Surveillance
Uitgangsvraag
Wat is de optimale surveillance strategie voor patiënten met een verhoogd risico op hepatocellulair carcinoom?
Aanbeveling
Aanbeveling-1
Overweeg de patiënt met significant verhoogd risico op HCC in een surveillance programma op te nemen.
Daarbij spelen ook de mogelijkheid tot HCC therapie bij eventueel ontdekken van HCC en de a priori kans op HCC en prevalentie van benigne noduli bij deze patiënt een rol.
Patiënten met een verhoogd risico op HCC zijn:
- Patiënten met levercirrose.
- Patiënten met hepatitis B zonder cirrose maar wel aanvullende risico verhogende factoren zoals familiaire HCC, (zuid) oost-aziatische man > 40 jaar*, (zuid) oost-aziatische vrouw > 50 jaar*, Sub-Sahara Afrikaan > 20 jaar.
Bespreek het volgende met de patiënt:
- deelname aan leverkankersurveillance is een keuze die zowel voor- als nadelen kent;
- als leverkanker bij surveillance ontdekt wordt, is er vaker sprake van nog curatief te behandelen stadium, met betere kansen op overleving.
- bij leverkanker surveillance worden tumoren vaak gemist. Een goede uitslag is dus geen garantie dat er geen afwijking is.
- ongeveer 1 tot 2 van de 10 mensen die deelnemen aan leverkankersurveillance zullen een keer “vals alarm” krijgen binnen drie jaar. Dit kan leiden tot stress, (achteraf) onnodige extra onderzoeken en een klein risico op complicaties.
*Overweeg bij een lage mPAGE-B score en tenofovir/ entecavir behandeling van surveillance af te zien in afwezigheid van cirrose, positieve familieanamnese, virale coinfectie of metabole risico-verhogende cofactoren. De mPAGE-B score is de optelsom van elk component, variërend van 0 tot 21. Laag risico ≤8, intermediair risico 9 tot 12 en hoog risico ≥13 op HCC.
mPAGE-B score:
Leeftijd (in jaren) |
|
Sexe |
|
Trombocyten (x109/L) |
|
Albumine (g/dl) |
|
<30 |
0 |
Vrouw |
0 |
>/=250 |
0 |
>/=4.0 |
0 |
30-39 |
3 |
Man |
2 |
200-250 |
2 |
3.5-4.0 |
1 |
40-49 |
5 |
|
|
150-200 |
3 |
3-3.5 |
2 |
50-59 |
7 |
|
|
100-150 |
4 |
<3 |
3 |
60-69 |
9 |
|
|
<100 |
5 |
|
|
>/= 70 |
11 |
|
|
|
|
|
|
Verricht geen surveillance bij patiënten waarbij een behandeling voor hepatocellulair carcinoom geen gunstige bijdrage heeft op de levensverwachting zoals bij patiënten in een slechte algemene conditie en/of met een beperkte levensverwachting.
Aanbeveling-2
Verricht bij voorkeur echografie met beschrijving volgens US-LIRADS classificatie met of zonder alfa-foetoproteine elke 6 maanden voor surveillance op HCC bij patiënten met significant verhoogd risico op HCC.
Overwegingen
Voor- en nadelen van de interventie en de kwaliteit van het bewijs
De systematische zoekactie resulteerde in acht studies waarin zowel MRI als echografie voor surveillance bij dezelfde patiënten vergeleken werden. Het betrof vier diagnostische accuratesse studies (Kim, 2016; Park, 2020; Park, 2021; Sutherland, 2017) en vier kosten-effectiviteitsstudies (Kim, 2019; Lima, 2019; Nahon, 2022; Tan, 2021).
Voor de cruciale uitkomstmaten sensitiviteit en negatief voorspellende waarde voor detectie van HCC in een vroeg stadium, werden er door één studie uitkomsten gerapporteerd (Kim, 2016). In deze studie was de sensitiviteit voor detectie van HCC in een vroeg stadium voor MRI 0.86 en voor echografie 0.26. De negatief voorspellende waarde voor detectie van HCC in een vroeg stadium in deze studie voor MRI was 99% en voor echografie 97%.
Voor de uitkomstmaten sensitiviteit en negatief voorspellende waarde voor detectie van HCC ongeacht het stadium, werden door alle vier diagnostische accuratesse studies relevante uitkomsten gerapporteerd. De vier studies hebben naar verschillende modaliteiten van MRI (verkorte MRI, MRI zonder contrast, MRI volgens standaard protocol) gekeken en voor alle modaliteiten werd een voordeel voor MRI gevonden ten opzichte van echografie. De sensitiviteit van echografie voor de studie van Kim (2016) is 0.28. De studies van Park (2020) en Park (2021) gebruiken andere MRI protocollen en data dan de oorspronkelijke studie van Kim (2016), maar dezelfde data voor echografie, vandaar dat de sensitiviteit van echografie in de studies van Park (2020) en Park (2021) ook op 0.28 ligt. De studie van Sutherland geeft een sensitiviteit van 1.00 voor echografie. Dit kan een overschatting zijn ten gevolge van kleine patiënten aantallen en beperkte duur van follow up).
De negatief voorspellende waarden voor HCC ongeacht het stadium van MRI liggen tussen de 99.0 en 99.4 procent. Voor echografie liggen deze tussen de 97 en 100 procent.
Voor de belangrijke uitkomstmaten specificiteit, positief voorspellende waarden en algehele overleving, werden ook uitkomsten gerapporteerd. Met betrekking tot de specificiteit voor detectie van HCC in een vroeg stadium heeft er één studie gegevens gerapporteerd (Kim, 2016). De specificiteit voor detectie van HCC in een vroeg stadium voor MRI was 0.97 en voor echografie 0.94. De positief voorspellende waarde voor detectie van HCC in een vroeg stadium in deze studie voor MRI was 53% en voor echografie 16%.
Vier studies rapporteerden de uitkomsten specificiteit en positief voorspellende waarde voor detectie van HCC ongeacht het stadium waarbij in alle vier studies een voordeel voor de MRI werd gezien.
Eén studie (Kim 2016) rapporteerde algehele overleving: de 3-jaars overleving was 86% voor patiënten in het surveillance programma die HCC ontwikkelden en 94% voor patiënten in het surveillance programma die geen HCC ontwikkelden gedurende follow up.
Voor de uitkomst ziektevrije overleving werden in geen van de geïncludeerde studies uitkomsten gerapporteerd.
De bewijskracht voor de diagnostische test accuratesse uitkomstmaten is laag. Dit heeft te maken met het risico op bias vanwege de flow en timing van de diagnostiek en referentie testen in de studies en het gebruik van verschillende referentie testen.
Er is één studie met lage aantallen geïncludeerde patiënten en beperkte follow up duur die een hoge sensitiviteit voor echografie veroorzaakt (Sutherland, 2017). De andere drie studies die naar verschillende vormen van MRI kijken, gebruiken wel hetzelfde echografisch onderzoek bij dezelfde patiënten (Kim, 2016; Park, 2020; Park, 2021). Ten slotte zijn de in onze search gevonden studies niet helemaal representatief voor de Nederlandse situatie, waar in de patiënten in een surveillance traject enerzijds veel minder vaak hepatitis B de onderliggende oorzaak van de leverziekte is en anderzijds veel vaker sprake is van cirrose (Van Meer, 2015).
Door de lage bewijskracht kunnen er op basis van onze literatuur search geen harde conclusies getrokken worden. Wel suggereren onze bevindingen dat dat MRI sensitiever en specifieker is, en een hogere negatief en positief voorspellende waarde zou kunnen hebben met een hogere detectie graad in een vroeg (nog curatief te behandelen) stadium.
Dit wordt ondersteund door verschillende meta-analyses waarin uitsluitend naar de waarde van MRI of uitsluitend naar de waarde van echografie gekeken is voor HCC surveillance. Een meta-analyse waarbij er wordt gekeken naar de diagnostische accuratesse van MRI, laat een sensitiviteit van 86 procent en een specificiteit van 94 procent zien voor een verkort (non-contrast) MRI protocol (Gupta, 2021). Een meta-analyse waarbij er wordt gekeken naar de diagnostische accuratesse van echografie, laat een sensitiviteit van 78% zien voor detecteren van HCC ongeacht het stadium (door combinatie van echografie met AFP steeg de sensitiviteit tot 97%, ten koste van een lagere specificiteit) en een sensitiviteit van 45% zien voor het detecteren van HCC in een vroeg stadium (door combinatie van echografie met AFP steeg de sensitiviteit tot 63%, ten koste van een lagere specificiteit) (Tzartzeva, 2018). Volgens een andere recente meta-analyse was HCC surveillance met echo ± AFP bij patiënten met cirrose geassocieerd met frequentere detectie van HCC in een vroeg stadium, meer curatieve behandeling en een langere overleving (Singal, 2022). In deze meta-analyse worden ook 4 studies beschreven waarin gekeken is naar schade (‘harm’) ten gevolge van HCC surveillance. Schade ontstond bij 9-27% van de patiënten, in de meeste gevallen mild (bijvoorbeeld een aanvullende MRI of CT in verband met een fout-positieve echo) of matig (tumorbiopt in verband met een fout-positieve echo). Hoewel MRI surveillance waarschijnlijk minder schade door fout-positieve uitslagen zal veroorzaken dan echografie, zijn er geen gegevens hierover in de westerse setting. Ook zijn er geen data over het risico op andere vormen van door MRI veroorzaakte schade (met name in Westerse setting bij langdurige inclusie in een surveillance programma) en over de cost-benefit ratio.
Hoewel cirrose leidt een verhoogd risico op HCC, verschilt de jaarlijkse HCC incidentie aanzienlijk, afhankelijk van de onderliggende oorzaak van de cirrose. Als grens wordt vaak aangenomen een jaarlijkse HCC incidentie van 1,5% bij cirrose en van 0,2 tot 0,5% voor patiënten zonder cirrose (indien geen sprake is van cirrose zal de te verwachten winst van vroege HCC detectie groter zijn, omdat er meer curatieve mogelijkheden dan zijn bij cirrose). Er zijn verschillende subgroepen met cirrose maar een (soms veel) lagere jaarlijkse HCC incidentie dan 1,5%. In het algemeen zal de kans op fout-positieve uitslagen en de daarmee geassocieerde kans op schade toenemen bij lagere HCC incidentie (Curran, 2023). Tot de subgroepen van patiënten met cirrose met een jaarlijkse HCC incidentie <1,5% behoren: 1) Cirrose door vasculaire oorzaken (rechts decompensatie, agenesie van venae portae, Budd Chiari syndroom); 2) Biliaire atresie/status na Kasai operatie; 3) Alfa 1 antitrypsine deficiëntie: 4. ziekte van Wilson. Een belangrijke vraag is of met de tegenwoordig beschikbare effectieve antivirale therapie, HCC surveillance gecontinueerd moet worden bij patiënten met cirrose en een genezen hepatitis C of een adequaat behandelde hepatitis B (onderdrukt HBV DNA onder antivirale therapie). Bij cirrose en onbehandelde chronische hepatitis B en C ligt de jaarlijkse HCC incidentie ruim boven de cut-off van 1.5% per jaar, maar na succesvolle behandeling daalt die met ongeveer 70%. Er zijn echter geen betrouwbare methoden om subgroepen te onderscheiden waarbij het HCC risico zodanig gedaald is dat van surveillance kan worden afgezien.
Voor patiënten met B en C blijft het advies daarom vooralsnog om de HCC surveillance te continueren indien voor de antivirale therapie er aanwijzingen waren voor cirrose (op basis van een leverbiopt, fibroscan, echografie of andere radiologische beeldvorming (Isfordink, 2021; Papatheodoridis, 2015). Bij (zuid) oost-aziatische patienten met hepatitis B en een lage mPAGE-B score en tenofovir/ entecavir behandeling kan van surveillance worden afgezien in afwezigheid van cirrose, positieve familieanamnese, virale coinfectie of metabole risico-verhogende cofactoren (Kim, 2018). Recente data suggereren dat ook bij hepatitis B patienten uit sub-sahara afrika in afwezigheid van cirrose of andere risico-verhogende factoren bij lage mPage-B score van surveillance kan worden afgezien (Patmore 2023).
Waarden en voorkeuren van patiënten (en eventueel hun verzorgers)
In het algemeen zal de kans op fout-positieve uitslagen bij HCC surveillance groter worden en ook de winst in detectie van HCC lager zijn bij lagere HCC incidentie. Bij de beslissing tot HCC surveillance moet meegewogen worden of patiënt in aanmerking zou komen voor behandeling als er door surveillance een HCC ontdekt zou worden. Patiënten hebben vaak een te positief beeld van HCC surveillance (van Meer, 2016). Goede voorlichting over de verwachte voor- en nadelen van surveillance is daarom belangrijk voordat er een gezamenlijk besluit wordt genomen (‘Shared decision making’). Vanwege de toegenomen kans op fout-positieve uitslagen moet bij lage a priori kans op HCC, een bij HCC diagnose op basis van radiologische beeldvorming, bevestiging middels tumorbiopt nadrukkelijk overwogen worden.
Kosten (middelenbeslag)
Kosteneffectiviteitsstudies laten zien dat MRI gepaard gaat met beperkte hogere kosten in vergelijking met echografie. Daarnaast laten de studies zien dat MRI meer kost per gewonnen levensjaar (Quality Adjusted Life Year). Een recente studie in Europese setting laat bij incidentie van 3% toenemende kosten van €15,477 per gewonnen levensjaar zien voor MRI ten opzichte van echografie.
Aanvaardbaarheid, haalbaarheid en implementatie
Continuering van bestaand beleid wordt geadviseerd. De werkgroep is van mening dat er geen bezwaren of voorwaarden zijn voor aanvaardbaarheid, haalbaarheid of implementatie van de aanbeveling.
Rationale van aanbeveling 1: weging van argumenten voor en tegen de diagnostische procedure
De kans op HCC detectie in vroeg stadium, met curative behandeling, is groter en de overleving beter, als HCC in het kader van surveillance ontdekt wordt. Er zitten echter ook nadelen aan surveillance. De cost-benefit ratio is ongunstiger bij lagere a priori kans op HCC. In geval van cirrose door vasculaire oorzaken (rechts decompensatie, agenesie v portae, Budd Chiari syndroom), cirrose ten gevolge van biliaire atresie/status na Kasai operatie, cirrose door alfa 1 antitrypsine deficiëntie en cirrose door de ziekte van Wilson is de jaarlijkse HCC incidentie laag en/of vaak sprake van benigne noduli bij beeldvorming. Voor sommige zeldzame ziekten (oa acute porfyrie en glycogeen stapelingziekte type 1) is er een verhoogd HCC risico maar zijn er te weinig gegevens om een aanbeveling over HCC surveillance te doen. HCC surveillance moet niet verricht worden als er geen behandelmogelijkheden zouden zijn bij HCC detectie. Voor HCC surveillance bij patiënten met MASLD/MASH wordt verwezen naar de richtlijn MASLD/MASH.
Rationale van aanbeveling 2: weging van argumenten voor en tegen de diagnostische procedure
Meta-analyses suggereren dat MRI sensitiever en specifieker is dan echografie voor de detectie van HCC, zowel curatief stadium als alle stadia: zowel standaard MRI als MRI met verkort protocol/zonder contrast). Er zijn echter weinig studies die MRI en echo bij dezelfde patiënt vergelijken (geen enkele in Westerse setting), en onvoldoende gegevens over risico’s van MRI (met name bij langdurige surveillance) en over kosten-baten analyse. Bij onvoldoende kwaliteit van echografische surveillance is surveillance middels MRI met of zonder alfa-foetoproteine de methode van voorkeur. Omdat echografie maar een beperkte sensitiviteit heeft voor detectie van HCC in een vroeg (curatief te behandelen) stadium, kan overwogen worden om ook AFP te bepalen. Hierdoor stijgt de sensitiviteit, ten koste van een lagere specificiteit. Fout positieve uitslagen komen vooral voor als de transaminasen verhoogd zijn. De US-Lirads klassificatie (Visualizatie A (geen of geringe limitatie), Visualizatie B (matige limitaties) en Visualisatie C (ernstige limitaties) geeft de mogelijkheid om tot een objectievere beschrijving en beoordeling van de kwaliteit van het echografisch onderzoek te komen (https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/LI-RADS-v2024-Surveillance-Core_ACR.pdf). Bij visualisatie kwaliteit C dient aanvullende beeldvorming middels MRI lever of 3 fasen CT-scan verricht te worden.
Onderbouwing
Achtergrond
Surveillance voor Hepatocellulaircarcinoom (HCC) wordt gedaan bij patiënten met een verhoogd risico op deze maligniteit. Meta-analyses en onderzoek in de Nederlandse setting laten zien dat surveillance geassocieerd is met HCC detectie in een vroeger stadium, vaker toepassen van curatieve therapie, en een betere overleving (Singal, 2022; Van Meer, 2015). In Nederland komen patiënten met levercirrose en patiënten met hepatitis B zonder cirrose, maar met andere risicofactoren (familiaire belasting met HCC, Chinese man ouder dan 40 jaar, Chinese vrouw ouder dan 50 jaar, Sub-Sahara Afrikaan ouder dan 20 jaar) in aanmerking voor surveillance. De bedoeling is patiënten in een nog curatief te behandelen stadium (BCLC-0 of BCLC-A), te detecteren.
Surveillance wordt meestal verricht met echografie (al dan niet in combinatie met alfafoetoproteïne) elke zes maanden. De sensitiviteit voor detectie in een curatief te behandelen stadium is met alleen echografie 45 procent en met echografie in combinatie met alfafoetoproteïne (AFP) 63 procent (Tzartzeva, 2018). Tevens is er kans op schade door fout positieve uitslagen (specificiteit 92 procent bij alleen echografie, 84 procent bij combinatie echografie en AFP). Wellicht dat Magnetic Resonance Imaging (MRI) een hogere sensitiviteit en specificiteit heeft voor detectie van HCC in een curatief te behandelen stadium.
Conclusies
Sensitivity
Very low GRADE |
The evidence is very uncertain about the sensitivity of MRI compared to ultrasound in patients under surveillance for HCC.
Sources: (Kim, 2016; Park, 2020; Park, 2021; Sutherland, 2017) |
Negative predictive value
Low GRADE |
The evidence suggest that MRI may result higher negative predictive value than ultrasound in patients under surveillance for HCC.
Sources: (Kim, 2016; Park, 2020; Park, 2021; Sutherland, 2017) |
Specificity
Low GRADE |
The evidence suggests that MRI may result higher specificity than ultrasound in patients under surveillance for HCC.
Sources: (Kim, 2016; Park, 2020; Park, 2021; Sutherland, 2017) |
Positive predictive value
Low GRADE |
The evidence suggests that the positive predictive value of MRI is higher compared to ultrasound in patients under surveillance for HCC.
Sources: (Kim, 2016; Park, 2020; Park, 2021; Sutherland, 2017) |
(Very) early-stage detection rate
Low GRADE |
The evidence suggests that MRI may result in higher (very) early-stage detection rate than ultrasound in patients under surveillance for HCC.
Sources: (Kim, 2016) |
Overall survival
Very low GRADE |
The evidence is very uncertain about the effect on overall survival of surveillance by MRI compared to ultrasound.
Sources: (Kim, 2016) |
Recurrence-free survival
- GRADE |
No evidence was found regarding the effect on recurrence-free survival of surveillance by MRI compared to surveillance by ultrasound |
Samenvatting literatuur
Description of studies
Diagnostic test accuracy studies
Kim (2016) performed a prospective, single center, cohort study in South-Korea. Patients who were twenty years or older with presence of cirrhosis with an estimated annual HCC risk of more than 5% (risk was estimated by using a model, if risk index was greater than 2.33 that was estimated to correspond to an annual risk of developing HCC of more than 5%), Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 and no previous history or current suspicion of HCC, were included. In total, 407 patients were included in this study. Median age was 56 years, 43 percent was female and in 71 percent, the Hepatitis B virus was the cause of the liver disease. 78 percent of the patients had Child-Pugh class A and 21 percent had Child-Pugh class B.
Patients were evaluated by three rounds of screening tests with paired ultrasound (US) and gadoxetic acid-enhanced MRI at six months intervals. The index test was the liver MRI performed with 1.5-T scanner and gadoxetic acid (Primovist®) was administered at a dose of 0.025 mmol per kilogram. The positive screening criterium was category five on a five-point scale for MRI indicating the likelihood of HCC. The comparator test was an ultrasound. The positive screening criterium was category four of a four-point standardized scale for US indicating the likelihood of HCC. Reference tests and confirmation of HCC was based on results of histologic examination and/or typical CT images with nodule of more than one centimeter with arterial hypervascularity and portal/delayed-phase washout as recommended by practice guidelines. When MRI or US examination detected a nodule scored as category five or four, reference testing with CT-scan was performed within three months. Cases that were suspicious for HCC on CT imaging underwent biopsy whenever possible. At six months after the last screening round, all study patients were followed-up with dynamic CT-scan.
During the study with median follow-up of 1.5 years, 43 patients (11%) were diagnosed with HCC.
Kim (2016) reported detection rate for any HCC (sensitivity), detection rate for very-early and early-stage HCC (sensitivity), as well as specificity, false-negative rate, false-positive rate and positive predictive value as diagnostic test accuracy outcomes.
Park (2020) conducted a retrospective analysis, using the prospectively collected data from the study of Kim (2016) mentioned above. Selection criteria were as reported by Kim (2016). After the first surveillance round, patients were excluded if they withdraw from the study or died without subsequent follow-up information. In total, 382 patients were included in this study. Median age was 56 years, 43% was female and in 72%, the Hepatitis B virus was the cause of the liver disease.
Patients were evaluated by three rounds of surveillance with ultrasound and non-enhanced MRI at six months intervals. The index test was the liver MRI performed with 1.5-T scanner. The simulated non-enhanced MRI set consisted of axial DWI and T2WI. The positive screening criterium was a lesion of one centimeter or more with either diffusion restriction or mild to moderate T2 hyperintensity. The comparator test was ultrasound (US) examinations performed by board-certified abdominal radiologists using a convex probe (SC6-1, Supersonic Image SA). The positive screening criterium was one or more focal lesions of one centimeter or more on US that met one or more of the following criteria: 1) Discrete focal mass distinguishable from the adjacent parenchyma, 2) Peripheral low echoic halo, 3) Mosaic pattern, 4) Definite tumor thrombi visible on US.
The reference tests were dynamic CT scan, biopsy and/or subsequent surveillance round(s). Confirmation of HCC was based on results of histologic examination and/or typical CT images with nodules of more than one centimeter with arterial hypervascularity and portal/delayed-phase washout.
Park (2020) reported per-patients sensitivity, specificity, positive predictive value, negative predictive value and (very) early-stage detection rate as diagnostic test accuracy outcomes.
Park (2021) conducted a retrospective analysis, using prospectively collected data of the study of Kim mentioned above (2016). Selection criteria were identical to those of Kim (2016). After the first surveillance round, patients were excluded if they withdraw from the study or died without subsequent follow-up information. In total, 382 patients were included in this study. Study population characteristics were as reported by Park (2020).
Patients were evaluated by three rounds of screening tests. The CAA-approach consisted of a contrast MRI (CMRI) scan in the first round and abbreviated MRI (AMRI) scans in round two and three. The CMRI included T1-weighted imaging, DWI, T2WI and contrast-enhanced gadoxetic acid (Primovist®) T1-weighted imaging. The AMRI included DWI, T2WI and HBP imaging. Confirmation of HCC was based on LI-RADS classification. The AAA-approach consisted of abbreviated MRI (AMRI) scans in round one, two and three.
The reference test was as reported by Park (2020).
Park (2021) reported per-patients sensitivity, specificity and accuracy for round one, round two and three and in total and Park (2021) reported (very) early-stage detection rate.
Sutherland (2017) performed a prospective, single center, cohort study in Australia. Patients who were eighteen years or older with chronic liver disease and referred for hepatocellular carcinoma surveillance, were included. A total of 192 patients were included with median age of 58 years and 72 percent was male. The cause of the chronic liver disease was hepatitis B virus in 56 %, hepatitis C virus in 29% and alcohol in 11%.
The index test consisted of MRI-scan comprising respiratory-gated DWI. MRI lesions were considered suspicious if they had elevated signal on high b value DWI and were iso or hypointense to background liver on the ADC map.
The comparator test consisted of ultrasound. Lesions were considered suspicious if they were solid and not clearly focal fat infiltration or focal fat sparing.
The reference testing comprised arterial phase hyperenhancement followed by washout on either CT or MRI or histology (biopsy or resection). The confirmation of definite HCC was based on the AASLD guidelines. Any suspicious lesion was documented with respect to size, features and hepatic segment. Prior imaging was reviewed to aid in the diagnostic classification of the lesion. If lesion was new, further investigation was performed following the AASLR guidelines, being repeat imaging in three months by the modality that identified it for lesions under 10 mm and cross-sectional contrast-enhanced multiphase imaging with MRI or CT scan for new lesions of at least 10 mm.
During the study, six patients were diagnosed with HCC which results in an incidence of 3 percent.
The MRI was used as a replacement test for US. Sutherland (2017) reported sensitivity, specificity, positive predictive value and negative predictive value for MRI and US.
Cost-effectiveness studies
Kim (2019) designed a Markov model to compare the expected (incremental) effects, costs and quality adjusted life years (QALYs) between MRI and ultrasound, over a 20-year time horizon. The cohort consisted of 10,000 patients with compensated cirrhosis (Child-Pugh A) and a starting age of 50 years. Eleven health states were included in the model with a surveillance cycle length of six months. The annual HCC incidence rate was assumed to be 3% and costs and effectiveness were discounted at five percent. Costs were estimated from the viewpoint of the healthcare system. Kim (2019) reported life years, cost in US dollars, QALYs and the Incremental Cost Effectiveness Ratio (ICER) in US dollars per QALY.
Lima (2019) designed a Markov model to compare the expected (incremental) QALYs and techniques (US, CT, complete MRI and abbreviated MRI), regarding lifetime horizon. Because of the scope of our research question, only surveillance strategies of US compared with MRI are considered here. The cohort consisted of patients with compensated cirrhosis (Child-Pugh A) at a starting age of 50 years. The surveillance cycle length was six months. The HCC incidence rate was assumed to be 3% and costs and outcomes were discounted at 1.5%. Costs were estimated from the viewpoint of the healthcare system. Lima (2019) reported QALYs, incremental costs in Canadian dollars and QALYs, and ICER in Canadian dollars per QALY. The MRI and US surveillance strategies were evaluated for an maximal scenario (100 percent of the patients entered with Child-Pugh A and an assumed compliance rate of 100 percent) and for a conservative scenario (29 percent of the patients with Child-Pugh A and an assumed compliance rate of 52 percent).
Nahon (2022) designed a Markov model to compare the expected (incremental) effects and costs between MRI and ultrasound surveillance, over a 20-year time horizon. The cohort consisted of 10,000 patients with compensated cirrhosis (Child-Pugh A) and a starting age of 50 years. Fourteen health states were included in the model with a surveillance cycle length of 3months. The HCC incidence rate was assumed to be 3% and costs and effectiveness were discounted at 2.5%. Costs were estimated from the viewpoint of the healthcare system. Nahon (2022) reported discounted life years, costs in euros and ICER in euros per life year.
Tan (2021) designed a Markov model to compare the expected (incremental) costs and QALYs for three surveillance strategies: No surveillance, ultrasound and Non-contrast Enhanced MRI (NCEMRI), over a 40-year time period. The cohort consisted of 482,000 patients who were at risk for HCC with an average age of 40 years. The surveillance cycle length was 6 months. The annual HCC incidence rate for patients with alcoholic cirrhosis was 1.6%, for patients with chronic hepatitis C cirrhosis was 4% and for patients with NASH1 (with or without cirrhosis) 2.6% developed HCC annually. An estimated pooled transition probability of 1.1% was taken into account and costs and outcomes were discounted at 3%. Seven health states were included in the model. Costs were estimated from the viewpoint of the healthcare system. Tan (2021) reported incremental effects, incremental costs and ICER in dollars per QALY for the three surveillance strategies.
1 In deze richtlijn zijn de oude termen NAFLD en NASH gebruikt, omdat in de literatuur waarop is gezocht ook deze terminologie is gehanteerd
Results
Diagnostic accuracy for detection of (very) early-stage HCC (Table 1.1)
One study reported diagnostic accuracy of MRI and US for detection of (very) early-stage HCC (Kim ,2016). Results are presented in table 1.1.
Table 1.1 Diagnostic accuracy for detection of (very) early-stage HCC
Study |
Diagnostic Modality |
Sensitivity |
Specificity |
Positive predictive value |
Negative predictive value |
Kim, 2016 |
Contrast-enhanced MRI |
85% |
97% |
53% |
99% |
US |
27% |
94% |
16% |
97% |
Diagnostic accuracy for detection of HCC (all stages)
Four studies reported diagnostic accuracy of MRI and US for detection of HCC all stages (Kim, 2016; Park, 2020; Park, 2021; Sutherland, 2016). Regarding the diagnostic accuracy of the US, the studies of Park (2020) and Park (2021) used the data from the study of Kim (2016). Therefore, the diagnostic accuracy regarding US in these studies, is only reported for the study of Kim (2016). The results are presented in table 1.2.
Table 1.2. Diagnostic accuracy for detection of HCC (all stages)
Study |
Diagnostic Modality |
Sensitivity – HCC all stages |
Specificity – HCC all stages |
Positive predictive value – HCC all stages |
Negative predictive value – HCC all stages |
Kim, 2016 |
Contrast-enhanced MRI |
86% |
97% |
54% |
99% |
US |
28% |
94% |
17% |
97% |
|
Park, 2020 |
Non-enhanced MRI |
79% |
98% |
62% |
99% |
Park, 2021 |
Contrast-enhanced-Abbreviated MRI |
91% |
97% |
46% |
99% |
|
Abbreviated MRI |
86% |
96% |
45% |
99% |
Sutherland, 2016 |
MRI |
83% |
98% |
63% |
99% |
US |
100% |
89% |
23% |
100% |
Very early-stage detection rate
One reported (very) early-stage detection rate (Kim, 2016).
Kim (2016) reported very early-stage detection rate of 84.8 percent for MRI and 27.3 percent for US.
Overall survival
The study of Kim (2016) reported overall survival rate of patients with and without HCC.
The estimated 3-year overall survival rate of patients with HCC was 86 percent and of patients without HCC it was 94.2 percent (HR 2.26 (95% CI 0.92-5.56)).
Recurrence-free survival
No studies reported recurrence-free survival.
Costs
Four studies performed a cost-effectiveness study (Kim, 2019; Lima, 2019; Nahon, 2022; Tan, 2021).
Three studies reported the costs per Quality-Adjusted Life Year (QALY) and Incremental Cost-Effectiveness Ratio (ICER) (Kim, 2019; Lima, 2019; Tan, 2021). The QALY is defined as an extra life year in good health where survival of an individual with their Health-Related Quality of Life (HRQoL) is combined (Whitehead, 2010). The ICER relate the costs of a treatment to its clinical benefit in terms of a ratio expression (dollars per quality adjusted life year) and therefore ICERs can be directly compared (Krummenauer, 2005)
The costs per QALY and ICER per QALY for MRI versus Ultrasound in the surveillance setting, are presented in table 1.3.
Table 1.3 Costs per QALY and Incremental Cost Effectiveness Ratios (ICER) per QALY
Study |
Incidence HCC |
Costs per QALY for MRI |
Costs per QALY for US |
ICER |
Kim (2019) |
5% |
$10,191/QALY |
$10,163/QALY |
$10,721/QALY |
4% |
$9,704/QALY |
$9,424/QALY |
$16,039/QALY |
|
3% |
$9,182/QALY |
$8,644/QALY |
$25,202/QALY |
|
2% |
$8,628/QALY |
$7,819/QALY |
$44,026/QALY |
|
1% |
$8,038/QALY |
$6,948/QALY |
$101,586/QALY |
|
Lima (2019) |
3% - Optimal scenario |
CAN$ 3,712/QALY |
CAN$ 2,518/QALY |
CAN$ 663,000/QALY
|
3% - Conservative scenario |
CAN$ 2,589/QALY |
CAN$ 2,159/QALY |
CAN$ 39,681/QALY |
|
Tan (2021) |
1.1% |
$15,567/QALY |
$2,117/QALY |
$837,353/QALY
|
ICER: Incremental Cost-Effectiveness Ratio; $: US dollars; CAN$: Canadian dollars; €: Euro; QALY: Quality Adjusted Life Year; LYG: Life Year Gained |
The study of Nahon (2022) calculated costs per discounted Life Years (LY) and ICER per Life Years Gained (LYG) for MRI versus Ultrasound in the surveillance setting, which are presented in table 1.4.
Study |
Incidence HCC |
Costs per LY for MRI |
Costs per LY for US |
ICER per LYG |
Nahon (2022) |
3% |
€7,744/LY |
€7,517/LY |
€15,477/LYG |
2% |
€7,783/LY |
€7,487/LY |
€23,338/LYG |
|
1% |
€7,942/LY |
€7,545/LY |
€47,194/LYG |
|
ICER: Incremental Cost-Effectiveness Ratio; $: €: Euro; LY: Life Years; LYG: Life Years Gained |
Level of evidence of the literature
Sensitivity
The level of evidence regarding the outcome measure sensitivity was downgraded to very low GRADE because of study limitations (-1; risk of bias because of flow and timing), applicability (-1; bias due to indirectness because study population is not corresponding with population in the Netherlands) and number of included patients (-1; imprecision because confidence intervals may lead to different conclusions of the test’s value).
Negative predictive value
The level of evidence regarding the outcome measure negative predictive value was downgraded to low GRADE because of study limitations (-1; risk of bias because of flow and timing) and applicability (-1; bias due to indirectness because study population is not corresponding with population in the Netherlands). The level of evidence was therefore graded as low.
Specificity
The level of evidence regarding the outcome measure specificity was downgraded to low GRADE because of study limitations (-1; risk of bias because of flow and timing) and applicability (-1; bias due to indirectness because study population is not corresponding with population in the Netherlands).
Positive predictive value
The level of evidence regarding the outcome measure positive predictive value was downgraded to low GRADE because of study limitations (-1; risk of bias because of flow and timing) and applicability (-1; bias due to indirectness because study population is not corresponding with population in the Netherlands).
Very early-stage detection rate
The level of evidence regarding the outcome measure Very early-stage detection rate was downgraded to low GRADE because of study limitations (-1; risk of bias because of reference standard and flow and timing) and applicability (-1; bias due to indirectness because study population is not corresponding with population in the Netherlands).
Overall survival
The level of evidence regarding the outcome measure overall survival was to very low GRADE because applicability (-2; bias due to indirectness because study population and study design is not corresponding with the PICRO) and number of included patients (-1; imprecision because the confidence intervals including the possibility of a negative effect, no effect or a positive effect).
Costs
The level of evidence of observational cohort studies is considered low according to the GRADE methodology. Therefore, the level of evidence of these cohort studies starts at low GRADE.
The level of evidence regarding the outcome measure costs was downgraded to very low GRADE because of study limitations (-1; risk of bias because of describing of the study population, measuring and value of outcome measures) and applicability (-1; bias due to transferability to the surveillance setting in the Netherlands).
Zoeken en selecteren
A systematic review of the literature was performed to answer the following questions:
What is in patients with an indication for HCC surveillance, the diagnostic value of Magnetic Resonance Imaging (MRI) scan in comparison with ultrasound (US) with or without alpha fetoprotein, and what are the percentages curatively treated patients, overall and recurrence-free survival and the costs for MRI-based detection when compared with ultrasound-based detection?
P: Patients with cirrhosis and patients with hepatitis B without cirrhosis;
I: MRI-Scan;
C: Ultrasound;
R: Diagnosis according to the American Association for the Study of Liver Disease (AASLD) criteria (Marrero, 2018) or the European Association for the Study of the Liver (EASL) criteria (European Association for the Study of the Liver, 2018);
O: Diagnostic value for (very) early-stage HCC and diagnostic value for all stage HCC (sensitivity, specificity, positive predictive value, negative predictive value), (very) early-stage detection rates, overall survival, recurrence-free survival, costs.
Timing and setting: Patients who are at risk for developing HCC are under surveillance every six months in the hospital.
P: Patients with cirrhosis and patients with hepatitis B without cirrhosis;
I: MRI-scan;
C: Ultrasound with Alpha Fetoprotein;
R: Diagnosis according to the American Association for the Study of Liver Disease (AASLD) criteria (Marrero, 2018) or the European Association for the Study of the Liver (EASL) criteria (European Association for the Study of the Liver, 2018);
O: Diagnostic value for (very) early-stage HCC and all stage HCC (sensitivity, specificity, positive predictive value, negative predictive value), (very) early-stage detection rates, overall survival, recurrence-free survival, costs).
Timing and setting: Patients who are at risk for developing HCC are under surveillance every six months in the hospital.
Relevant outcome measures
Regarding the surveillance setting in the Netherlands, the guideline development group considered sensitivity, negative predictive value and very early or early BCLC stage detection rate as critical outcome measures for decision making and specificity, positive predictive value, overall survival, recurrence-free survival and costs as important outcome measures for decision making.
A priori, the working group did not define the outcome measures listed as above but used the definitions used in the studies.
The working group defined the following differences as a minimal clinically (patient) important difference:
- Sensitivity: No definition.
- Negative predictive value: No definition.
- Specificity: No definition.
- Positive predictive value: No definition.
- (Very) early-stage detection rate: No definition.
- Overall survival: An effect of surveillance resulting in either >5% or >3% combined with HR<0.70 was considered clinically relevant (BOM, 2018).
- Recurrence-free survival: An effect of surveillance resulting in HR<0.70 was considered clinically relevant (BOM, 2018).
- Costs: No definition.
Search and select (Methods)
The databases Medline (via OVID) and Embase (via Embase.com) were searched for relevant search terms until 9 February 2022. The detailed search strategy is depicted under the tab Methods. The search did not include RCT’s.
The systematic literature search resulted in 493 hits. Studies were selected based on the following criteria:
- The study population had to meet the criteria as defined in the PICRO.
- The index test and comparator test had to be as defined in the PICRO.
- The index test and comparator test had to be directly compared in the same study.
- One or more reported outcomes had to be reported as defined in the PICRO.
- Research type: Systematic review, Randomized Controlled Trial and observational cohort study.
- Articles written in English or Dutch.
Based on title and abstract screening, eighteen studies were initially selected. After full text reading, ten studies were excluded (see the table with reasons for exclusion under the tab Methods), and eight studies were included.
Results
Eight studies were included in the analysis of the literature. Important study characteristics and results of the diagnostic test accuracy studies are summarized in evidence table 1.1. Important study characteristics and results of the cost-effectiveness studies are summarized in evidence table 2. The assessment of the risk of bias of the diagnostic test accuracy studies is summarized in risk of bias table 1. The assessment of the risk of bias of the cost-effectiveness studies is summarized in risk of bias table 1.2.
Referenties
- BOM. PASKWIL-criteria 2018: adjuvante behandeling. Available from: https://www.nvmo.org/over-de-adviezen/
- Curran C, Priest M, Datta S, Forrest EH, Stanley AJ, Barclay ST. Hepatocellular Carcinoma Risk Scores Predict Patients Under Surveillance at Low Risk of Benefit and High Risk of Harm. Dig Dis Sci. 2023 Mar;68(3):770-777. doi: 10.1007/s10620-022-07731-1. Epub 2022 Nov 14. PMID: 36376575.
- European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018 Jul;69(1):182-236. doi: 10.1016/j.jhep.2018.03.019. Epub 2018 Apr 5. Erratum in: J Hepatol. 2019 Apr;70(4):817. PMID: 29628281.
- Gupta P, Soundararajan R, Patel A, Kumar-M P, Sharma V, Kalra N. Abbreviated MRI for hepatocellular carcinoma screening: A systematic review and meta-analysis. J Hepatol. 2021 Jul;75(1):108-119. doi: 10.1016/j.jhep.2021.01.041. Epub 2021 Feb 3. PMID: 33548385.
- Isfordink CJ, Maan R, de Man RA, van Erpecum KJ, van der Meer AJ. Should we continue surveillance for hepatocellular carcinoma and gastroesophageal varices in patients with cirrhosis and cured HCV infection? Eur J Intern Med. 2021 Dec;94:6-14. Doi: 10.1016/j.ejim.2021.08.023. Epub 2021 Sep 23. PMID: 34563447.
- Kim SY, An J, Lim YS, Han S, Lee JY, Byun JH, Won HJ, Lee SJ, Lee HC, Lee YS. MRI With Liver-Specific Contrast for Surveillance of Patients With Cirrhosis at High Risk of Hepatocellular Carcinoma. JAMA Oncol. 2017 Apr 1;3(4):456-463. doi: 10.1001/jamaoncol.2016.3147. PMID: 27657493; PMCID: PMC5470420.
- Kim HL, An J, Park JA, Park SH, Lim YS, Lee EK. Magnetic Resonance Imaging Is Cost-Effective for Hepatocellular Carcinoma Surveillance in High-Risk Patients With Cirrhosis. Hepatology. 2019 Apr;69(4):1599-1613. doi: 10.1002/hep.30330. Epub 2019 Feb 25. PMID: 30365164.
- Kim JH, Kim YD, Lee M, Jun BG, Kim TS, Suk KT, Kang SH, Kim MY, Cheon GJ, Kim DJ, Baik SK, Choi DH. Modified PAGE-B score predicts the risk of hepatocellular carcinoma in Asians with chronic hepatitis B on antiviral therapy. J Hepatol. 2018 Nov;69(5):1066-1073. doi: 10.1016/j.jhep.2018.07.018. Epub 2018 Aug 1. PMID: 30075230.
- Krummenauer F, Landwehr I. Incremental cost effectiveness evaluation in clinical research. Eur J Med Res. 2005 Jan 28;10(1):18-22. PMID: 15737949.
- Lima PH, Fan B, Bérubé J, Cerny M, Olivié D, Giard JM, Beauchemin C, Tang A. Cost-Utility Analysis of Imaging for Surveillance and Diagnosis of Hepatocellular Carcinoma. AJR Am J Roentgenol. 2019 Jul;213(1):17-25. doi: 10.2214/AJR.18.20341. Epub 2019 Apr 17. PMID: 30995098.
- Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018 Aug;68(2):723-750. doi: 10.1002/hep.29913. PMID: 29624699.
- Nahon P, Najean M, Layese R, Zarca K, Segar LB, Cagnot C, Ganne-Carrié N, N'Kontchou G, Pol S, Chaffaut C, Carrat F, Ronot M, Audureau E, Durand-Zaleski I; ANRS CO12 CirVir; ANRS CO22 Hepather; Scientific Committee Voting members; CIRRAL groups. Early hepatocellular carcinoma detection using magnetic resonance imaging is cost-effective in high-risk patients with cirrhosis. JHEP Rep. 2021 Nov 4;4(1):100390. doi: 10.1016/j.jhepr.2021.100390. PMID: 34977518; PMCID: PMC8683591.
- Papatheodoridis GV, Chan HL, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J Hepatol. 2015 Apr;62(4):956-67. doi: 10.1016/j.jhep.2015.01.002. Epub 2015 Jan 13. PMID: 25595883.
- Park HJ, Jang HY, Kim SY, Lee SJ, Won HJ, Byun JH, Choi SH, Lee SS, An J, Lim YS. Non-enhanced magnetic resonance imaging as a surveillance tool for hepatocellular carcinoma: Comparison with ultrasound. J Hepatol. 2020 Apr;72(4):718-724. doi: 10.1016/j.jhep.2019.12.001. Epub 2019 Dec 10. PMID: 31836549.
- Park HJ, Kim SY, Singal AG, Lee SJ, Won HJ, Byun JH, Choi SH, Yokoo T, Kim MJ, Lim YS. Abbreviated magnetic resonance imaging versus ultrasound for surveillance of hepatocellular carcinoma in high-risk patients. Liver Int. 2022 Aug;42(9):2080-2092. doi: 10.1111/liv.15110. Epub 2021 Nov 29. PMID: 34817921.
- Patmore LA, van Eekhout KMA, Buti M, Koc ÖM, Agarwal K, de Knegt RJ, Janssen HLA, van der Valk M, Lieveld FI, Hansen BE, Kramer M, de Bruijne J, Claassen MAA, Smit C, de Man RA, Takkenberg B, Carey I, Sonneveld MJ; HARP study group and HepNed. Hepatocellular carcinoma risk in Sub-Saharan African and Afro-Surinamese individuals with chronic hepatitis B living in Europe. J Hepatol. 2023 Oct 26:S0168-8278(23)05219-4. doi: 10.1016/j.jhep.2023.10.019. Epub ahead of print. PMID: 37898348.
- AG. Singal ETAL: HCC surveillance improves early detection, curative treatment receipt, and survival in patients with cirrhosis: A meta-analysis. Journal of Hepatology 2022 vol. 77 j 128-139
- Sutherland T, Watts J, Ryan M, Galvin A, Temple F, Vuong J, Little AF. Diffusion-weighted MRI for hepatocellular carcinoma screening in chronic liver disease: Direct comparison with ultrasound screening. J Med Imaging Radiat Oncol. 2017 Feb;61(1):34-39. doi: 10.1111/1754-9485.12513. Epub 2016 Aug 25. PMID: 27558976.
- Tan GJ, Lee CH, Sun Y, Tan CH. Is non-contrast enhanced magnetic resonance imaging cost-effective for screening of hepatocellular carcinoma? Singapore Med J. 2021 Oct 11. doi: 10.11622/smedj.2021153. Epub ahead of print. PMID: 34628803.
- Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, Waljee AK, Singal AG. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology. 2018 May;154(6):1706-1718.e1. doi: 10.1053/j.gastro.2018.01.064. Epub 2018 Feb 6. PMID: 29425931; PMCID: PMC5927818.
- van Meer S, de Man RA, Coenraad MJ, Sprengers D, van Nieuwkerk KM, Klümpen HJ, Jansen PL, IJzermans JN, van Oijen MG, Siersema PD, van Erpecum KJ. Surveillance for hepatocellular carcinoma is associated with increased survival: Results from a large cohort in the Netherlands. J Hepatol. 2015 Nov;63(5):1156-63. doi: 10.1016/j.jhep.2015.06.012. Epub 2015 Jun 20. PMID: 26100498.
- van Meer S, Lieveld FI, van Erpecum KJ. Patients' misconceptions about surveillance for hepatocellular carcinoma: Education is needed. J Hepatol. 2016 Sep;65(3):653-4. doi: 10.1016/j.jhep.2016.06.012. Epub 2016 Jun 16. PMID: 27320363.
- Whitehead SJ, Ali S. Health outcomes in economic evaluation: the QALY and utilities. Br Med Bull. 2010;96:5-21. doi: 10.1093/bmb/ldq033. Epub 2010 Oct 29. PMID: 21037243.
Evidence tabellen
Evidence table 1: Diagnostic test accuracy studies
Research question: What is de diagnostic value of the Magnetic Resonance Imaging (MRI) scan when compared with ultrasound (US) for patients with an indication for HCC surveillance and what is the incidence of detected HCC, percentage curative treated patients, overall and recurrence-free survival and the costs of MRI when compared with ultrasound?
Study reference |
Study characteristics |
Patient characteristics |
Index test (test of interest) |
Reference test
|
Follow-up |
Outcome measures and effect size |
Comments |
Kim, 2016 |
Type of study[1]: Prospective study
Setting and country: Single academic tertiary care center, Korea
Funding and conflicts of interest: Supported by Bayer Healthcare, which also provided the study drug (gadoxetic acid). Bayer was permitted to review the manuscript and suggest changes but had no role in study design, data collection, analysis, decision to publish or preparation of the manuscript |
Inclusion criteria: - Age of 20 years or older - Presence of cirrhosis with estimated annual HCC risk of more than 5% (Risk of Hepatocellular carcinoma (HCC) was estimated by using a model, if risk index was greater than 2.33 that was estimated to correspond to an annual risk of developing HCC of more than 5%) - Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 - Absence of previous history of current suspicion of HCC
Exclusion criteria: - Child-Pugh class C liver function - Estimated glomerular filtration rate < 30ml/min/1.73m2
N=407
Prevalence: 10%
Age in years, median (IQR): 56 (52-62)
Sex: 56.5% Male / 43.5% Female
Other important characteristics: Cause of cirrhosis, N (%): Hepatitis B virus: 288 (70.8%) Hepatitis C virus: 37 (9.1%) Alcohol: 52 (12.8%) Other: 30 (7.4%)
Child-Pugh score class A, N (%): 320 (78.6%)
Child-Pugh score class B, N (%): 87 (21.4%)
Alpha-fetoprotein in mg/dl, median (IQR): 3 (2-5)
|
Index test: Liver Magnetic Resonance Imaging (MRI) with 1.5-T scanner (Magnetom Avanto; Siemens). Gadoxid acid (Primovist; Bayer) was administered at a dose of 0.025 mmol/kg. Axial T1-weighted images of the arterial, portal, delayed and hepatobiliary phases were obtained at 4-mm slice thickness. Three rounds of MRI screening every six months.
Cut-off point(s): Positive screening criterion category 5 on a 5-point scale for MRI indicating the likelihood of HCC.
Comparator test: Ultrasonographic (US) examinations. Three rounds of US screening every six months.
Cut-off point(s): Positive screening criterion category 4 on a 4-point standardized scale for US indicating the likelihood of HCC.
|
Reference test[2]: Dynamic Computed Tomography (CT) scan and biopsy US guided or if a lesion was detected only by MRI, real-time US-CT fusion image guided.
Cut-off point(s): Confirmation of HCC was based on results of histologic examination and/or typical CT images with nodule > 1 cm with arterial hypervascularity and portal/delayed-phase washout as recommended by practice guidelines.
|
Time between the index test en reference test: When MRI or US examination detected a nodule scored as category 5 or 4, a recall process with dynamic 4-phase CT scan was performed within three months.
At 6-months after last screening round, all study patients were followed up with dynamic CT.
For how many participants were no complete outcome data available: N=49
|
Outcome measures and effect size (include 95%CI and p-value if available):
Diagnostic accuracy MRI: Detection rate for any HCC (sensitivity): 60.5%
Detection rate for very-early and early-stage HCC (sensitivity): 59.5%
Detection rate very-early stage HCC (sensitivity): 54.5%
Specificity: 99.3%
False-negative rate: 39.5%
False-positive rate: 0.7%
Positive predictive value: 78.8%
Diagnostic accuracy US: Detection rate for any HCC (sensitivity): 27.9%
Detection rate of very early and early stage HCC (sensitivity): 26.2%
Detection rate very early stage HCC (sensitivity): 27.3%
False negative rate: 72.1%
Specificity: 94.4%
False positive rate: 5.6%
Positive predictive value: 16.9%
Incidence rate detected HCC: N=43/407 (10.6%) |
Authors conclusion: Results of this study support our hypothesis that MRI with liver-specific contrast is more sensitive than US to detect early stage HCC in high-risk patients with cir- rhosis. For very early stage HCC (single lesion <2 cm), MRI screening yielded a detection rate of 84.8%, significantly higher than the 27.3% detected by US. Only 27.9% of the cancers were detected by US, which is far lower than reported in other meta-analyses. Possible explanation is that MRI was able to detect tumors far earlier in development than US. Model to estimate risk of HCC: Risk index=1.41 (if age > 50 years) + 1.65 (prothrombin activity <75%) + 0.92 (platelet count is <100x103/mm3) + 0.74 (if anti hepatitis C virus antibody or hepatitis B virus surface antigen test is positive) Sponsor (Bayer) partially funded the study and review the manuscripts and suggest changes. |
Park, 2020 |
Type of study: Retrospective analysis of prospectively collected dataa
Setting and country: Single, academic, tertiary center, Korea
Funding and conflicts of interest: Original study was funded by Bayer. For this retrospective analysis, authors received no financial support and declare no conflicts of interest |
Inclusion criteria: - Age of 20 years or older - Presence of cirrhosis with estimated annual HCC risk of more than 5% (Risk of Hepatocellular carcinoma (HCC) was estimated by using a model, if risk index was greater than 2.33 that was estimated to correspond to an annual risk of developing HCC of more than 5%) - Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 - Absence of previous history of current suspicion of HCC
Exclusion criteria: - Child-Pugh class C liver function - Estimated glomerular filtration rate < 30ml/min/1.73m2 - Withdrawn from study or died without subsequent follow-up examinations
N=382
Prevalence: 5%
Age in years, median (IQR): 56.4 (29-77)
Sex: 56.8% Male /43.2% Female
Other important characteristics: Cause of cirrhosis, N (%): Hepatitis B virus: 276 (72.3%) Alcohol-induced: 46 (12.0%) Hepatitis C virus: 34 (8.9%) Other: 26 (6.8%)
Alpha-fetoprotein in ng/ml, median (IQR): 7.0 (2.5-5.6)
|
Index test: Liver Magnetic Resonance Imaging (MRI) with 1.5-T scanner (Magnetom Avanto; Siemens). The stimulated non-enhance MRI set consisted of axial DWI and T2WI. Three rounds of MRI screening every six months.
Cut-off point(s): Lesion ³ 1 cm. with either diffusion restriction or mild to moderate T2 hyperintensity.
Comparator test: Ultrasonographic (US) examinations by 4-board certified abdominal radiologist using a convex probe (SC6-1, Supersonic Image SA; Aixplorer, France). Three rounds of US screening every six months.
Cut-off point(s):
|
Reference test: Dynamic Computed Tomography (CT) scan, biopsy and/or subsequent surveillance round(s) after six months.
Cut-off point(s): Confirmation of HCC was based on results of histologic examination and/or typical CT images with nodule > 1 cm with arterial hypervascularity and portal/delayed-phase washout as recommended by practice guidelines.
|
Time between the index test and reference test: When MRI or US examination detected a nodule scored as category 5 or 4, a recall process with dynamic 4-phase CT scan was performed within three months.
At 6-months after last screening round, all study patients were followed up with dynamic CT.
Average duration of follow-up after last surveillance: 32.9 months (range 1-60 months)
For how many participants were no complete outcome data available: N=43
|
Outcome measures and effect size (include 95%CI and p-value if available):
Diagnostic accuracy non-enhanced MRI: Per-lesion sensitivity: 77.1% (N=37/48) (95%CI 63.2-86.8)
Per-lesion positive predictive value: 56.9% (N=37/65) (95%CI 44.9-69.0)
Per-exam sensitivity: 79.1% (N=34/43) (95%CI 64.4-88.7)
Per-exam positive predictive value: 61.8% (N=34/55) (95%CI 49.0-74.7)
Per-exam specificity: 97.9 (N=993/1014) (95%CI 96.8-98.7)
Diagnostic accuracy US: Per-lesion sensitivity: 25.0% (N=12/48) (95%CI 14.8-39.1)
Per-lesion positive predictive value: 16.7% (N=12/72) (95%CI 8.1-25.3)
Per-exam sensitivity: 27.9% (N=12/43) (16.6-43.0)
Per-exam positive predictive value: 17.7% (N=12/68) (95%CI 8.6-26.7)
Per-exam specificity: 94.5% (N=958/1014) (95%CI 92.9-95.7) |
Authors conclusion: This study demonstrated that non-enhanced MRI showed significantly better performance than US as a surveillance tool for HCC in a prospectively gathered cohort at a high risk of HCC. Model to estimate risk of HCC: Risk index=1.41 (if age > 50 years) + 1.65 (prothrombin activity <75%) + 0.92 (platelet count is <100x103/mm3) + 0.74 (if anti hepatitis C virus antibody or hepatitis B virus surface antigen test is positive) Reference testing is CT, biopsy and/or subsequent surveillance round(s) after six months. |
Park, 2021 |
Type of study: Retrospective analysis of prospectively collected dataa
Setting and country: Single, academic, tertiary center, Korea
Funding and conflicts of interest: Original study was funded by Bayer. For this retrospective analysis, dr. Amit Singal has served as a consultant for Bayer, Wako Diagnostics, Glycotest, Exact Science, Roche and TARGET pharmasolutions. Dr. Sang Hyun Choi received grants from Bayer outside the study. None of the authors declare conflicts of interest that pertain to this work |
Inclusion criteria: - Age of 20 years or older - Presence of cirrhosis with estimated annual HCC risk of more than 5% (Risk of Hepatocellular carcinoma (HCC) was estimated by using a model, if risk index was greater than 2.33 that was estimated to correspond to an annual risk of developing HCC of more than 5%) - Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 - Absence of previous history of current suspicion of HCC
Exclusion criteria: - History of suspicion of any type of malignancy, significant comorbidities with a predicted survival period < 3 years - Estimated Glomerular Filtration Rate (GFR) < 30 ml/min/1.73m2 - Child Pugh class C - Contra indications for MRI
N=382
Prevalence: 5%
Age in years, median (IQR): 56 (29-77)
Sex: 56.8% Male /43.2% Female
Other important characteristics: Cause of cirrhosis, N (%): Hepatitis B virus: 276 (72.3%) Alcohol-induced: 46 (12.0%) Hepatitis C virus: 34 (8.9%) Other: 26 (6.8%)
Alpha-fetoprotein in ng/ml, median (IQR): 7.0 (2.5-5.6)
|
Index test: The CAA approach consisted of first round using Magnetic Resonance Imaging (MRI) with 1.5-T scanner (Magnetom Avanto; Siemens). and included T1-weighted imaging, DWI, T2WI and contrast-enhanced T1-weighted imaging and the second and third round using Abbreviated MRI (AMRI) which consisted of DWI, T2WI and HBP imaging
Cut-off point(s): LI-RADS, CMRI-3 which included LR-4, LR-5, LR-TIV and LR-M
Index test 2: The AAA approach consisted of three rounds using AMRI
Cut-off point(s): LI-RADS, AMRI-3 which included observation(s) ³ 10 mm that were not definitely benign, changes in imaging characteristics or threshold growth of previously noted observation(s) and new thrombus in vein.
Comparator test: Ultrasound approach consisting of three rounds of ultrasound.
Cut-off point(s): US LI-RADS with US-3 including observations ³ 10 mm that were not definitely benign, new thrombus in vein and threshold growth |
Reference test: Dynamic CT-scan, biopsy and/or
Cut-off point(s): Observations showing features of definite HCC on dynamic CT (nodules > 10 mm with arterial hyperenhancement and washout).
|
Time between the index test and reference test: Observations found on MRI or US fulfilling the positive screening criteria underwent a recall process with dynamic CT scan performed within 3 months. Observations that were not diagnostic on CT underwent pathologic confirmations. After the third round all patients underwent dynamic CT at six months.
Identity of false positive observations was determined by thoroughly review all available follow-up imaging and pathology data.
Median follow-up after last round of surveillance: 40.6 months (IQR 17.5-51.3)
For how many participants were no complete outcome data available: N=20
|
Outcome measures and effect size (include 95%CI and p-value if available):
Diagnostic accuracy CAA approach: Per-examination sensitivity round 1: 96.4% (N=27/28) (95%CI 78.6-99.5)
Per-examination sensitivity round 2-3: 80% (N=12/15) (95%CI 53.0-93.4)
Per-examination sensitivity total: 90.7% (N=39/43) (95%CI 77.7-96.5)
Per-examination specificity round 1: 96.9% (N=343/354) (95%CI 94.5-98.3)
Per-examination specificity round 2-3: 97.3% (N=640/658) (95%CI 95.6-98.3)
Per-examination specificity total: 97.1% (N=983/1012) (95%CI 95.8-98.0)
Per-examination accuracy round 1: 96.9% (N=343/382) (95%CI 94.6-98.2)
Per-examination accuracy round 2-3: 96.9% (N=652/673) (95%CI 95.2-98.0)
Per-examination accuracy total: 96.9% (N=1022/1055) (95%CI 95.5-97.8)
Diagnostic accuracy AAA approach: Per-examination sensitivity round 1: 89.3% (N=25/28) (95%CI 71.6-96.5)
Per-examination sensitivity round 2-3: 80.0% (N=12/15) (95%CI 53.0-93.4)
Per-examination sensitivity total: 86.0% (N=37/43) (95%CI 72.2-93.6)
Per-examination specificity round 1: 92.4% (N=327/354) (95%CI 89.1-94.7)
Per-examination specificity round 2-3: 97.3% (N=640/658) (95%CI 95.6-98.3)
Per-examination specificity total: 95.6% (N=967/1012) (95%CI 94.0-96.7)
Per-examination accuracy round 1: 92.1% (N=352/382) (95%CI 89.0-94.5)
Per-examination accuracy round 2-3: 96.9% (N=652/673) (95%CI 95.2-98.0)
Per-examination accuracy total: 95.2% (N=1004/1055) (95%CI 93.6-96.4)
Diagnostic accuracy US: Per-examination sensitivity round 1: 39.3% (N=11/28) (95%CI 23.3-58.0)
Per-examination sensitivity round 2-3: 6.7% (N=1/15) (95%CI 0.9-35.2)
Per-examination sensitivity total: 27.9% (N=12/43) (95%CI 16.6-43.0)
Per-examination specificity round 1: 93.8% (N=332/354) (95%CI 90.7-95.9)
Per-examination specificity round 2-3: 97.7% (N=643/658) (95%CI 96.3-98.6)
Per-examination specificity total: 96.3% (N=975/1012) (95%CI 95.0-97.4)
Per-examination accuracy round 1: 89.8% (N=343/382) (95%CI 86.3-92.5)
Per-examination accuracy round 2-3: 95.7% (N=644/673) (95%CI 93.9-97.0)
Per-examination accuracy total: 93.5=6% (N=987/1055) (95%CI 91.8-94.9) |
Authors conclusion: The performance of ultrasound, the current primary surveillance modality for HCC, is suboptimal in detecting early-stage HCC. We found that in a prospective cohort of high-risk patients, AMRI-based approaches had significantly higher sensitivity for detecting early- stage HCC than an ultrasound-only approach. Model to estimate risk of HCC: Risk index=1.41 (if age > 50 years) + 1.65 (prothrombin activity <75%) + 0.92 (platelet count is <100x103/mm3) + 0.74 (if anti hepatitis C virus antibody or hepatitis B virus surface antigen test is positive) If a patient had any lesion(s) fulfilling the positive criteria of the simulated surveil- lance test without confirmatory CT or histologic results and proceeded to the subsequent surveillance round, we used the CMRI of the subsequent round as a reference test for the previous observations. In this way, all simulated surveillance tests of each round had an available reference standard test (histology, dynamic CT, and/or subsequent surveillance CMRI within 6 months)
|
Sutherland, 2017 |
Type of study: Prospective cohort study
Setting and country: University-affiliated tertiary hospital, Australia
Funding and conflicts of interest: The authors received no funding for this research and no authors have conflicts of interest to declare |
Inclusion criteria: - Patients with age ³ 18 years - Referred by the gastroenterology department with chronic liver disease for hepatocellular carcinoma screening liver ultrasound
Exclusion criteria: - Presence of a known mass as indicated on the ultrasound request form - Non-English speaking - Contraindications to MRI such as pacemaker or contraindicated metallic implant
N=192
Prevalence: 3% (N=6)
Age in years, median (IQR): 58 (22-80)
Sex: 72% Male / 28% Female
Other important characteristics: Cause of chronic liver disease: Hepatitis B virus: N=108 (56%) Hepatitis C virus: N=56 (29%) Alcohol: N=21 (11%) Hepatic steatosis: N=8 (4%) Other: N=8 (4%) |
Index test: MRI scan sequence comprised respiratory-gated DWI with the following parameters: TR 2500; TE 80; slice thickness 8 mm; distance factor 30%; FOV read 400 mm with effective voxel size of 2.6 x 2.1 x 8 mm; and b values of 100, 400, 800 acquired with 8 averages
Cut-off point(s): MRI lesions were considered suspicious if they had elevated signal on high b value DWI and were iso or hypointense to background liver on the ADC map
Comparator test: Ultrasound
Cut-off point(s): Lesions were suspicious if they were solid and not clearly focal fat infiltration or focal fat sparing.
|
Describe reference test: Arterial phase hyperenhancement followed by washout on either CT or MRI or by histology (biopsy or resection)
Cut-off point(s): AASLD guidelines
|
Time between the index test and reference test: Any suspicious lesion was documented with respect to size, features and hepatic segment. Prior imaging was reviewed to determine the aetiology of the lesion and assess stability. If lesion was new it sparked further investigation as per the AASLR guidelines, being repeat imaging in three months by the modality that identified it for lesions under 10 mm and cross-sectional contrast-enhanced multiphase imaging with MRI or CT for new lesions over 10 mm
For how many participants were no complete outcome data available: N=31 (16%)
Compliance rates for:
No reasons for incomplete outcome data described |
Outcome measures and effect size (include 95%CI and p-value if available):
Diagnostic accuracy MRI: Sensitivity: 83% (N=5/6)
Specificity: 98%
Positive predictive value: 63%
Negative predictive value: 99%
Diagnostic accuracy US: Sensitivity: 100% (N=6/6)
Specificity: 90%
Positive predictive value: 23%
Negative predictive value: 100% |
|
a Data from study of Kim (2016) |
Evidence table 2: Cost-effectiveness studies
Research question: What is de diagnostic value of the MRI-scan when compared with ultrasound for patients with an indication for HCC surveillance and what is the incidence of detected HCC, percentage curative treated patients, overall and recurrence-free survival and the costs of MRI when compared with ultrasound?
Study reference |
Study characteristics |
Population2 |
Interventions |
Outcome measures and effect size 4 |
Incremental Costs/Effects |
Comments |
Kim, 2019 |
Study design (Trial/Model): Cohort-based Markov model
Country: Korea
Setting: Surveillance
Perspective: Healthcare
Time horizon: 20 years
Price year (currency): 2018
Discounting: Costs: 5% per year Outcomes: 5% per year Source of funding: Supported by grants from Korean National Health Clinical Research project of the Ministry of Health and Welfare, the Korean Health Technology R&D Project, Ministry of Health and Welfare, the National Research Foundation of Korea, the Korean Gastroenterology Fund for Future Development, the National Evidence-Based Healthcare Collaborating Agency and the Technology Innovation Program funded by the Ministry of Trade, Industry, and Energy of the Republic of Korea. |
Inclusion criteria: - Patients with compensated cirrhosis (Child-Pugh A)
Exclusion criteria: Not specified
N total at baseline: Interventions: 10,000
Important prognostic factors2: Age: 50 years
Surveillance cycle length: 6 months
Number of health states included in the model: 11
HCC incidence: 3%
HCC stage at time of detection – very early stage: MRI: 72.1% US: 18.5%
HCC stage at time of detection – very early + early stage: MRI: 97.7%
Sensitivity MRI: 85.7% Sensitivity US (95%CI): 47.0% (33-61) |
Describe interventions and comparators (treatments/procedures/tests): MRI and ultrasound were performed concurrently
|
Outcome measures and effect size Annual HCC incidence 3% (base-case): MRI: 11.101 Life Years US: 10.717 Life Years
Outcome measure and Costs Annual HCC incidence 3% (base-case): MRI: 62,287 $ US: 56,725 $
Cost-effectiveness outcome measures Annual HCC incidence 3% (base-case): MRI: 6.783 QALYs US: 6.562 QALYs
|
ICER: Annual HCC Incidence 1%: 101,586 $/QALY
Annual HCC Incidence 2%: 44,026 $/QALY
Annual HCC Incidence 3%: 25,202 $/QALY
Annual HCC Incidence 3.5%: 20,000 $/QALY
Annual HCC Incidence 4%: 16,039 $/QALY
Annual HCC Incidence 5%: 10,721 $/QALY
|
Authors conclusion: The present study demonstrated that MRI surveillance for HCC can be cost-effective in high-risk patients with compensated cirrhosis. Since MRI and ultrasound were performed concurrently and one HCC had been diagnosed with MRI, US detection was no longer an opportunity. Therefore detection rate data from US were extracted from another resource.
Higher incidence of HCC, more patients developed HCC and further surveillance was not required, which had a considerable effect on the costs of surveillance.
|
Lima, 2019 |
Study design (Trial/Model): decisional Markov model
Country: Canada
Setting: Surveillance
Perspective: Healthcare
Time horizon: Lifetime
Price year (currency): 2017
Discounting: Costs: 1.5% per year Outcomes: 1.5% per year Source of funding: Supported by a New Researcher Startup Grant from the Centre de recherche du Centre hospitalier de l’Université de Montréal. |
Inclusion criteria: - Patients with compensated cirrhosis (Child-Pugh A) - Age 50 years
Exclusion criteria: Not specified
N total at baseline: Interventions: Not specified
Important prognostic factors2: Age: 50 years
Surveillance cycle length: 6 months
Number of health states included in the model: Not specified
HCC incidence: 3%
Sensitivity MRI (range): 86% (82-93) Sensitivity US (range): 78% (60-89)
Specificity MRI (range): 86% (79-91) Specificity US (range): 89% (80-94) |
Describe interventions and comparators (treatments/procedures/tests): Seven surveillance and diagnostic strategies were investigated with combinations of four imagine techniques (US, CT, complete MRI, abbreviated MRI). A) Surveillance US; diagnosis CT F) Surveillance MRI; if inadequate CT; diagnosis MRI
Strategies were evaluated for: - Optimal scenario: 100% of the patients with compensated cirrhosis (Child-Pugh A) and an assumed compliance rate of 100%. - Conservative scenario: 29% of the patients with compensated cirrhosis (Child-Pugh A) and an assumed compliance rate of 52%.
|
Cost-effectiveness outcome measures: Optimal scenario (100% Child-Pugh A; 100% surveillance compliance) US: 7.269 QALY MRI: 7.424 QALY
Conservative scenario (29% Child-Pugh A; 52% surveillance compliance) US: 4.300 QALY MRI: 4.354 QALY |
Incremental Effects: Optimal scenario: 0.011 QALY Conservative scenario: 0.022 QALY
Incremental Costs: Optimal scenario: 7293 Canadian dollars Conservative scenario: 873 Canadian dollars
ICER: Optimal scenario: 663,000 Canadian dollars/QALY Conservative scenario: 39,681 Canadian dollars/QALY
|
Authors conclusion: In conclusion, in a scenario that assumes optimal patient compliance and takes into account inconclusive imaging examinations, CT for HCC surveillance and diagnosis and complete MRI for inadequate CT was most cost-effective
|
Nahon, 2022 |
Study design (Trial/Model): Markov model with data from one RCT and three prospective cohort studies: CHC2000 trial, ANRS Co12 CirVir cohort, CIRRAL cohor and ANRS CO22 Hepather cohort
Country: France
Setting: Surveillance
Perspective: Healthcare
Time horizon: 20 years
Price year (currency): 2020
Discounting: Costs: 2.5% per year Outcomes: 2.5% per year
Source of funding: The cohorts were funded by the French ministry of health, French Ligue de Recherche contre le cancer, National Agency for Research on HIV and Hepatitis, the French national institute of Cancer and the French association for Research in Cancer |
Inclusion criteria: - Patients with biopsy proven compensated cirrhosis (Child-Pugh A) - Age 50 years
Exclusion criteria: Not specified
N total at baseline: Interventions: 10,000
Important prognostic factors2: Age: 50 years
Surveillance cycle length: 3 months
Number of health states included in the model: 14
HCC incidence: 3%
Sensitivity MRI: 85.7%a |
Describe interventions and comparators (treatments/procedures/tests): MRI versus Ultrasound
|
Outcome measures and effect size: MRI: 13.8 discounted life years US: 13.4 discounted life years
Outcome measure and Costs: MRI: € 106,873 US: € 100,739
|
ICER: Incidence rate 3% per year: € 15,477/Life Year Incidence rate 2% per year: € 23,338/Life Year Gained Incidence rate 1% per year: € 47,194/Life Year Gained
|
Authors conclusion: Our prospective cohort- and model-based evaluation of very early HCC detection found that MRI monitoring was cost- effective for a baseline yearly incidence of 3% and over a range of assumptions on incidence, costs and treatment choice.
|
Tan, 2021 |
Study design (Trial/Model): Markov model
Country: Singapore
Setting: Surveillance
Perspective: Healthcare
Time horizon: 40 years
Price year (currency): Not reported
Discounting: Costs: 3% per year Effects: 3% per year
Source of funding: Not reported |
Inclusion criteria: - At risk patients
Exclusion criteria: Not reported
N total at baseline: Interventions: 482,000
Important prognostic factors2: Average age: 40 years
Surveillance cycle length: 6 months
Number of health states included in the model: 7
HCC incidence: 1.1%
Sensitivity MRI: 90% Sensitivity US: 55.6%
Specificity MRI: 91.5% Specificity US: 93% |
Describe interventions and comparators (treatments/procedures/tests): No surveillance versus Ultrasound surveillance versus Non-contrast Enhanced MRI (NCEMRI) surveillance |
Outcome measure and Costs, mean (SE): No surveillance: 4,675 $ (263) US surveillance: 23,803 $ (367) NCEMRI surveillance: 177,876 $ (1111)
Cost-effectiveness outcome measures, mean (SE): No surveillance: 7.483 QALY (0.044) US surveillance: 11.242 QALY (0.074) NCEMRI surveillance: 11.426 QALY (0.074) |
Incremental Effects: US surveillance: 3.759 QALY NCEMRI surveillance: 3.943 QALY NCEMRI versus US: 0.184 QALY
Incremental Costs: US surveillance: 19,128 $ NCEMRI surveillance: 173,201 $ NCEMRI versus US: 154,073 $
ICER: US surveillance: 5,088$/QALY NCEMRI surveillance: 43,924$/QALY NCEMRI versus US: 837,353$/QALY |
Authors conclusion: Despite NCEMRI having a superior diagnostic accuracy, it is a less cost- effective strategy than US for HCC surveillance in the general at-risk population, from an overall healthcare perspective. Future local cost-effectiveness analyses should include stratifying surveillance methods with a variety of imaging techniques (US, NCEMRI, CEMRI) based on patients’ risk profiles. Relatively low transition probability of 1.1 percent compared with other studies, results in decreased cost-effectiveness.
|
a Data from the PRIUS study |
Risk of bias assessment table 1: diagnostic accuracy studies (QUADAS II, 2011)
Research question: What is de diagnostic value of the Magnetic Resonance Imaging (MRI) scan when compared with ultrasound (US) for patients with an indication for HCC surveillance and what is the incidence of detected HCC, percentage curative treated patients, overall and recurrence-free survival and the costs of MRI when compared with ultrasound?
Study reference |
Patient selection
|
Index test |
Reference standard |
Flow and timing |
Comments with respect to applicability |
Kim, 2016 |
Was a consecutive or random sample of patients enrolled? Yes, consecutive sample of patients at risk for HCC
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? Yes, clear in- and exclusion criteria were reported
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes, US and MRI interpretations were allocated to different radiologists who were blinded to the findings of the other imaging modalities.
If a threshold was used, was it pre-specified? Yes, positive screening criterion category 5 or 4 on MRI or US (standardized 5-point scale for MRI or 4-point scale for US)
|
Is the reference standard likely to correctly classify the target condition? Yes
Were the reference standard results interpreted without knowledge of the results of the index test? Unclear, it is not clear of the assessors of the reference standards (CT and biopsy) were blinded for results of the index or comparator tests.
|
Was there an appropriate interval between index test(s) and reference standard? Yes, 3 months when positive screening criterion for MRI or US. 6 months for all study patients after last screening round.
Did all patients receive a reference standard? Yes, CT or CT and biopsy
Did patients receive the same reference standard? Yes, patients received reference standard according to the AASLD criteria.
Were all patients included in the analysis? Yes |
Are there concerns that the included patients do not match the review question? Yes, high percentage of hepatitis B patients in the sample.
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No, MRI in the Netherlands is also gadoxetic enhanced.
Are there concerns that the target condition as defined by the reference standard does not match the review question? No
|
CONCLUSION: Could the selection of patients have introduced bias?
RISK: LOW |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: LOW |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: UNCLEAR |
CONCLUSION Could the patient flow have introduced bias?
RISK: LOW |
||
Park, 2020 |
Was a consecutive or random sample of patients enrolled? Yes, consecutive sample of patients at risk for HCC from study data of Kim (2016)
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? Yes, clear in- and exclusion criteria were reported
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes, MRIs were anonymized, shuffled in random order an analysed by two reviewers who were blinded to data, pathological results, final diagnosis and results of full contrast-enhance MRI
If a threshold was used, was it pre-specified? Yes, lesions of ³ 1 cm. with either diffusion restriction or mild to moderate T2 hyperintensity |
Is the reference standard likely to correctly classify the target condition? Yes, there were different reference standards: Dynamic CT, biopsy and and/or subsequent surveillance round(s) after six months.
Were the reference standard results interpreted without knowledge of the results of the index test? Yes, results of reference standard tests were reviews by one of the authors who was not involved in imaging analysis
|
Was there an appropriate interval between index test(s) and reference standard? Yes
Did all patients receive a reference standard? Yes
Did patients receive the same reference standard? Yes, patients received reference standard according to the AASLD criteria.
Were all patients included in the analysis? Yes |
Are there concerns that the included patients do not match the review question? Yes, high percentage of hepatitis B patients in this sample
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No
Are there concerns that the target condition as defined by the reference standard does not match the review question? No
|
|
CONCLUSION: Could the selection of patients have introduced bias?
RISK: LOW |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: LOW |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: LOW |
CONCLUSION Could the patient flow have introduced bias?
RISK: LOW |
|
Park, 2021
|
Was a consecutive or random sample of patients enrolled? Yes, consecutive sample of patients at risk for HCC from study data of Kim (2016)
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? Yes
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes, readers independently interpreted the MRIs in a blinded-to-outcome manner but were allowed to view MRI images of previous round(s) when they interpreted the second and third round MRI
If a threshold was used, was it pre-specified? Yes, LI-RADS classifications was used
|
Is the reference standard likely to correctly classify the target condition? Unclear, CT and/or pathological confirmation and/or follow-up of medical records
Were the reference standard results interpreted without knowledge of the results of the index test? Unclear
|
Was there an appropriate interval between index test(s) and reference standard? Yes
Did all patients receive a reference standard? Yes
Did patients receive the same reference standard? Yes, patients received reference standard according to the AASLD criteria.
Were all patients included in the analysis? Yes |
Are there concerns that the included patients do not match the review question? Yes, high percentage of hepatitis B patients in this sample
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No
Are there concerns that the target condition as defined by the reference standard does not match the review question? No
|
CONCLUSION: Could the selection of patients have introduced bias?
RISK: LOW |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: LOW |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: UNCLEAR |
CONCLUSION Could the patient flow have introduced bias?
RISK: LOW |
||
Sutherland, 2017 |
Was a consecutive or random sample of patients enrolled? Yes, consecutive sample of patients referred by gastroenterology department with chronic liver disease
Was a case-control design avoided? Yes
Did the study avoid inappropriate exclusions? Yes
|
Were the index test results interpreted without knowledge of the results of the reference standard? Yes, MRI was reviewed by radiologist blinded to the US and all prior imaging
If a threshold was used, was it pre-specified? Yes
|
Is the reference standard likely to correctly classify the target condition? Yes
Were the reference standard results interpreted without knowledge of the results of the index test? Unclear
|
Was there an appropriate interval between index test(s) and reference standard? Yes, prior imaging was reviewed to determine aetiology and assess stability. If a lesion was new, further investigation as defined by the AASLR
Did all patients receive a reference standard? Unclear, gold standard is reported but not if all patients received reference standard
Did patients receive the same reference standard? Unclear, gold standard is arterial phase hyperenhancement follow by washout on CT or MRI or histology
Were all patients included in the analysis? Yes |
Are there concerns that the included patients do not match the review question? Unclear, study population are patients with chronic liver diseases
Are there concerns that the index test, its conduct, or interpretation differ from the review question? No
Are there concerns that the target condition as defined by the reference standard does not match the review question? No
|
|
CONCLUSION: Could the selection of patients have introduced bias?
RISK: LOW |
CONCLUSION: Could the conduct or interpretation of the index test have introduced bias?
RISK: LOW |
CONCLUSION: Could the reference standard, its conduct, or its interpretation have introduced bias?
RISK: UNCLEAR |
CONCLUSION Could the patient flow have introduced bias?
RISK: UNCLEAR |
Risk of Bias assessment table 2: Cost-effectiveness studies: CHEC-list
Research question: What is de diagnostic value of the Magnetic Resonance Imaging (MRI) scan when compared with ultrasound (US) for patients with an indication for HCC surveillance and what is the incidence of detected HCC, percentage curative treated patients, overall and recurrence-free survival and the costs of MRI when compared with ultrasound?
Study reference
(first author, publication year) |
1 Y/N |
2 Y/N |
3 Y/N |
4 Y/N |
5 Y/N |
6 Y/N |
7 Y/N |
8 Y/N |
9 Y/N |
10 Y/N |
11 Y/N |
12 Y/N |
13 Y/N |
14 Y/N |
15 Y/N |
16 Y/N |
17 Y/N
|
18 Y/N |
19 Y/N |
20 Y/N |
Comments |
Kim, 2019 |
Y |
|
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
N |
NR |
MRI and US were performed concurrently, one HCC had been diagnosed with MRI, US detection was no longer an opportunity. Therefore detection rate data from US was extracted from another resource. |
Lima, 2019 |
Y |
|
Y |
Y |
N |
Y |
Y |
Y |
Y |
Y |
Y |
N |
Y |
Y |
Y |
Y |
Y |
N |
NR |
NR |
Disutility associated with false-positive diagnosis was based on cost-effectiveness study of patients undergoing evaluation for coronary artery disease (overestimation of cost-effectiveness) |
Nahon, 2022 |
Y |
|
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
Y |
|
Tan, 2021 |
N |
|
Y |
Y |
Y |
Y |
Y |
Y |
Y |
NR |
N |
NR |
Y |
Y |
Y |
N |
Y |
Y |
NR |
NR |
Death as outcome is taken into account as all-cause death |
Item |
|
1. |
Is the study population clearly described? |
2. |
Are competing alternatives clearly described? |
3. |
Is a well-defined research question posed in answerable form? |
4. |
Is the economic study design appropriate to the stated objective? |
5. |
Are the structural assumptions and the validation methods of the model properly reported? (only if model based) |
6. |
Is the chosen time horizon appropriate to include relevant costs and consequences? |
7. |
Is the actual perspective chosen appropriate? |
8. |
Are all important and relevant costs for each alternative identified? |
9. |
Are all costs measured appropriately in physical units? |
10. |
Are costs valued appropriately? |
11. |
Are all important and relevant outcomes for each alternative identified? |
12. |
Are all outcomes measured appropriately? |
13. |
Are outcomes valued appropriately? |
14. |
Is an incremental analysis of costs and outcomes of alternatives performed? |
15. |
Are all future costs and outcomes discounted appropriately? |
16. |
Are all important variables, whose values are uncertain, appropriately subjected to sensitivity analysis? |
17. |
Do the conclusions follow from the data reported? |
18. |
Does the study discuss the generalizability of the results to other settings and patient/ client groups? |
19. |
Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)? |
20. |
Are ethical and distributional issues discussed appropriately? |
Table of excluded studies
Reference |
Reason for exclusion |
Ahmed, N.N.A., El Gaafary, S.M., Elia, R.Z. et al. Role of abbreviated MRI protocol for screening of HCC in HCV related cirrhotic patients prior to direct-acting antiviral treatment. Egypt J Radiol Nucl Med 51, 102 (2020). https://doi.org/10.1186/s43055-020-00199-x
|
Wrong setting: No surveillance setting |
Chen VL, Singal AG, Tapper EB, Parikh ND. Hepatocellular carcinoma surveillance, early detection and survival in a privately insured US cohort. Liver Int. 2020 Apr;40(4):947-955. doi: 10.1111/liv.14379. Epub 2020 Jan 26. PMID: 31943689; PMCID: PMC8047296.
|
Indirect evidence: No direct comparison between index test and comparator test |
Chou R, Cuevas C, Fu R, Devine B, Wasson N, Ginsburg A, Zakher B, Pappas M, Graham E, Sullivan SD. Imaging Techniques for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Ann Intern Med. 2015 May 19;162(10):697-711. doi: 10.7326/M14-2509. Erratum in: Ann Intern Med. 2015 Jun 16;162(12):880. PMID: 25984845.
|
Wrong setting: No surveillance setting |
Colli A, Nadarevic T, Miletic D, Giljaca V, Fraquelli M, Štimac D, Casazza G. Abdominal ultrasound and alpha-foetoprotein for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease. Cochrane Database Syst Rev. 2021 Apr 15;4(4):CD013346. doi: 10.1002/14651858.CD013346.pub2. PMID: 33855699; PMCID: PMC8078581.
|
Indirect evidence: No direct comparison between index test and comparator test |
Demirtas CO, Gunduz F, Tuney D, Baltacioglu F, Kani HT, Bugdayci O, Alahdab YO, Ozdogan OC. Annual contrast-enhanced magnetic resonance imaging is highly effective in the surveillance of hepatocellular carcinoma among cirrhotic patients. Eur J Gastroenterol Hepatol. 2020 Apr;32(4):517-523. doi: 10.1097/MEG.0000000000001528. PMID: 31524775.
|
Indirect evidence: No direct comparison between index test and comparator test |
Gupta P, Soundararajan R, Patel A, Kumar-M P, Sharma V, Kalra N. Abbreviated MRI for hepatocellular carcinoma screening: A systematic review and meta-analysis. J Hepatol. 2021 Jul;75(1):108-119. doi: 10.1016/j.jhep.2021.01.041. Epub 2021 Feb 3. PMID: 33548385.
|
Indirect evidence: No direct comparison between index test and comparator test |
Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, Waljee AK, Singal AG. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology. 2018 May;154(6):1706-1718.e1. doi: 10.1053/j.gastro.2018.01.064. Epub 2018 Feb 6. PMID: 29425931; PMCID: PMC5927818.
|
Indirect evidence: No direct comparison between index test and comparator test |
Vietti Violi N, Lewis S, Liao J, Hulkower M, Hernandez-Meza G, Smith K, Babb JS, Chin X, Song J, Said D, Kihira S, Sirlin CB, Reeder SB, Bashir MR, Fowler KJ, Ferket BS, Sigel K, Taouli B. Gadoxetate-enhanced abbreviated MRI is highly accurate for hepatocellular carcinoma screening. Eur Radiol. 2020 Nov;30(11):6003-6013. doi: 10.1007/s00330-020-07014-1. Epub 2020 Jun 25. PMID: 32588209.
|
Indirect evidence: No direct comparison between index test and comparator test |
Yu NC, Chaudhari V, Raman SS, Lassman C, Tong MJ, Busuttil RW, Lu DS. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clin Gastroenterol Hepatol. 2011 Feb;9(2):161-7. doi: 10.1016/j.cgh.2010.09.017. Epub 2010 Oct 1. PMID: 20920597.
|
Wrong population: Population of pretransplant patiënts |
Taylor EJ, Jones RL, Guthrie JA, Rowe IA. Modeling the benefits and harms of surveillance for hepatocellular carcinoma: Information to support informed choices. Hepatology. 2017 Nov;66(5):1546-1555. doi: 10.1002/hep.29315. Epub 2017 Oct 11. PMID: 28605060.
|
Indirect evidence: No direct comparison between index test and comparator test |
Verantwoording
Autorisatiedatum en geldigheid
Laatst beoordeeld : 01-01-2024
Laatst geautoriseerd : 01-01-2024
Geplande herbeoordeling : 01-01-2029
Algemene gegevens
De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut) en werd gefinancierd uit de Stichting Kwaliteitsgelden Medisch Specialisten (SKMS).
De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.
Samenstelling werkgroep
Voor het ontwikkelen van de richtlijnmodule is in 2021 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de zorg voor patiënten met hepatocellulaircarcinoom.
Werkgroep
- Prof. dr. R.A de Man, MDL-arts, Erasmus MC, Rotterdam, NVMDL (voorzitter)
- Dr. K.J. van Erpecum, MDL-arts, UMC Utrecht, Utrecht, NVMDL
- Dr. E.T.T.L. Tjwa, MDL-arts, Radboud UMC, Nijmegen, NVMDL
- Dr. R.B. Takkenberg, MDL-arts, Amsterdam UMC, Amsterdam, NVMDL
- Dr. F.G.I. van Vilsteren, MDL-arts, UMCG, Groningen, NVMDL
- Dr. D. Sprengers, MDL-arts, Erasmus MC, Rotterdam, NVMDL
- Dr. M.J. Coenraad, MDL-arts, LUMC, Leiden, NVMDL
- Prof. dr. B. van Hoek, MDL-arts, LUMC, Leiden, NVMDL
- Dr. N. Haj Mohammad, Internist-oncoloog, UMC Utrecht, Utrecht, NIV
- Dr. J. de Vos-Geelen, Internist-oncoloog, MUMC, Maastricht, NIV
- Drs. J.A. Willemse, Directeur Nederlandse Leverpatiënten Vereniging
- Prof. dr. M.G.E. Lam, Nucleair geneeskundige, UMC Utrecht, Utrecht, NVNG
- Prof. dr. J. Verheij, Patholoog, Amsterdam UMC, Amsterdam, NVvP
- Dr. M. (Michail) Doukas, Patholoog, Erasmus MC, Rotterdam, NVvP
- Dr. A.M. Mendez Romero, Radiotherapeut, Erasmus MC, Rotterdam, NVvR
- Dr. A.E. Braat, Chirurg, LUMC, Leiden, NVvH
- Dr. M.W. Nijkamp, Chirurg, UMCG, Groningen, NVvH
- Prof. Dr. J.N.M. Ijzermans, Chirurg, ErasmusMC, Rotterdam, NVvH
- Drs. J.I. Erdmann, Chirurg, Amsterdam UMC, Amsterdam, NVvH
- Dr. M.C. Burgmans, Radioloog, LUMC, Leiden, NVvR
- Drs. F.E.J.A. Willemssen, Radioloog, ErasmusMC, Rotterdam, NVvR
- Prof. Dr. O.M. (Otto) van Delden, Radioloog, AmsterdamUMC, Amsterdam, NVvR
- J.I. Franken, Verpleegkundig specialist, ErasmusMC, Rotterdam, V&VN
Met ondersteuning van
- Dr. C. Gaasterland, Adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- Dr. D. Nieboer, Adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- Dr. N. Zielonke, Adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- Drs. M. Oerbekke, Adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- Drs. M. te Lintel Hekkert, Junior adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- Drs. S van Duijn, Junior adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- Drs. A. van Hoeven, Junior adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- D.P. Gutierrez, projectsecretaresse, Kennisinstituut van de Federatie Medisch Specialisten
Belangenverklaringen
De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.
Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.
Achternaam werkgroeplid |
Hoofdfunctie |
Nevenwerkzaamheden |
Persoonlijke financiële belangen |
Persoonlijke relaties |
Extern gefinancierd onderzoek |
Intellectuele belangen en reputatie |
Overige belangen |
De Man (vz.) |
Hoogleraar Hepatologie, Erasmus MC Rotterdam |
Geen |
Geen |
Geen |
Geen |
Geen |
Geen |
Haj Mohammad |
Internist-oncoloog, Universitair Medisch Centrum Utrecht |
Penningmeester Dutch Upper GI Cancer (DUCG), onbetaald |
Geen |
Geen |
Geen |
Lid wetenschappelijke raad Dutch Hepato and Cholangio Carcinoma Group(DHCG) |
Geen |
Burgmans |
Sectiehoofd interventie radiologie LUMC |
Voorzitter Nederlandse Vereniging Interventieradiologie |
Geen |
Geen |
PROMETHEUS studie, subsidie KWF, project leider |
Geen |
Geen |
Lam |
Nucleair geneeskundige, UMC Utrecht |
Geen |
Geen |
Geen |
Terumo, Quirem Medical en Boston scientific leveren financiële steun aan wetenschappelijke projecten |
Geen |
Het UMC Utrecht ontvangt royalties en milestone payments van Terumo/Quirem Medical |
Franken |
Verpleegkundig Specialist Levertumoren |
Geen |
Geen |
Geen |
Geen |
Geen |
Geen |
Verheij |
Hoogleraar hepatopancreatobiliaire Pathologie aan de Universiteit van Amsterdam |
lid medische adviesraad NLV (onbezoldigd) |
Geen |
Geen |
Geen |
Geen |
Geen |
Sprengers |
MDL-arts Erasmus MC |
Geen |
Geen |
Geen |
Ik doe translationeel onderzoek met als doel behandeling van patiënten met een HCC te verbeteren. Daarbij wordt soms samengewerkt met famaceutische partijen die producten ontwikkelen die hieraan bij kunnen dragen. Te allen tijde betreft dit objectief wetenschappelijk onderzoek zonder winstoogmerk. |
Geen |
Geen |
Van Vilsteren |
MDL-arts UMCG 0,9 fte |
Geen |
Geen |
Geen |
Geen |
Geen |
Geen |
Takkenberg |
Maag- Darm Leverarts met specifiek aandachtsgebied leverziekten. Sinds 1-4-2015 in deinst van het Amsterdam UMC, locatie AMC. |
Geen |
Betaald adviesschap: |
Geen |
Ik ben PI van de PEARL studie. Dit is een dubbelblind gerandomiseerde studie bij patiënten die een transjugulaire intrahepatische portosysthemische shunt (TIPS) krijgen. Patiënten worden gerandomiseerd tussen profylactisch lactulose en rifaximin versus lactulose en placebo. Doel is het voorkomen van post-TIPS hepatische encafalopathie (EudraCT-nummer 2018-004323-37). Deze studie wordt gefinancierd door ZonMW en ondersteund door Norgine. Zij leveren de rifaximin en placebo tabletten. |
Secretaris Dutch Hepatocellular and cholangiocarcinoma Group (DHCG) |
Geen |
Van Erpecum |
MDL-arts UMC Utrecht |
Associate Editor European Journal of Internal Medicine (onbetaald) |
Geen |
Geen |
Geen |
Geen |
Geen |
Willemssen |
Abdominaal Radioloog |
Bestuurslid abdominale sectie NVvR (onbetaald) |
Geen |
Geen |
Geen |
Geen |
Geen |
Méndez Romero |
Staflid afdeling radiotherapie in het Erasmus MC |
Als staflid in ee adademisch ziekenhuis ben ik in loondienst van het ErasmusMC |
Geen |
Geen |
Geen |
Geen |
Geen |
Tjwa |
MDL arts / hepatoloog |
Geen |
Geen |
Geen |
Geen |
Geen |
Geen |
Braat |
chirurg |
Geen |
Geen |
Geen |
Geen |
Geen |
Geen |
Nijkamp |
Chirurg Universitair Medisch Centrum Groningen |
Geen |
Geen |
Geen |
Geen |
Geen |
Geen |
Willemse |
Directeur Nederlandse Leverpatiënten Vereniging |
* Bestuurslid Liver Patients International (onbetaald) |
Geen |
Geen |
Geen |
Geen |
Geen |
IJzermans |
Hoofd HPB & Transplantatiechirurgie Erasmus MC |
- |
Niet van toepassing |
Nee |
Niet van toepassing |
Niet van toepassing |
Nee |
Vos, de - Geelen |
* Internist - Medisch Oncoloog Maastricht UMC+ |
Has served as a constultant for Amgen, AstraZeneca, MSD, Pierre Fabre and Servier and has received institutional research funding from Servier |
Has served as a constultant for Amgen, AstraZeneca, MSD, Pierre Fabre and Servier and has received institutional research funding from Servier. Geen directe financiële belangen in een farmaceutisch bedrijf |
Geen |
* Servier: Microbioomonderzoek - Projectleider |
Geen |
Geen |
Hoek, van |
* Hoogleraar Hepatologie, Universiteit Leiden |
* Norgine Pharma - patient voorlichtingsmateriaal maken, onder andere podcast - betaald |
Geen |
Nee |
* Roche - Piranga Studie (hepatitis B) - Projectleider |
Geen |
Nee |
Delden, van |
Radioloog, Amsterdam UMC |
Voorzitter DHCG |
Geen |
Geen |
Geen |
Geen |
Geen |
Doukas |
Universitair Medisch Specialist, Patholoog, Afdeling Pathologie Erasmus MC, Rotterdam |
Geen |
Niet van toepassing |
Niet van toepassing |
Niet van toepassing |
Niet van toepassing |
Niet van toepassing |
Coenraad |
Associate professor, MDL arts Leids Universitair Medisch Centrum (1.0 fte) |
Nevenfuncties: |
Niet van toepassing |
Niet van toepassing |
* Horizon2020 - EU Project id 945096. Title ‘Novel treatment of acute-on-chronic liver failure using synergistic action of G-CSF and TAK-242 - Geen projectleider |
Niet van toepassing |
Niet van toepassing |
Erdmann |
Chirurg AUMC |
geen |
geen |
geen |
AGEM - perfusie onderzoek (50K), rol als projectleider |
geen |
geen |
Inbreng patiëntenperspectief
Er werd aandacht besteed aan het patiëntenperspectief door deelname van de afgevaardigde patiëntenvereniging Nederlandse Leverpatiëntenvereniging in de werkgroep. De afgevaardigde heeft meebeslist bij het opstellen van de uitgangsvragen, de keuze voor de uitkomstmaten en bij het opstellen van de overwegingen. De conceptrichtlijn is tevens voor commentaar voorgelegd aan de Nederlandse Leverpatiëntenvereniging en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.
Wkkgz & Kwalitatieve raming van mogelijke substantiële financiële gevolgen
Kwalitatieve raming van mogelijke financiële gevolgen in het kader van de Wkkgz
Bij de richtlijn is conform de Wet kwaliteit, klachten en geschillen zorg (Wkkgz) een kwalitatieve raming uitgevoerd of de aanbevelingen mogelijk leiden tot substantiële financiële gevolgen. Bij het uitvoeren van deze beoordeling zijn richtlijnmodules op verschillende domeinen getoetst (zie het stroomschema op de Richtlijnendatabase).
Uit de kwalitatieve raming blijkt dat er geen substantiële financiële gevolgen zijn voor deze richtlijn, gezien het aantal patiënten kleiner is dan 5000.
Werkwijze
AGREE
Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).
Knelpuntenanalyse en uitgangsvragen
Tijdens de voorbereidende fase inventariseerde de werkgroep de knelpunten in de zorg voor patiënten met Hepatocellulaircarcinoom. De werkgroep beoordeelde de aanbeveling(en) uit de eerdere richtlijn Hepatocellulaircarcinoom op noodzaak tot revisie. Tevens zijn er knelpunten aangedragen door de deelnemende WV-en, de V&VN en de Nederlandse Leverpatiëntenvereniging.
Op basis van de uitkomsten van de knelpuntenanalyse zijn door de werkgroep concept-uitgangsvragen opgesteld en definitief vastgesteld.
Uitkomstmaten
Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.
Methode literatuursamenvatting
Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. Indien mogelijk werd de data uit verschillende studies gepoold in een random-effects model. Review Manager 5.4 werd gebruikt voor de statistische analyses. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.
Beoordelen van de kracht van het wetenschappelijke bewijs
De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).
GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).
GRADE |
Definitie |
Hoog |
|
Redelijk |
|
Laag |
|
Zeer laag |
|
Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).
Overwegingen (van bewijs naar aanbeveling)
Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello, 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek.
Formuleren van aanbevelingen
De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.
In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE-gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.
Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers |
||
|
Sterke aanbeveling |
Zwakke (conditionele) aanbeveling |
Voor patiënten |
De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet. |
Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet. |
Voor behandelaars |
De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen. |
Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren. |
Voor beleidsmakers |
De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid. |
Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen. |
Organisatie van zorg
In de knelpuntenanalyse en bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module Organisatie van zorg.
Commentaar- en autorisatiefase
De conceptrichtlijnmodule werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.
Literatuur
Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.
Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.
Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.
Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.
Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.
Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html
Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.
Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.
Zoekverantwoording
Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.