Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
••	Journal of Endourology Journal of Endourology Journal information Peer-reviewed journal exclusively focused on minimally invasive and robotic urology, applications, and clinical outcomes. <u>Critical review:</u> Peer reviewed article. Not in specific LCA journal.	· ·		Data collectionMinimally invasive surgeries' CO2 footprint is based on used CO2 for insufflation (transport, capture, compression, packaging and use) and disposal of surgical instruments (laparoscopic trocars). All other emissions were considered equivalent to open surgery.For transportation the Memorial Sloan-Kettering Cancer was used as index case. Number of miles for CO2 cylinders were calculated. Carbon footprint calculator based on U.S. Department of Transportation (US DOT) fuel efficiency data and Greenhouse Gas Protocol initiative (GHGPI) mobile guides were used to estimate the carbon emissions.	 Outcomes 1. Climate Change CO₂ emission used for insufflation: 303 tonnes CO₂ CO₂ emission from CO₂ capture/compression: 351,400 tonnes CO₂. Wherein 251,000 can be attributed to industrial gas manufacturing, 83,700 to power generation and supply and 16,700 to gas extraction. CO₂ emission used for transportation: 2970 tonnes CO₂ CO₂ emission from incineration of disposable instruments (laparoscopic trocars and robotic instruments): 1251 Tonnes CO₂ Total CO₂ emissions from minimally invasive surgery were estimated at 355,924 tonnes/year more in 	Interpretation This LCA of MIS in the US, shows that the biggest contributor in CO ₂ emissions is the capture/compression of CO ₂ for insufflation. The industrial gas manufacturing in this part contributes most. Followed by the actual use of the CO ₂ for insufflation, the transportation of the gas and the incineration of the disposable instruments.	Comments Authors conclusion The CO2 emissions of MIS in the US, when considering both direct and indirect factors, have a significant environmental impact. This should be considered to reduce healthcare's CO2 footprint while maximizing healthcare quality. Limitations study Not all disposable instruments were included in the analysis and emissions related to e.g. the manufacturing process, transportation and energy use of the disposable instruments were not taken into account. Emissions related to the preoperative and postoperative stay were not included. This can vary between the different
			transport, energy use,	estimate the carbon	were estimated at 355,924		not included. This can vary
		Facility: Memorial Sloan-Kettering Cancer Center, New York City, NY, USA	considered equivalent to open surgery/laparotomy) Inventory database: -	calculated using the Input- Output Life cycle assessment (EIO-LCA) model (i.e. based on economic activity of the	2. Waste A total of 208,441 kg of plastic biomedical waste from disposable trocar and laparoscopic instrument use		have an effect on the eventual CO ₂ footprint Next to that, electricity use was considered equivalent, however it is
		Years of data collection: 2009 Surgical discipline(s): Gastroenterology, Obstetrics & Gynecology,	Allocation: No <u>Normalization &</u> Weighting:	largest medical CO ₂ supplier). To calculate the annual use of CO ₂ for MIS the number of procedures were identified in national	for MIS per year. This consisted of 186,000 kg of plastic from laparoscopic trocars (6,200,000 trocars) and 22,441 kg of plastic from		expected to differ between the operating techniques. In particular MIS versus open surgery. MIS uses electricity driven instruments and cameras
		Urology & Nephrology	No	databases. Average operative times were	robotic instruments. <u>3. Acidification</u>		instruments and cameras and thereby the robot

Appendix 1. Evidence table for LCA studies bij module Operatietechnieken

Appendix 1. Evidence table for LCA studies bij module Operatietechnieken van de Leidraad Duurzaamheid Deel B: Vijf inhoudelijke duurzaamheidsmodules November 2023

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
		Funding and conflict of interest: Supported by The Sidney Kimmel Center for Prostate and Urologic Cancers and by Award Number U54CA137788/U54CA132 378 from the National Cancer Institute. No competing financial interests exist.	Impacts reported: Yes Contribution analysis: Yes Scenario analysis: No Comparative analysis: No Sensitivity analysis: No Uncertainty analysis: No Variance analysis: No	estimated based on institutional data. Number of cylinders and CO ₂ emissions were calculated from this data. Data for the number of disposable instruments, specifically laparoscopic trocars, were obtained from US market engineering research (2004). Weight of a laparoscopic trocar was estimated. Data for robot- assisted procedures were based on Intuitive Surgical procedure numbers, instrument catalogue unloaded weights an using a general rule of 10 uses before disposal. The carbon footprint was estimated with the assumption that incinerating 1 kg of plastic produces approximately 6 kg of CO ₂ .	No results in this study. 4. Eutrophication No results in this study. 5. Human Toxicity No results in this study. 6. Ecotoxicity No results in this study. 7. Ozone Depletion No results in this study.		uses robotic arms which require electricity.
Woods (2015)	International Journal of Medical Robotics and Computer Assisted Surgery <u>Journal information</u> International Journal of Medical Robotics and Computer Assisted Surgery is a cross- disciplinary journal presenting the latest developments in robotics and computer assisted	Type of study: LCA Objective: To assess the climate impact three surgical modalities for endometrial cancer staging: laparotomy, laparoscopy, robotic-assisted laparoscopy LCA-method: Attributional LCA (PAS 2050, GHG Protocol)	Goal and scope ¹ : Quantitate the CO ₂ footprint of robotically- assisted laparoscopy (RA- LSC), laparoscopy (LSC) and laparotomy (LAP) <u>Functional unit(s)²:</u> One endometrial staging procedure <u>System boundaries:</u> Operating theatre door to door (intraoperative period, inferred from text)	150 staging procedures (50 per arm) for endometrial cancer for the three surgical modalities were reviewed. Collected information: patient age, body mass index (BMI), procedure type, operative time, history of prior abdominal surgery, length of stay, uterine weight and instruments used. Waste production and energy expenditure were determined for each	<u>1. Climate change</u> The CO ₂ footprint for all 150 endometrial staging procedures, including solid waste and energy consumed, was corresponding with 4498 CO ₂ e, averaging 30 kg CO ₂ e/patient. A robotically-assisted laparoscopy (RA-LSC) procedure resulted in a CO ₂ footprint of 40.3 kg CO ₂ e/patient, based on energy use and waste. The CO ₂ emission from this energy	Comparing the three surgical modalities, the RA-LSC turns out to have the biggest CO ₂ footprint. Emissions from both energy use and waste are greatest in the RA-LSC group. The energy use of all groups seem comparable, but because of the use of the Da Vinci robot, the RA-LSC energy consumption turns out highest. The energy use	Authors conclusion An increased environmental impact of RA-LSC and LSC over LAP is identified. The future healthcare sustainability research should include development of strategies to mitigate the environmental effects of healthcare while improving safety, quality and cost-effectiveness. Limitations

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	technologies for medical			surgical modality and	use was 26 kg CO ₂ , calculated	for equipment is highest in	Emissions for transport,
	applications.	Setting and country:	Included stages:	included in the analysis.	by energy use (kWh) and	the LSC group.	manufacturing and
		Hospital in the US	Energy, waste/disposal	Solid waste was	operative time (min).		disposal of instruments
	Critical review:			determined by weighing	A laparoscopy (LSC)	The biggest contributors in	and goods and emissions
	Peer reviewed article. Not	Facility:	Stated excluded	items used within	procedure emitted 29.2 kg	waste in the RA-LSC group	based on preoperative an
	in specific LCA journal.	Albert Einstein College of	components:	procedures (drapes,	CO ₂ e/patient. The CO ₂	are consumables and	postoperative stay (length
		Medicine, New York City,	Production, transport,	gowns, gloves,	emission from this energy use	infection control waste, in	of stay) were not taken
		NY, USA	pharmaceuticals, reuse	consumables, sterile wrap,	was 18 kg CO ₂ .	the LSC group	into account.
		,	, · · · · · · · · · · · · · · · · · · ·	single-use devices) and	A laparotomy (LAP) resulted	consumables and single-	
		Years of data collection:	Inventory database:	multiplying weights by use	in the emission of 22.7 kg	use devices and in the LAP	
		2008-2011	-	data taken from OR	$CO_2e/patient.$ The CO_2	group consumables.	
		2000 2011		records. Energy	emission from this energy use	Broup consumations.	
		Surgical discipline(s):	Allocation:	consumption was	was 14.4 kg CO ₂ .	Energy use adds more to	
		Obstetrics & gynecology;	No	determined by using	Wu3 14.4 kg CO2.	the CO ₂ footprint than	
		Oncology	110	operative time records	2. Waste	waste.	
		Olicology	Normalization &	and multiplying duration	The RA-LSC group produced a	waste.	
		Funding and conflict of	Weighting:	of the procedure per unit	total amount of 14.3 kg (14.3		
		interest:	No	time of four categories:	kg CO ₂ e/patient) of solid		
		The authors declare no		environmental (HVAC,	waste, which existed of 6.90		
		potential conflicts of	Impacts reported:	lighting), equipment,	kg consumable waste (6.90 kg		
		interest.	Yes	instruments, robotic	CO ₂ e/patient), 2.47 kg single-		
				system.	use device waste (2.47 kg		
			Contribution analysis:		CO ₂ e/patient), 4.03 kg		
			Yes	Assessment methodology	infection control waste (4.03		
				was adapted from the	kg CO₂e/patient) and 0.88 kg		
			Scenario analysis:	British Standards Institute	waste from sterile wraps		
			No	Publicly Available	(0.88 kg CO₂e/patient).		
				Specification 2050 (BSI PAS	The LSC group produced 11.2		
			Comparative analysis:	2050) and the Greenhouse	kg (11.2 kg CO₂e/patient) of		
			Yes	Gas Protocol. Data on	solid waste, which existed of		
				energy and waste were	6.03 kg consumable waste		
			Sensitivity analysis:	obtained from the	(6.03 kg CO ₂ e/patient), 3.35		
			No	National Energy	kg single-use device waste		
				Foundation (NEF), the US	(3.35 kg CO₂e/patient), 1.60		
			Uncertainty analysis:	Energy Information	kg infection control waste		
			No	Administration and	(1.60 kg CO₂e/patient) and		
				previous studies.	0.99 kg waste from sterile		
			Variance analysis:		wraps (0.99 kg CO₂e/patient).		
			Yes (ANOVA)		The LAP group produced 8.3		
					kg (8.3 kg CO₂e/patient) of		
			Characteristics of study		solid waste, which existed of		
			population by surgical		5.86 kg consumable waste		
			modality		$(5.86 \text{ kg CO}_2\text{e}/\text{patient}), 0.82$		

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					kg single-use device waste		
			RA-LSC		(0.82 kg CO ₂ e/patient), 1.60		
			Age (years): 63.0		kg infection control waste		
			BMI (kg/m ²): 36.2		(1.60 kg CO ₂ e/patient) and		
			Prior abdominal surgery		0.44 kg waste from sterile		
			(%): 56		wraps (0.44 kg CO ₂ e/patient).		
			Uterine weight (g) 205.1				
					The solid waste production of		
			LSC		RA-LSC represented a 74%		
			Age (years): 60.3		increase over LAP and a 36%		
			BMI (kg/m ²): 31.5		increase over LSC.		
			Prior abdominal surgery		increase over LSC.		
			(%): 52		3. Acidification		
			Uterine weight (g) 166.31		No results in this study.		
			LAP		4. Eutrophication		
			Age (years): 62.7		No results in this study.		
			BMI (kg/m ²): 35.5				
			Prior abdominal surgery		5. Human Toxicity		
			(%): 60		No results in this study.		
			Uterine weight (g) 495.47				
					6. Ecotoxicity		
					No results in this study.		
					No results in this study.		
					7. Ozone Depletion		
					No results in this study.		
Thiel (2015)	Environmental Science &	Type of study:	Goal and scope ¹ :	This research used a	1. Climate change	This life cycle assessment	Authors conclusion
Thiel (2015)		LCA	Quantitate the	hybrid LCA framework, by		shows the biggest	The trend is towards MIS
	Technology	LCA		, , ,	This study reported a	00	
			environmental emissions	incorporating process LCA	difference in greenhouse gas	environmental impact is	that drives up the amount
	Journal information	<u>Objective:</u>	of a vaginal, an abdominal,	data and Economic Input	(GHG) emissions between the	attributable to the robotic	of pollution generated
	ES&T is an impactful	To assess the	a laparoscopic, and a	Output LCA (EIO-LCA)	four approaches for a	and laparoscopic surgical	within the OR.
	environmental science and	environmental impacts of	robotic hysterectomy.	data. Monte Carlo	hysterectomy. Robotic	approaches for a	
	technology research	four different surgical	-	simulations were used to	hysterectomies have the	hysterectomy. Within	Limitations
	journal that aims to be	approaches to	<u>Functional unit(s)²:</u>	quantify the variability and	highest impact (100%) in	these modalities, the use	The environmental impact
	transformational and	hysterectomy: vaginal,	One hysterectomy	uncertainty in emissions	greenhouse gas emissions,	of single-use instruments,	of postoperative stay was
	direction-setting,	abdominal, laparoscopic,		for each component of a	followed by the laparoscopic	single-use materials	not taken into account.
	publishing rigorous and	and robotic	System boundaries:	hysterectomy.	(65-70%), abdominal (35-	(gowns, gloves, etc.) and	
	robust papers for a		Operating theatre door to	Waste audits were	40%) and vaginal approach	anesthetic gases are the	
	multidisciplinary and	LCA-method:	door (intraoperative	conducted from the	(30-35%). The laparoscopic	biggest contributors.	
	diverse audience of	Hybrid LCA (ISO 14040-44)	period)	surgeries of patients that	approach resulted in 30-35%		
	scientists, policy makers			underwent an abdominal,	less contribution to GHG		
	and the broad	Setting and country:	Included stages:	a laparoscopic or a robotic	emissions than a robotic		
		Hospital in the US		hysterectomy for	approach, abdominal and		

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
	environmental		Production, transport,	noncancer related	vaginal approaches in		
	community.	Facility:	energy use,	reasons. For the course of	between 60-70% less		
		Magee-Womens Hospital	pharmaceuticals, reuse,	1 year, waste from 62	contribution in comparison to		
	Critical review:	of the University of	disposal/waste	cases of each type of	the robotic approach.		
	Peer reviewed article.	Pittsburgh Medical Center,		hysterectomy were			
		Pittsburgh, PA, USA	Stated excluded	quantified and	Biggest contributors were:		
			components:	characterized (15	the use of anaesthetic gases		
		Years of data collection:	Infrastructure including	abdominal, vaginal and	(in all surgical modalities) and		
		2011	machines and building;	robotic, 17 laparoscopic).	single-use surgical		
			chemical manufacturing	Materials were matched	instruments (for laparoscopic		
		Surgical discipline(s):	and cleaning products; hot	with the most relevant	and robotic approach).		
		Obstetrics & gynecology	water	unit process within either			
				USLCI and EcoInvent. For	2. Waste		
		Funding and conflict of	Inventory database:	complex items of medical	The robotic approach for a		
		interest:	USLCI, Ecolnvent	equipment an economic	hysterectomy produced the		
		Financial support for the		input-output approach	highest amount of waste,		
		data collection came from	Allocation:	was taken (i.e. based on	following the laparoscopic,		
		Grant Number ULI	Impacts of reusable	the price paid for each	abdominal and vaginal		
		RR024153 from the	materials and equipment	item). Patient records	approaches. Robotic		
		National Center for	were apportioned based	were used to calculate	hysterectomies produced		
		Research Resources	on estimated	both pathogenic waste	13.7 kg municipal solid waste		
		(NCRR), a component of	lifespan/number of uses.	(uterine weight) and	(MSW) per case, which		
		the National Institutes of		quantities of anesthesia	resulted in a total of 30%		
		Health (NIH), and NIH	Normalization &	and abdominal	more waste compared to the		
		Roadmap for Medical	Weighting:	insufflation.	average of the other		
		Research. Support for	No	Transportation impacts	approaches. This consisted of		
		graduate researchers		were calculated based on	22% by weight by gowns,		
		came from Award No.	Impacts reported:	distances between	drapes and bluewrap (SMS		
		050434 from the National	Yes (graphically)	facilities, according to	PP), 50% gloves and other		
		Science Foundation (NSF)		waste hauling data from	plastics, 18% paper and 5%		
		Integrative Education and	Contribution analysis:	the relevant facility.	cotton. Abdominal		
		Research Traineeship	Yes	Impacts of resuable	hysterectomies had an		
		(IGERT).		materials and equipment	average of 9.2 kg of MSW		
			Scenario analysis:	were based on estimated	production and produced the		
		The authors declare no	No	lifespan/number of uses.	largest amount of cotton		
		competing financial		Data on the sterilization	waste (blue towels,		
		interest.	Comparative analysis:	process for reusable	laparotomy pads) at 1 kg per		
			Yes	materials and linens was	average surgery (11% of the		
				sourced from the	MSW by weight). Across all		
			Sensitivity analysis:	literature.	four surgeries, SMS PP		
			No		material were the majority of		
				Characterization methods:	the MSW by weight, from		
			Uncertainty analysis:		22% of the weight of a robotic		

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
			Yes (Monte Carlo) Variance analysis: No	Impacts were calculated using TRACI 2.1 for both process LCA and EIO-LCA. Embodied energy was calculated using cumulative energy demand (CED) version 1.08 developed by EcoInvent version 2.0 and PRé Consultants for process LCA and the energy analysis function found on the EIO-LCA tool.	Automaticalhysterectomy and 35% for alaparoscopic hysterectomy.Other types of plastics, fromthin film packaging wrappersto hard plastic trays, made upa minimum of 36% of thetotal MSW weight for vaginalhysterectomies and amaximum of 46% for robotichysterectomies.3. AcidificationThe robotic approach had thehighest impact onacidification (100%), followedby the laparoscopic (70-75%),abdominal (25%) and lastlythe vaginal approach (20%).The big difference betweenthe robotic and laparoscopicapproach in comparison tothe vaginal and abdominalapproach can be attributed tothe use of single-use surgicalinstruments.4. EutrophicationThe robotic approach had thehighest impact oneutrophication (100%),followed by the laparoscopic(70-75%), abdominal (60-65%) and lastly the vaginalapproach (55%).MSW, single-use surgicalinstruments and single-usematerials are the biggestcontributors.5. Human Toxicity		

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					The impact was divided into		
					two subcategories:		
					carcinogenic and non-		
					carcinogenic potential. The		
					robotic approach had the		
					highest impact in both		
					Nocarcinogenic and non-		
					carcinogenic potential		
					categories (100%). The		
					carcinogenic and non-		
					carcinogenic impact of the		
					laparoscopic approach		
					resulted in respectively 80%		
					and 85-90%. For the		
					abdominal approach 90-100%		
					and 80-90% and for the		
					vaginal approach 80% and 70-		
					75%.		
					Single-use materials		
					contributed most in all		
					surgical modalities.		
					<u>6. Ecotoxicity</u>		
					The robotic approach had the		
					highest impact on ecotoxicity		
					(100%), followed by the		
					laparoscopic (90-95%),		
					abdominal (90%) and lastly		
					the vaginal approach (75%).		
					Single-use materials		
					contributed most in all		
					surgical modalities.		
					salora mountes.		
					7. Ozone Depletion		
					The robotic approach had the		
					highest impact on ozone		
					depletion (100%), followed by		
					the laparoscopic (60-65%),		
					abdominal and the vaginal		
					approach (0-5%).		
1							

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					The use of single-use surgical		
					instruments contributed		
					most.		

¹Goals and scope: 'Phase of life cycle assessment in which the aim of the study, and in relation to that, the breadth and depth of the study is established' ²Functional unit: Quantified description of the function of a product or process that serves as the reference basis for all calculations regarding impact assessment.