months uneventful follow-up E: CUS or venography at baseline or 3 months uneventful follow-up
Prevalence (%) [based on refence test at specified cut-off point] A: 17 B: 23 C: 39 D: 22 E: 16
For how many participants were no complete outcome data available? In all studies complete outcome data was available, except for study B (Kraaijenhagen 2002) with 3% missing values for DVT.
No reason was given for the missing values.
In case of missing values in the diagnostic tests (D-dimer and any predictors included in the Wells rule), reference tests or DVT outcome, imputation with multivariable regression was used. Imputation was done per dataset, therefore studies without data on D-dimer testing were not included in the results. It is unclear how many imputation data sets were created. |
All studies had a minimal follow-up of three months. |
Not enough information was provided to report on sensitivity or specificity.
Negative predictive value (NPV) can be post hoc estimated from the two outcomes measures reported by the authors:
Point estimates as well as 95% prediction intervals (CI) were given.
NPV point estimates and 95% CI were calculated as following: NPV = 1 -failure rate.
Wells ≤1 plus negative D-dimer Failure rate: 0.9% (95%CI 0.0 to 1.9) Efficiency: 23.1% (95%CI 12.8 to 38.3) NPV: 96.1% (95%CI 95 to 100%) |
Study quality (ROB): The authors provide limited information about study quality. Many of the included studies did not explicitly blind of the outcome (DVT) assessor to the results of the Wells rule and D-dimer testing. This can lead to an overoptimistic estimate of the value of the Wells rule and D-dimer testing for assessing DVT.
Place of the index test in the clinical pathway: replacement of scan.
Choice of cut-off point: Important to reliably exclude individuals for further diagnostic testing with (expensive) scans. Thus, interested in a high number of true negatives and low number of false positives.
Heterogeneity: There was considerable heterogeneity between the studies in prevalence estimates. This likely contributed to the relatively wide prediction intervals calculated by the authors. The main analyses were repeated with prevalence set at 15% (a prevalence that best reflects a European or primary care based healthcare setting). But this was not done for the secondary analysis for care setting that was reported in in this guideline, so it is unclear how the heterogeneity in prevalence between studies affected the results.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Parpia, 2019
Study characteristics and results for individual studies are extracted from the SR Geersing, 2024 (unless stated otherwise) |
IPD meta-analysis
Literature search from 1 January 1995 until 1 January 2021
C: Schutgens 2003 L: Toll 2006 E: Elf 2009 N: Linkins 2013
Study design: prospective follow-up
Setting and Country: 4 studies; one in Canada, two in the Netherlands, and one in Sweden. Outpatient setting with three studies in hospital and one in primary care.
Source of funding and conflicts of interest: The study was funded by Hamilton Health Sciences New Investigator Fund. Dr Kearon is supported by the Jack Hirsh Professorship in Thromboembolim. Dr Geersing is supported by a Veni and Vidi from the Dutch Research Council (NWO/ZonMw).All authors declared no conflicts of interest. |
Inclusion criteria SR: consecutive outpatients with suspected DVT; have the results of a quantitative D-dimer test before reference testing; data on all predictors that form the Wells rule; categorised patients with the Wells rule before venous imaging (reference test); document the presence or absence of proximal DVT by an acceptable reference test.
Exclusion criteria SR: Patients with a high clinical pre-test probability (CPTP) based on the Wells score were excluded as D-dimer is not recommended to exclude DVT in these patients. 814 of 3368 patients were excluded for this reason.
4 studies were included.
Important patient characteristics: Of the 3368 patients in the four studies, 814. 2254 patients with low or moderate CPTP were included in the analysis. A DVT diagnosis was present in 12% of all patients, prevalence varied from 5% to 31% between studies. 64% of all patients were female, the mean age was 59 years and 44% had low CPTP.
|
A low score on the Wells rule (≤1) combined with a negative D-dimer test (quantitative or qualitative). For quantitative D-dimer assays the cut-off as reported in the original study was used (most studies <500 µg/L). For qualitative D-dimer (point of care) assays, only a positive or negative test result was repored. |
Reference tests were either compression ultrasonography (CUS) or venography at initial presentation, or, if venous imaging was not performed, an uneventful follow-up for at least three months.
Reference test and cut-off point(s): A: CUS or venography at baseline or 3 months uneventful follow-up B: CUS at baseline or 3 months uneventful follow-up C: CUS at baseline or 3 months uneventful follow-up D: CUS at baseline or 3 months uneventful follow-up E: CUS or venography at baseline or 3 months uneventful follow-up
Prevalence (%) [based on refence test at specified cut-off point] C: 31 L: 11 E: 25 N: 61
For how many participants were no complete outcome data available? Unclear. Authors mention few patients were lost to follow-up, but do not provide a numerical indication nor any reasons for loss to follow-up.
|
All studies had a minimal follow-up of three months. |
Table gives point estimates (95% CI).
|
Study quality (ROB):The authors provide limited information about quality of the included studies.
Place of the index test in the clinical pathway: replacement of scan.
Choice of cut-off point: Important to reliably exclude individuals for further diagnostic testing with (expensive) scans. Thus, interested in a high number of true negatives and low number of false positives.
Heterogeneity: studies differed in prevalence of DVT and distribution of patients in Wells 0 or 1-2. Having a smaller proportion of patients in the 0 Wells group reduces specificity and the amount of patients testing negative. In addition, different D-dimer assays (three latex agglutination assays and one enzyme-linked immunosorbent assays [ELISA]) were used in different settings (three studies in secondary setting, one study in primary care setting).
|
Table of quality assessment for systematic reviews of diagnostic studies
Research question:
Subquestion-1: What is the diagnostic value of clinical decision rules in patients with suspected first episode or relapsed deep vein thrombosis (DVT)?
Subquestion-2: What is the diagnostic value of clinical decision rules in patients with suspected first episode or relapsed pulmonary embolism (PE)?
Study
First author, year |
Appropriate and clearly focused question?
Yes/no/unclear |
Comprehensive and systematic literature search?
Yes/no/unclear |
Description of included and excluded studies?
Yes/no/unclear |
Description of relevant characteristics of included studies?
Yes/no/unclear |
Assessment of scientific quality of included studies?
Yes/no/unclear |
Enough similarities between studies to make combining them reasonable?
Yes/no/unclear |
Potential risk of publication bias taken into account?
Yes/no/unclear |
Potential conflicts of interest reported?
Yes/no/unclear |
Geersing, 2022 |
Yes, “to assess the capability of ruling out PE by available diagnostic strategies across all possible settings.” |
Yes, “MEDLINE was first searched from January 1, 1995 to August 25, 2016 (this was recently updated until November 1, 2021)”. Full description available as appendix in the protocol registration. |
Yes, potentially relevant studies that are excluded at final selection (after reading the full text) are referenced in text with reasons. |
Unclear, characteristics related to PICO such as patient population, type of clinical decision rule and D-dimer test, reference and timing/setting are described. Although type of clinical decision rule was only described overall, not available for each individual study. |
Yes, authors assessed studies using the QUADAS-2, reported risk of bias with +/?/-and took this into account in the evidence synthesis. They do not specify the reasons for lower ratings in individual studies. Therefore, it is not possible to reproduce their QUADAS-2 rating per study. |
Yes |
No, the potential risk of publication bias is not discussed. |
No, source of funding SR is clear but not for individual studies. |
Stals, 2022 |
Yes, “To evaluate the safety and efficiency of the Wells and revised Geneva scores combined with fixed and adapted D-dimer thresholds, as well as the YEARS algorithm, for ruling out acute pulmonary embolism (PE) in relevant patient subgroups defined by sex, age, cancer, and previous venous thromboembolism (VTE)” |
Yes, “MEDLINE was searched from 1 January 1995 until 1 January 2021 to retrieve studies that had evaluated diagnostic strategies for PE”. Full description available as appendix. |
Yes, potentially relevant studies that are excluded at final selection (after reading the full text) are referenced in text with reasons. |
Yes, characteristics related to PICO such as patient population, type of clinical decision rule and D-dimer test, reference and timing/setting are described. |
Unclear, authors assessed studies using the QUADAS-2 and reported risk of bias with +/?/-, but do not take this into account in the evidence synthesis. They do not specify the reasons for lower ratings in individual studies. Therefore, it is not possible to reproduce their QUADAS-2 rating per study. |
Yes |
No, the potential risk of publication bias is not discussed. |
No, source of funding SR is clear but not for individual studies. |
Geersing, 2014 |
Yes, “To assess the accuracy of the Wells rule for excluding deep vein thrombosis and whether this accuracy applies to different subgroups of patients.” |
Unclear, authors updated the search from a previous meta-analysis by searching for additional papers after 2006 with a validated algorithm for finding diagnostic studies. Full description search algorithm available as supplement. However, unclear which databases were searched. |
Yes, potentially relevant studies that are excluded at final selection (after reading the full text) are specified in the supplement. |
Yes, description characteristics related to PICO such as patient population, application Wells rule and D-dimer test, reference and timing/setting. |
No, authors discuss methodological considerations in the discussion but did not use a quality scoring tool or checklist. |
Unclear, there was considerable heterogeneity in study prevalence (ranging 5-39%) for the main analysis (including both primary and secondary care settings). A sensitivity analysis was done for the main analysis to assess the influence of prevalence. However, in the current guideline results from a secondary analysis are used for the hospital setting only (prevalence ranging 16-39%). |
No, the potential risk of publication bias is not discussed. |
No, source of funding SR is clear but not for individual studies. |
Risk of bias assessment diagnostic accuracy studies (QUADAS II, 2011)
Research question:
Subquestion-1: What is the diagnostic value of clinical decision rules in patients with suspected first episode or relapsed deep vein thrombosis (DVT)?
Subquestion-2: What is the diagnostic value of clinical decision rules in patients with suspected first episode or relapsed pulmonary embolism (PE)?
Study reference |
Patient selection
|
Index test |
Reference standard |
Flow and timing |
Comments with respect to applicability |
Geersing, 2022 |
Was a consecutive or random sample of patients enrolled? Yes, only prospective follow-up or cross-sectional studies were included in the individual patient level meta-analysis.
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? Yes
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes
If a threshold was used, was it pre-specified? Yes
|
Is the reference standard likely to correctly classify the target condition? Yes
Were the reference standard results interpreted without knowledge of the results of the index test? Unclear, the reference test was always done after the index test and likely part of the patient record.
|
Was there an appropriate interval between index test(s) and reference standard? Yes
Did all patients receive a reference standard? Yes, part of the reference standard was clinical follow-up but not all patients underwent imaging procedures.
Did patients receive the same reference standard? No
Were all patients included in the analysis? Yes, authors used multiple imputation for missing values but do not report whether there were follow-up issues in the original study. |
Are there concerns that the included patients do not match the review question? No
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No
Are there concerns that the target condition as defined by the reference standard does not match the review question? No |
CONCLUSION: Could the selection of patients have introduced bias?
RISK: LOW |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: LOW |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: UNCLEAR |
CONCLUSION Could the patient flow have introduced bias?
RISK: UNCLEAR |
|
|
Stals, 2022 |
Was a consecutive or random sample of patients enrolled? Yes, only prospective follow-up or cross-sectional studies were included in the individual patient level meta-analysis.
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? Yes
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes
If a threshold was used, was it pre-specified? Yes
|
Is the reference standard likely to correctly classify the target condition? Yes
Were the reference standard results interpreted without knowledge of the results of the index test? Unclear, the reference test was always done after the index test and likely part of the patient record. Nine studies adjudicated outcomes and three studies adjudicated deaths, but four studies did not adjudicate outcomes.
|
Was there an appropriate interval between index test(s) and reference standard? Yes
Did all patients receive a reference standard? Yes, part of the reference standard was clinical follow-up but not all patients underwent imaging procedures.
Did patients receive the same reference standard? No
Were all patients included in the analysis? Yes, authors used multiple imputation for missing values but do not report whether there were follow-up issues in the original study. |
Are there concerns that the included patients do not match the review question? No
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No
Are there concerns that the target condition as defined by the reference standard does not match the review question? No
|
CONCLUSION: Could the selection of patients have introduced bias?
RISK: LOW |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: LOW |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: UNCLEAR |
CONCLUSION Could the patient flow have introduced bias?
RISK: UNCLEAR |
|
|
Geersing, 2014 |
Was a consecutive or random sample of patients enrolled? Yes
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? Yes
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes
If a threshold was used, was it pre-specified? Yes, but for D-dimer testing both a qualitative and quantitative assay was used. With a mix of thresholds for the quantitative assays (the threshold used within the study)
|
Is the reference standard likely to correctly classify the target condition? Yes, although CUS is less able to identify recurrent events, notably ipsilateral ones.
Were the reference standard results interpreted without knowledge of the results of the index test? No, in some studies DVT assessors were not blinded.
|
Was there an appropriate interval between index test(s) and reference standard? Yes
Did all patients receive a reference standard? Yes
Did patients receive the same reference standard? No part of the reference standard was clinical follow-up but not all patients underwent imaging procedures.
Were all patients included in the analysis? Yes, authors used multiple imputation for missing values but do not report whether there were follow-up issues in the original study. |
Are there concerns that the included patients do not match the review question? No
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No
Are there concerns that the target condition as defined by the reference standard does not match the review question? No
|
|
CONCLUSION: Could the selection of patients have introduced bias?
RISK: LOW |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: HIGH |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: HIGH |
CONCLUSION Could the patient flow have introduced bias?
RISK: UNCLEAR |
|
Parpia, 2019 |
Was a consecutive or random sample of patients enrolled? Yes
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? No, excluded patients with Wells score >2 which can result in higher NPV (critical outcome).
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes
If a threshold was used, was it pre-specified? Yes
|
Is the reference standard likely to correctly classify the target condition? Yes
Were the reference standard results interpreted without knowledge of the results of the index test? No, in some studies DVT assessors were not blinded.
|
Was there an appropriate interval between index test(s) and reference standard? Yes
Did all patients receive a reference standard? Yes
Did patients receive the same reference standard? No part of the reference standard was clinical follow-up but not all patients underwent imaging procedures.
Were all patients included in the analysis? Unclear, authors do not report whether there were follow-up issues and did not use imputation. |
Are there concerns that the included patients do not match the review question? No
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No
Are there concerns that the target condition as defined by the reference standard does not match the review question? No
|
|
CONCLUSION: Could the selection of patients have introduced bias?
RISK: HIGH |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: LOW |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: HIGH |
CONCLUSION Could the patient flow have introduced bias?
RISK: UNCLEAR |
|
Table of excluded studies
Reference |
Reason for exclusion |
van der Hulle, T., van Es, N., den Exter, P. L., van Es, J., Mos, I. C. M., Douma, R. A., Kruip, M. J. H. A., Hovens, M. M. C., Ten Wolde, M., Nijkeuter, M., Ten Cate, H., Kamphuisen, P. W., Büller, H. R., Huisman, M. V., & Klok, F. A. (2017). Is a normal computed tomography pulmonary angiography safe to rule out acute pulmonary embolism in patients with a likely clinical probability? A patient-level meta-analysis. Thrombosis and haemostasis, 117(8), 1622–1629. https://doi.org/10.1160/TH17-02-0076 |
Older patient-level meta-analysis than Geersing 2022 and Stals 2022 |
Kearon, C., de Wit, K., Parpia, S., Schulman, S., Afilalo, M., Hirsch, A., Spencer, F. A., Sharma, S., D'Aragon, F., Deshaies, J. F., Le Gal, G., Lazo-Langner, A., Wu, C., Rudd-Scott, L., Bates, S. M., Julian, J. A., & PEGeD Study Investigators (2019). Diagnosis of Pulmonary Embolism with d-Dimer Adjusted to Clinical Probability. The New England journal of medicine, 381(22), 2125–2134. https://doi.org/10.1056/NEJMoa1909159 |
Study included in Geersing 2022 and Stals 2022 |
Mos, I. C., Douma, R. A., Erkens, P. M., Kruip, M. J., Hovens, M. M., van Houten, A. A., Hofstee, H. M., Kooiman, J., Klok, F. A., Büller, H. R., Kamphuisen, P. W., Huisman, M. V., & Prometheus Study Group (2014). Diagnostic outcome management study in patients with clinically suspected recurrent acute pulmonary embolism with a structured algorithm. Thrombosis research, 133(6), 1039–1044. https://doi.org/10.1016/j.thromres.2014.03.050 |
Study included in Geersing 2022 and Stals 2022 |
van der Hulle, T., Cheung, W. Y., Kooij, S., Beenen, L. F. M., van Bemmel, T., van Es, J., Faber, L. M., Hazelaar, G. M., Heringhaus, C., Hofstee, H., Hovens, M. M. C., Kaasjager, K. A. H., van Klink, R. C. J., Kruip, M. J. H. A., Loeffen, R. F., Mairuhu, A. T. A., Middeldorp, S., Nijkeuter, M., van der Pol, L. M., Schol-Gelok, S., … YEARS study group (2017). Simplified diagnostic management of suspected pulmonary embolism (the YEARS study): a prospective, multicentre, cohort study. Lancet (London, England), 390(10091), 289–297. https://doi.org/10.1016/S0140-6736(17)30885-1 |
Study included in Geersing 2022 and Stals 2022 |
Fabiá Valls, M. J., van der Hulle, T., den Exter, P. L., Mos, I. C., Huisman, M. V., & Klok, F. A. (2015). Performance of a diagnostic algorithm based on a prediction rule, D-dimer and CT-scan for pulmonary embolism in patients with previous venous thromboembolism. A systematic review and meta-analysis. Thrombosis and haemostasis, 113(2), 406–413. https://doi.org/10.1160/TH14-06-0488 |
Older systematic review than Geersing 2022 and Stals 2022 |
Bhatt, M., Braun, C., Patel, P., Patel, P., Begum, H., Wiercioch, W., Varghese, J., Wooldridge, D., Alturkmani, H. J., Thomas, M., Baig, M., Bahaj, W., Khatib, R., Kehar, R., Ponnapureddy, R., Sethi, A., Mustafa, A., Nieuwlaat, R., Lim, W., Bates, S. M., … Mustafa, R. A. (2020). Diagnosis of deep vein thrombosis of the lower extremity: a systematic review and meta-analysis of test accuracy. Blood advances, 4(7), 1250–1264. https://doi.org/10.1182/bloodadvances.2019000960 |
wrong I&C (reports on relevant outcomes for d-dimer standalone without incorporating clinical decision rules) |
van der Pol, L. M., Tromeur, C., Bistervels, I. M., Ni Ainle, F., van Bemmel, T., Bertoletti, L., Couturaud, F., van Dooren, Y. P. A., Elias, A., Faber, L. M., Hofstee, H. M. A., van der Hulle, T., Kruip, M. J. H. A., Maignan, M., Mairuhu, A. T. A., Middeldorp, S., Nijkeuter, M., Roy, P. M., Sanchez, O., Schmidt, J., … Artemis Study Investigators (2019). Pregnancy-Adapted YEARS Algorithm for Diagnosis of Suspected Pulmonary Embolism. The New England journal of medicine, 380(12), 1139–1149. https://doi.org/10.1056/NEJMoa1813865 |
Wrong population (pregnant women) |
Righini, M., Van Es, J., Den Exter, P. L., Roy, P. M., Verschuren, F., Ghuysen, A., Rutschmann, O. T., Sanchez, O., Jaffrelot, M., Trinh-Duc, A., Le Gall, C., Moustafa, F., Principe, A., Van Houten, A. A., Ten Wolde, M., Douma, R. A., Hazelaar, G., Erkens, P. M., Van Kralingen, K. W., Grootenboers, M. J., … Le Gal, G. (2014). Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA, 311(11), 1117–1124. https://doi.org/10.1001/jama.2014.2135 |
Study included in Geersing 2022 and Stals 2022 |
Righini, M., Robert-Ebadi, H., Elias, A., Sanchez, O., Le Moigne, E., Schmidt, J., Le Gall, C., Cornuz, J., Aujesky, D., Roy, P. M., Chauleur, C., Rutschmann, O. T., Poletti, P. A., Le Gal, G., & CT-PE-Pregnancy Group (2018). Diagnosis of Pulmonary Embolism During Pregnancy: A Multicenter Prospective Management Outcome Study. Annals of internal medicine, 169(11), 766–773. https://doi.org/10.7326/M18-1670 |
Wrong population (pregnant women) |
Lim, W., Le Gal, G., Bates, S. M., Righini, M., Haramati, L. B., Lang, E., Kline, J. A., Chasteen, S., Snyder, M., Patel, P., Bhatt, M., Patel, P., Braun, C., Begum, H., Wiercioch, W., Schünemann, H. J., & Mustafa, R. A. (2018). American Society of Hematology 2018 guidelines for management of venous thromboembolism: diagnosis of venous thromboembolism. Blood advances, 2(22), 3226–3256. https://doi.org/10.1182/bloodadvances.2018024828 |
Wrong design (no information to calculate outcome measures) |
Geersing, G. J., Erkens, P. M., Lucassen, W. A., Büller, H. R., Cate, H. T., Hoes, A. W., Moons, K. G., Prins, M. H., Oudega, R., van Weert, H. C., & Stoffers, H. E. (2012). Safe exclusion of pulmonary embolism using the Wells rule and qualitative D-dimer testing in primary care: prospective cohort study. BMJ (Clinical research ed.), 345, e6564. https://doi.org/10.1136/bmj.e6564 |
Wrong setting (primary care) |
Gibson, N. S., Schellong, S. M., Kheir, D. Y., Beyer-Westendorf, J., Gallus, A. S., McRae, S., Schutgens, R. E., Piovella, F., Gerdes, V. E., & Buller, H. R. (2009). Safety and sensitivity of two ultrasound strategies in patients with clinically suspected deep venous thrombosis: a prospective management study. Journal of thrombosis and haemostasis : JTH, 7(12), 2035–2041. https://doi.org/10.1111/j.1538-7836.2009.03635.x |
Wrong design (set up to compare different ultrasound strategies, thus different references) |
Kleinjan, A., Di Nisio, M., Beyer-Westendorf, J., Camporese, G., Cosmi, B., Ghirarduzzi, A., Kamphuisen, P. W., Otten, H. M., Porreca, E., Aggarwal, A., Brodmann, M., Guglielmi, M. D., Iotti, M., Kaasjager, K., Kamvissi, V., Lerede, T., Marschang, P., Meijer, K., Palareti, G., Rickles, F. R., … Büller, H. R. (2014). Safety and feasibility of a diagnostic algorithm combining clinical probability, d-dimer testing, and ultrasonography for suspected upper extremity deep venous thrombosis: a prospective management study. Annals of internal medicine, 160(7), 451–457. https://doi.org/10.7326/M13-2056 |
Wrong design (set up to compare different ultrasound strategies, thus different references) |
Takada, T., van Doorn, S., Parpia, S., de Wit, K., Anderson, D. R., Stevens, S. M., Woller, S. C., Ten Cate-Hoek, A. J., Elf, J. L., Kraaijenhagen, R. A., Schutgens, R. E. G., Wells, P. S., Kearon, C., Moons, K. G. M., & Geersing, G. J. (2020). Diagnosing deep vein thrombosis in cancer patients with suspected symptoms: An individual participant data meta-analysis. Journal of thrombosis and haemostasis : JTH, 18(9), 2245–2252. https://doi.org/10.1111/jth.14900 |
Wrong design (set-up to explore reasons for reduced diagnostic accuracy in cancer patients suspected of DVT); All underlying studies included in IPD analyses Geersing 2014 |
van Es, N., van der Hulle, T., van Es, J., den Exter, P. L., Douma, R. A., Goekoop, R. J., Mos, I. C., Galipienzo, J., Kamphuisen, P. W., Huisman, M. V., Klok, F. A., Büller, H. R., & Bossuyt, P. M. (2016). Wells Rule and d-Dimer Testing to Rule Out Pulmonary Embolism: A Systematic Review and Individual-Patient Data Meta-analysis. Annals of internal medicine, 165(4), 253–261. https://doi.org/10.7326/M16-0031 |
Older systematic review and IPD meta-analysis than Geersing 2022 and Stals 2022 |
Revel, M. P., Sanchez, O., Couchon, S., Planquette, B., Hernigou, A., Niarra, R., Meyer, G., & Chatellier, G. (2012). Diagnostic accuracy of magnetic resonance imaging for an acute pulmonary embolism: results of the 'IRM-EP' study. Journal of thrombosis and haemostasis : JTH, 10(5), 743–750. https://doi.org/10.1111/j.1538-7836.2012.04652.x |
Wrong comparator (only patients positive outcome on clinical probability and D-dimer testing); wrong design (set up to evaluate usage MRI in diagnosing pulmonary embolism) |
Elf, J. L., Strandberg, K., Nilsson, C., & Svensson, P. J. (2009). Clinical probability assessment and D-dimer determination in patients with suspected deep vein thrombosis, a prospective multicenter management study. Thrombosis research, 123(4), 612–616. https://doi.org/10.1016/j.thromres.2008.04.007 |
Included in IPD analyses Geersing 2014 and Parpia 2020 |
Engelberger, R. P., Aujesky, D., Calanca, L., Staeger, P., Hugli, O., & Mazzolai, L. (2011). Comparison of the diagnostic performance of the original and modified Wells score in inpatients and outpatients with suspected deep vein thrombosis. Thrombosis research, 127(6), 535–539. https://doi.org/10.1016/j.thromres.2011.02.008 |
Wrong design (compare original and modified Wells score, not enough information to calculate diagnostic accuracy information for Wells score + d-dimer) |
Hendriksen, J. M., Lucassen, W. A., Erkens, P. M., Stoffers, H. E., van Weert, H. C., Büller, H. R., Hoes, A. W., Moons, K. G., & Geersing, G. J. (2016). Ruling Out Pulmonary Embolism in Primary Care: Comparison of the Diagnostic Performance of "Gestalt" and the Wells Rule. Annals of family medicine, 14(3), 227–234. https://doi.org/10.1370/afm.1930 |
Wrong setting (primary care) |
Di Nisio, M., Van Sluis, G. L., Bossuyt, P. M., Büller, H. R., Porreca, E., & Rutjes, A. W. (2010). Accuracy of diagnostic tests for clinically suspected upper extremity deep vein thrombosis: a systematic review. Journal of thrombosis and haemostasis : JTH, 8(4), 684–692. https://doi.org/10.1111/j.1538-7836.2010.03771.x |
Wrong design (comparing different diagnostic test, no information combination clinical decision rules + d-dimer) |
Huisman, M. V., & Klok, F. A. (2013). Diagnostic management of acute deep vein thrombosis and pulmonary embolism. Journal of thrombosis and haemostasis : JTH, 11(3), 412–422. https://doi.org/10.1111/jth.12124 |
Wrong publication (narrative review) |
Lucassen, W. A., Douma, R. A., Toll, D. B., Büller, H. R., & van Weert, H. C. (2010). Excluding pulmonary embolism in primary care using the Wells-rule in combination with a point-of care D-dimer test: a scenario analysis. BMC family practice, 11, 64. https://doi.org/10.1186/1471-2296-11-64 |
Wrong setting (primary care) |
Linkins, L. A., Bates, S. M., Lang, E., Kahn, S. R., Douketis, J. D., Julian, J., Parpia, S., Gross, P., Weitz, J. I., Spencer, F. A., Lee, A. Y., O'Donnell, M. J., Crowther, M. A., Chan, H. H., Lim, W., Schulman, S., Ginsberg, J. S., & Kearon, C. (2013). Selective D-dimer testing for diagnosis of a first suspected episode of deep venous thrombosis: a randomized trial. Annals of internal medicine, 158(2), 93–100. https://doi.org/10.7326/0003-4819-158-2-201301150-00003 |
Included in Parpia 2019 |
Robert-Ebadi, H., Mostaguir, K., Hovens, M. M., Kare, M., Verschuren, F., Girard, P., Huisman, M. V., Moustafa, F., Kamphuisen, P. W., Buller, H. R., Righini, M., & Le Gal, G. (2017). Assessing clinical probability of pulmonary embolism: prospective validation of the simplified Geneva score. Journal of thrombosis and haemostasis : JTH, 15(9), 1764–1769. https://doi.org/10.1111/jth.13770 |
Subgroup analysis in same cohort as Righini 2014 |
de Wit, K., Al-Haimus, F., Hu, Y., Ikesaka, R., Chan, N., Ibrahim, Q., Klyn, J., Clayton, N., & Germini, F. (2022). Comparison of YEARS and Adjust-Unlikely D-dimer Testing for Pulmonary Embolism in the Emergency Department. Annals of emergency medicine, S0196-0644(22)01118-0. Advance online publication. https://doi.org/10.1016/j.annemergmed.2022.09.014 |
Wrong reference (30 days instead of 3 months follow up for pulmonary embolism diagnosis) |
Riva, N., Camporese, G., Iotti, M., Bucherini, E., Righini, M., Kamphuisen, P. W., Verhamme, P., Douketis, J. D., Tonello, C., Prandoni, P., Ageno, W., & PALLADIO Study Investigators (2018). Age-adjusted D-dimer to rule out deep vein thrombosis: findings from the PALLADIO algorithm. Journal of thrombosis and haemostasis : JTH, 16(2), 271–278. https://doi.org/10.1111/jth.13905 |
Wrong design (set up to compare different ultrasound strategies after D-dimer testing, thus different references) |
Verantwoording
Beoordelingsdatum en geldigheid
Laatst beoordeeld : 23-09-2025
Algemene gegevens
Voor meer details over de gebruikte richtlijnmethodologie verwijzen wij u naar de Werkwijze. Relevante informatie voor de ontwikkeling/herziening van deze richtlijnmodule is hieronder weergegeven.
De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut) en werd gefinancierd uit de Stichting Kwaliteitsgelden Medisch Specialisten (SKMS). Patiëntenparticipatie bij deze richtlijn werd medegefinancierd uit de Kwaliteitsgelden Patiënten Consumenten (SKPC) binnen het programma KIDZ. De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.
Samenstelling werkgroep
Voor het ontwikkelen van de richtlijnmodule is in 2021 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de zorg voor patiënten die antitrombotische therapie dan wel tromboseprofylaxe gebruiken.
Kerngroep
- Prof. dr. M.V. (Menno) Huisman, internist-vasculaire geneeskunde, LUMC, NIV (voorzitter)
- Dr. M.J.H.A. (Marieke) Kruip, internist-hematoloog, Erasmus MC, NIV, NVVH (Nederlandse Vereniging voor Hematologie)
- Prof. Dr. F.A. (Erik) Klok, internist-vasculaire geneeskunde, LUMC, NIV
- Dr. J. (Jenneke) Leentjens, internist-vasculaire geneeskunde, RadboudUMC, NIV (vanaf 2023)
- Dr. N. (Nick) van Es, internist-vasculaire geneeskunde, Amsterdam UMC, NIV (vanaf 2023)
- Dr. M.A. (Marc) Brouwer, cardioloog, RadboudUMC, NVVC
- Dr. H.B. (Harmen) Ettema, orthopedisch chirurg, Isala, NOV
- Dr. B. (Banne) Nemeth, aios orthopedie, LUMC, NOV
- Dr. A.M. (Arno) Wiersema, vaatchirurg, Dijklander Ziekenhuis, NVVH (tot 2023)
- Dr. M.C. (Michiel) Warlé, vaatchirurg, RadboudUMC, NVVH (vanaf 2024)
- Dr. M.E. (Maarten) Tushuizen, maag-darm-leverarts, LUMC, NVMDL
- Dr. J.M. (Jonathan) Coutinho, neuroloog, Amsterdam UMC, NVN
- Drs. M.H. (Monique) Suijker, kinderarts-hematoloog, UMC Utrecht, NVK
- Drs. P (Paul) Smits, huisarts/ Kaderhuisarts HVZ, NHG
Klankbordgroep
- Dr. J.J.C.M. (Sjef) van de Leur, arts klinische chemie, Isala, NVKC
- Dr. M.G. (Mariëlle) van Pampus, gynaecoloog, OLVG, NVOG
- Drs. R.J. (Rutger) Lely, radioloog, Amsterdam UMC, NVVR
- Dr. C. (Bibi) van Montfrans, dermatoloog, Erasmus MC, NVDV
- Dr. R.A. (Richard) Faaij, klinisch geriater, Diakonessenhuis, NVKG
- Dr. B. (Baucke) van Minnen, kaakchirurg, UMCG, NVMKA
- Drs. N. (Noa) Rosenberg, beleidsadviseur, Harteraad (vanaf mei 2024)
- I.G.J. (Ilse) Verstraaten MSc, beleidsadviseur, Harteraad (tot 2024)
- Dr. N. (Nakisa) Khorsand, ziekenhuisapotheker, OLVG, NVZA
- Dr. M.F. (Margreet) van Herwaarden, openbaar apotheker, KNMP
- Dr. E.T.T.L. (Eric) Tjwa, MDL-arts, RadboudUMC, NVMDL
- Dr. L.M. (Linda) de Heer, cardio-thoracaal chirurg, UMC Utrecht, NVT
- Prof. dr. S. (Saskia) Middeldorp, internist-vasculaire geneeskunde, Radboudumc, NIV
- Dr. J.M.M.B. (Hans-Martin) Otten, internist-oncoloog, Meander MC, NIV
- Dr. E.J. (Esther) Nossent, longarts, Amsterdam UMC, NVALT
- Dr. C.H. (Heleen) van Ommen, kinderarts-hematoloog, Erasmus MC, NVK
- Dr. K.M.J. (Katja) Heitink, kinderarts-oncoloog, Prinses Maxima Centrum, NVK
- Prof. dr. N.P. (Nicole) Juffermans, intensivist, Amsterdam UMC, NVIC
- Dr. M.C.A. (Marcella) Muller, intensivist, Amsterdam UMC, NVIC
Met ondersteuning van
- H. (Hanneke) Olthuis, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- H.J. (Harm-Jan) van der Hart, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
Belangenverklaringen
Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten via secretariaat@kennisinstituut.nl.
Werkgroeplid |
Functie |
Nevenfuncties |
Gemelde belangen |
Ondernomen actie |
Huisman (voorzitter) |
Internist vasculaire geneeskunde |
|
à op geen van deze projecten projectleider, betreft unrestricted grants en veelal financiering promotietrajecten. |
Geen restricties |
Banne Nemeth |
Orthopedisch chirurg in opleiding |
Postdoc klinische epidemiologie en orthopedie, LUMC |
Trombosestichting - “VTE following total hip and knee arthroplasty: prediction is the future“ |
Geen restricties |
Harmen Ettema |
Orthopedisch chirurg |
Geen |
Gemeld bij herbevestiging in 2025: ZonMW, Distinct trial, tromboseprofylaxe bij orthopedische ingrepen, geen projectleider |
Geen restricties |
Jonathan Coutinho |
neuroloog Amsterdam UMC |
Geen |
Gemeld bij herbevestiging in 2025:
|
Restricties t.a.v. besluitvorming modules over andexanet alfa bij bloedingen geen restricties ten gevolge van rol pacific stroke study en dabigatran etixilate/warfarin bij CVT, aangezien deze patientengroepen geen onderwerp zijn van deze richtlijnherziening. |
Klok |
Internist vasculaire geneeskunde LUMC Leiden |
Gemeld bij herbevestiging in 2024:
|
|
Geen restricties |
Kruip |
Hematoloog Gemeld bij herbevestiging in 2024: Directeur Kwaliteit & Patientenzorg, Erasmus MC, betaald |
Gemeld bij herbevestiging in 2024:
|
|
Geen restricties |
Maarten Tushuizen |
MDL-arts LUMC |
Geen |
Maag-Lever-Darmstichting (MLDS) |
Geen restricties |
Marc Brouwer |
Cardioloog Radboudumc |
Geen |
Nee |
Geen restricties |
Paul Smits |
huisarts, zelfstandig |
Coördinator onderwijscommissie harvaatHAG |
geen |
Geen restricties |
Monique Suijker |
Kinderarts-hematoloog werkzaam bij Van Creveldkliniek, UMCU |
Geen |
Geen lopende studies Bayer en Janssen - Einstein Jr studie - gebruik Rivaroxaban bij kinderen – afgesloten |
Geen restricties |
Arno Wiersema (teruggetrokken, tot 2024) |
Vaatchirurg, Dijklander ziekenhuis |
Geen |
ZonMw, Amsterdam UMC, Dijklander zh en Medtronic - www.action-1.nl - betreft onderzoek naar rol van heparine bij een open buikslagader operatie, rol als projectleider |
Restricties ten aanzien van besluitvorming over heparine. |
Michiel Warlé (vanaf 2024) |
Vaatchirurg Radboudumc |
Werkgroep Landelijk Kennisplatform Antistolling |
ZEGG/ZonMw- GENPAD studie (Cyp2c19 genotypering bij Clopidogrel en perifeer arterieel vaatlijden – hoofdonderzoeker Gemeld bij herbevestiging in 2025: NWO-OTP, Wireless clot retriever, projectleider |
Geen restricties |
Nick van Es (vanaf 2023) |
Internist-vasculaire geneeskunde, Amsterdam UMC, locatie AMC |
Geen |
Gemeld bij herbevestiging in 2024:
|
Geen restricties |
Leentjens (vanaf 2023) |
Internist-vasculair geneeskundige, Radboudumc |
Geen |
|
Geen restricties |
Actieve klankbordgroepleden |
||||
Esther Nossent |
Longarts Amsterdam UMC |
Geen |
Gemeld bij herbevestiging in 2025:
|
Geen restricties |
Heleen van Ommen |
Hoofd afd. Kinderhematologie & kinderoncologie Erasmus MC Sophia Kinderziekenhuis |
Geen |
|
Geen restricties |
Eric Tjwa |
MDL arts, Radboudumc |
Geen |
Geen Gemeld bij herbevestiging in 2025: Geen betrokkenheid bij onderzoeken die direct/indirect verband houden met de inhoud van de richtlijn |
Geen restricties |
Hans-Martin Otten (vanaf 2024) |
Internist Meander MC |
Lid METC UMCU, betaald |
|
Geen restricties |
Noa Rosenberg (vanaf 2024) |
Beleidsadviseur |
|
Geen |
Geen restricties |
Katja Heitink – Pollé |
Kinderoncoloog Prinses Máxima Centrum |
Landelijke werkgroep trombose bij kinderen |
geen |
Geen restricties |
Inbreng patiëntenperspectief
De werkgroep besteedde aandacht aan het patiëntenperspectief door uitnodigen van Stichting Harteraad voor de schriftelijke knelpuntenanalyse en door een patiëntvertegenwoordiger van Stichting Harteraad toe te voegen aan de klankbordgroep. De verkregen input is meegenomen bij het opstellen van de uitgangsvragen, de keuze voor de uitkomstmaten en bij het opstellen van de overwegingen (zie alinea waarden en voorkeuren van patiënten). De conceptrichtlijn is tevens voor commentaar voorgelegd aan Stichting Harteraad en Stichting Kind en Ziekenhuis en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.
Kwalitatieve raming van mogelijke financiële gevolgen in het kader van de Wkkgz
Bij de richtlijnmodule voerde de werkgroep conform de Wet kwaliteit, klachten en geschillen zorg (Wkkgz) een kwalitatieve raming uitom te beoordelen of de aanbevelingen mogelijk leiden tot substantiële financiële gevolgen. Bij het uitvoeren van deze beoordeling is de richtlijnmodule op verschillende domeinen getoetst (zie het stroomschema bij Werkwijze).
Module |
Uitkomst raming |
Toelichting |
Diagnostiek VTE |
geen financiële gevolgen |
Hoewel uit de toetsing volgt dat de aanbevelingen breed toepasbaar zijn (5.000-40.000 patiënten), volgt ook uit de toetsing dat het overgrote deel (±90%) van de zorgaanbieders en zorgverleners al aan de norm. Er worden daarom geen substantiële financiële gevolgen verwacht. |
Zoekverantwoording
Algemene informatie
Richtlijn: NIV antitrombotisch beleid |
|
Uitgangsvraag: UV1, UV2 Wat is de optimale diagnostiek van patiënten met een vermoeden op een VTE? |
|
Database(s): Ovid/Medline, Embase |
Datum: 15-12-2022 |
Periode: 2009- |
Talen: nvt |
Literatuurspecialist: Ingeborg van Dusseldorp |
|
BMI zoekblokken: voor verschillende opdrachten wordt (deels) gebruik gemaakt van de zoekblokken van BMI-Online https://blocks.bmi-online.nl/ Bij gebruikmaking van een volledig zoekblok zal naar de betreffende link op de website worden verwezen. |
Zoekopbrengst
|
EMBASE |
OVID/MEDLINE |
Ontdubbeld |
SRs |
57 |
30 |
64* |
RCTs |
20 |
11 |
24* |
Observationele studies |
381 |
131 |
420* |
Overig |
268 |
68 |
273 |
Totaal |
|
|
508* |
*in Rayyan
Zoekstrategie
Embase
No. |
Query |
Results |
#28 |
#9 AND #27 sleutelartikelen gevonden in SR,RCT, OBS |
3 |
#27 |
#21 OR #22 OR #23 |
458 |
#26 |
#15 NOT #23 NOT #22 NOT #21 Overige diagnostische studies |
268 |
#25 |
#23 NOT #22 NOT #21 OBS |
381 |
#24 |
#22 NOT #21 RCT |
20 |
#23 |
#15 AND (#19 OR #20) |
420 |
#22 |
#15 AND #18 |
31 |
#21 |
#15 AND #17 SR |
57 |
#20 |
'case control study'/de OR 'comparative study'/exp OR 'control group'/de OR 'controlled study'/de OR 'controlled clinical trial'/de OR 'crossover procedure'/de OR 'double blind procedure'/de OR 'phase 2 clinical trial'/de OR 'phase 3 clinical trial'/de OR 'phase 4 clinical trial'/de OR 'pretest posttest design'/de OR 'pretest posttest control group design'/de OR 'quasi experimental study'/de OR 'single blind procedure'/de OR 'triple blind procedure'/de OR (((control OR controlled) NEAR/6 trial):ti,ab,kw) OR (((control OR controlled) NEAR/6 (study OR studies)):ti,ab,kw) OR (((control OR controlled) NEAR/1 active):ti,ab,kw) OR 'open label*':ti,ab,kw OR (((double OR two OR three OR multi OR trial) NEAR/1 (arm OR arms)):ti,ab,kw) OR ((allocat* NEAR/10 (arm OR arms)):ti,ab,kw) OR placebo*:ti,ab,kw OR 'sham-control*':ti,ab,kw OR (((single OR double OR triple OR assessor) NEAR/1 (blind* OR masked)):ti,ab,kw) OR nonrandom*:ti,ab,kw OR 'non-random*':ti,ab,kw OR 'quasi-experiment*':ti,ab,kw OR crossover:ti,ab,kw OR 'cross over':ti,ab,kw OR 'parallel group*':ti,ab,kw OR 'factorial trial':ti,ab,kw OR ((phase NEAR/5 (study OR trial)):ti,ab,kw) OR ((case* NEAR/6 (matched OR control*)):ti,ab,kw) OR ((match* NEAR/6 (pair OR pairs OR cohort* OR control* OR group* OR healthy OR age OR sex OR gender OR patient* OR subject* OR participant*)):ti,ab,kw) OR ((propensity NEAR/6 (scor* OR match*)):ti,ab,kw) OR versus:ti OR vs:ti OR compar*:ti OR ((compar* NEAR/1 study):ti,ab,kw) OR (('major clinical study'/de OR 'clinical study'/de OR 'cohort analysis'/de OR 'observational study'/de OR 'cross-sectional study'/de OR 'multicenter study'/de OR 'correlational study'/de OR 'follow up'/de OR cohort*:ti,ab,kw OR 'follow up':ti,ab,kw OR followup:ti,ab,kw OR longitudinal*:ti,ab,kw OR prospective*:ti,ab,kw OR retrospective*:ti,ab,kw OR observational*:ti,ab,kw OR 'cross sectional*':ti,ab,kw OR cross?ectional*:ti,ab,kw OR multicent*:ti,ab,kw OR 'multi-cent*':ti,ab,kw OR consecutive*:ti,ab,kw) AND (group:ti,ab,kw OR groups:ti,ab,kw OR subgroup*:ti,ab,kw OR versus:ti,ab,kw OR vs:ti,ab,kw OR compar*:ti,ab,kw OR 'odds ratio*':ab OR 'relative odds':ab OR 'risk ratio*':ab OR 'relative risk*':ab OR 'rate ratio':ab OR aor:ab OR arr:ab OR rrr:ab OR ((('or' OR 'rr') NEAR/6 ci):ab))) |
13681486 |
#19 |
'major clinical study'/de OR 'clinical study'/de OR 'case control study'/de OR 'family study'/de OR 'longitudinal study'/de OR 'retrospective study'/de OR 'prospective study'/de OR 'comparative study'/de OR 'cohort analysis'/de OR ((cohort NEAR/1 (study OR studies)):ab,ti) OR (('case control' NEAR/1 (study OR studies)):ab,ti) OR (('follow up' NEAR/1 (study OR studies)):ab,ti) OR (observational NEAR/1 (study OR studies)) OR ((epidemiologic NEAR/1 (study OR studies)):ab,ti) OR (('cross sectional' NEAR/1 (study OR studies)):ab,ti) |
6767914 |
#18 |
'randomized controlled trial'/exp OR random*:ti,ab OR (((pragmatic OR practical) NEAR/1 'clinical trial*'):ti,ab) OR ((('non inferiority' OR noninferiority OR superiority OR equivalence) NEAR/3 trial*):ti,ab) OR rct:ti,ab,kw |
1839814 |
#17 |
'meta analysis'/exp OR 'meta analysis (topic)'/exp OR metaanaly*:ti,ab OR 'meta analy*':ti,ab OR metanaly*:ti,ab OR 'systematic review'/de OR 'cochrane database of systematic reviews'/jt OR prisma:ti,ab OR prospero:ti,ab OR (((systemati* OR scoping OR umbrella OR 'structured literature') NEAR/3 (review* OR overview*)):ti,ab) OR ((systemic* NEAR/1 review*):ti,ab) OR (((systemati* OR literature OR database* OR 'data base*') NEAR/10 search*):ti,ab) OR (((structured OR comprehensive* OR systemic*) NEAR/3 search*):ti,ab) OR (((literature NEAR/3 review*):ti,ab) AND (search*:ti,ab OR database*:ti,ab OR 'data base*':ti,ab)) OR (('data extraction':ti,ab OR 'data source*':ti,ab) AND 'study selection':ti,ab) OR ('search strategy':ti,ab AND 'selection criteria':ti,ab) OR ('data source*':ti,ab AND 'data synthesis':ti,ab) OR medline:ab OR pubmed:ab OR embase:ab OR cochrane:ab OR (((critical OR rapid) NEAR/2 (review* OR overview* OR synthes*)):ti) OR ((((critical* OR rapid*) NEAR/3 (review* OR overview* OR synthes*)):ab) AND (search*:ab OR database*:ab OR 'data base*':ab)) OR metasynthes*:ti,ab OR 'meta synthes*':ti,ab |
733409 |
#16 |
#9 AND #15 |
3 |
#15 |
#11 AND #12 |
725 |
#14 |
#9 NOT #13 |
2 |
#13 |
#9 AND #11 |
3 |
#12 |
'sensitivity and specificity'/de OR sensitiv*:ab,ti OR specific*:ab,ti OR predict*:ab,ti OR 'roc curve':ab,ti OR 'receiver operator':ab,ti OR 'receiver operators':ab,ti OR likelihood:ab,ti OR 'diagnostic error'/exp OR 'diagnostic accuracy'/exp OR 'diagnostic test accuracy study'/exp OR 'inter observer':ab,ti OR 'intra observer':ab,ti OR interobserver:ab,ti OR intraobserver:ab,ti OR validity:ab,ti OR kappa:ab,ti OR reliability:ab,ti OR reproducibility:ab,ti OR ((test NEAR/2 're-test'):ab,ti) OR ((test NEAR/2 'retest'):ab,ti) OR 'reproducibility'/exp OR accuracy:ab,ti OR 'differential diagnosis'/exp OR 'validation study'/de OR 'measurement precision'/exp OR 'diagnostic value'/exp OR 'reliability'/exp OR 'predictive value'/exp OR ppv:ti,ab,kw OR npv:ti,ab,kw |
9522259 |
#11 |
#10 AND [1-1-2009]/sd NOT ('conference abstract'/it OR 'editorial'/it OR 'letter'/it OR 'note'/it) NOT (('animal'/exp OR 'animal experiment'/exp OR 'animal model'/exp OR 'nonhuman'/exp) NOT 'human'/exp) |
1448 |
#10 |
#5 NOT (('adolescent'/exp OR 'child'/exp OR adolescent*:ti,ab,kw OR child*:ti,ab,kw OR schoolchild*:ti,ab,kw OR infant*:ti,ab,kw OR girl*:ti,ab,kw OR boy*:ti,ab,kw OR teen:ti,ab,kw OR teens:ti,ab,kw OR teenager*:ti,ab,kw OR youth*:ti,ab,kw OR pediatr*:ti,ab,kw OR paediatr*:ti,ab,kw OR puber*:ti,ab,kw) NOT ('adult'/exp OR 'aged'/exp OR 'middle aged'/exp OR adult*:ti,ab,kw OR man:ti,ab,kw OR men:ti,ab,kw OR woman:ti,ab,kw OR women:ti,ab,kw)) |
2771 |
#9 |
#6 OR #7 OR #8 |
5 |
#8 |
'diagnosis of pulmonary embolism with d-dimer adjusted to clinical probability' NOT guy NOT winger |
1 |
#7 |
'pregnancy-adapted years algorithm for diagnosis of suspected pulmonary embolism' |
2 |
#6 |
'simplified diagnostic management of suspected pulmonary embolism (the years study): a prospective, multicentre, cohort study' |
2 |
#5 |
#2 AND #3 AND #4 |
2832 |
#4 |
'd dimer'/exp OR 'd dimer':ti,ab,kw OR 'crosslinked fibrin degradation product':ti,ab,kw OR 'fibrin degradation product d dimer':ti,ab,kw |
41232 |
#3 |
'clinical decision rule'/exp OR 'decision making'/exp OR 'diagnostic test'/exp OR ((decision* NEAR/3 (making OR rule*)):ti,ab,kw) OR 'clinical pretest probabilit*':ti,ab,kw OR 'c ptp':ti,ab,kw |
1770358 |
#2 |
'venous thromboembolism'/exp OR 'deep vein thrombosis'/exp OR 'lung embolism'/exp OR (((venous OR vein OR lung OR pulmonary) NEAR/3 (embol* OR microembol* OR thromboembol*)):ti,ab,kw) OR vte:ti,ab,kw OR dvt:ti,ab,kw OR ((deep NEAR/3 (thromb* OR 'blood clot*' OR embol*)):ti,ab,kw) |
234618 |
#1 |
'2022 esc guidelines on cardio-oncology developed in collaboration with the european hematology association (eha), the european society for therapeutic radiology and oncology' |
2 |
Ovid/Medline
# |
Searches |
Results |
19 |
9 not 16 not 15 not 14 overige diagnostische studies |
68 |
18 |
16 not 15 not 14 OBS |
131 |
17 |
15 not 14 RCT |
11 |
16 |
9 and (12 or 13) |
156 |
15 |
9 and 11 |
19 |
14 |
9 and 10 SR |
30 |
13 |
Case-control Studies/ or clinical trial, phase ii/ or clinical trial, phase iii/ or clinical trial, phase iv/ or comparative study/ or control groups/ or controlled before-after studies/ or controlled clinical trial/ or double-blind method/ or historically controlled study/ or matched-pair analysis/ or single-blind method/ or (((control or controlled) adj6 (study or studies or trial)) or (compar* adj (study or studies)) or ((control or controlled) adj1 active) or "open label*" or ((double or two or three or multi or trial) adj (arm or arms)) or (allocat* adj10 (arm or arms)) or placebo* or "sham-control*" or ((single or double or triple or assessor) adj1 (blind* or masked)) or nonrandom* or "non-random*" or "quasi-experiment*" or "parallel group*" or "factorial trial" or "pretest posttest" or (phase adj5 (study or trial)) or (case* adj6 (matched or control*)) or (match* adj6 (pair or pairs or cohort* or control* or group* or healthy or age or sex or gender or patient* or subject* or participant*)) or (propensity adj6 (scor* or match*))).ti,ab,kf. or (confounding adj6 adjust*).ti,ab. or (versus or vs or compar*).ti. or ((exp cohort studies/ or epidemiologic studies/ or multicenter study/ or observational study/ or seroepidemiologic studies/ or (cohort* or 'follow up' or followup or longitudinal* or prospective* or retrospective* or observational* or multicent* or 'multi-cent*' or consecutive*).ti,ab,kf.) and ((group or groups or subgroup* or versus or vs or compar*).ti,ab,kf. or ('odds ratio*' or 'relative odds' or 'risk ratio*' or 'relative risk*' or aor or arr or rrr).ab. or (("OR" or "RR") adj6 CI).ab.)) |
5309800 |
12 |
Epidemiologic studies/ or case control studies/ or exp cohort studies/ or Controlled Before-After Studies/ or Case control.tw. or cohort.tw. or Cohort analy$.tw. or (Follow up adj (study or studies)).tw. or (observational adj (study or studies)).tw. or Longitudinal.tw. or Retrospective*.tw. or prospective*.tw. or consecutive*.tw. or Cross sectional.tw. or Cross-sectional studies/ or historically controlled study/ or interrupted time series analysis/ [Onder exp cohort studies vallen ook longitudinale, prospectieve en retrospectieve studies] |
4314474 |
11 |
exp randomized controlled trial/ or randomized controlled trials as topic/ or random*.ti,ab. or rct?.ti,ab. or ((pragmatic or practical) adj "clinical trial*").ti,ab,kf. or ((non-inferiority or noninferiority or superiority or equivalence) adj3 trial*).ti,ab,kf. |
1569546 |
10 |
meta-analysis/ or meta-analysis as topic/ or (metaanaly* or meta-analy* or metanaly*).ti,ab,kf. or systematic review/ or cochrane.jw. or (prisma or prospero).ti,ab,kf. or ((systemati* or scoping or umbrella or "structured literature") adj3 (review* or overview*)).ti,ab,kf. or (systemic* adj1 review*).ti,ab,kf. or ((systemati* or literature or database* or data-base*) adj10 search*).ti,ab,kf. or ((structured or comprehensive* or systemic*) adj3 search*).ti,ab,kf. or ((literature adj3 review*) and (search* or database* or data-base*)).ti,ab,kf. or (("data extraction" or "data source*") and "study selection").ti,ab,kf. or ("search strategy" and "selection criteria").ti,ab,kf. or ("data source*" and "data synthesis").ti,ab,kf. or (medline or pubmed or embase or cochrane).ab. or ((critical or rapid) adj2 (review* or overview* or synthes*)).ti. or (((critical* or rapid*) adj3 (review* or overview* or synthes*)) and (search* or database* or data-base*)).ab. or (metasynthes* or meta-synthes*).ti,ab,kf. |
635722 |
9 |
7 and 8 |
240 |
8 |
exp "Sensitivity and Specificity"/ or (Sensitiv* or Specific*).ti,ab. or (predict* or ROC-curve or receiver-operator*).ti,ab. or (likelihood or LR*).ti,ab. or exp Diagnostic Errors/ or (inter-observer or intra-observer or interobserver or intraobserver or validity or kappa or reliability).ti,ab. or reproducibility.ti,ab. or (test adj2 (re-test or retest)).ti,ab. or "Reproducibility of Results"/ or accuracy.ti,ab. or Diagnosis, Differential/ or Validation Study/ |
7633306 |
7 |
6 not ((exp animals/ or exp models, animal/) not humans/) not (letter/ or comment/ or editorial/) |
323 |
6 |
limit 5 to yr="2009 -Current" |
345 |
5 |
4 not ((Adolescent/ or Child/ or Infant/ or adolescen*.ti,ab,kf. or child*.ti,ab,kf. or schoolchild*.ti,ab,kf. or infant*.ti,ab,kf. or girl*.ti,ab,kf. or boy*.ti,ab,kf. or teen.ti,ab,kf. or teens.ti,ab,kf. or teenager*.ti,ab,kf. or youth*.ti,ab,kf. or pediatr*.ti,ab,kf. or paediatr*.ti,ab,kf. or puber*.ti,ab,kf.) not (Adult/ or adult*.ti,ab,kf. or man.ti,ab,kf. or men.ti,ab,kf. or woman.ti,ab,kf. or women.ti,ab,kf.)) |
433 |
4 |
1 and 2 and 3 |
436 |
3 |
Fibrin Fibrinogen Degradation Products/ or d dimer.ti,ab,kf. or crosslinked fibrin degradation product.ti,ab,kf. or fibrin degradation product d dimer.ti,ab,kf. |
19200 |
2 |
Clinical Decision Rules/ or Decision Support Techniques/ or Decision Making/ or Diagnostic Tests, Routine/ or (decision* adj3 (making or rule*)).ti,ab,kf. or 'clinical pretest probabilit*'.ti,ab,kf. or 'c ptp'.ti,ab,kf. |
291438 |
1 |
Venous Thromboembolism/ or exp Venous Thrombosis/ or exp Pulmonary Embolism/ or ((venous or vein or lung or pulmonary) adj3 (embol* or microembol* or thromboembol*)).ti,ab,kf. or vte.ti,ab,kf. or dvt.ti,ab,kf. or (deep adj3 (thromb* or 'blood clot*' or embol*)).ti,ab,kf. |
146483 |