Aanvullende diagnostiek bij SAB op CT-hersenen en geen vasculaire verklaring op CTA
Uitgangsvraag
Is er aanvullende vasculaire diagnostiek nodig voor de categorie SAB patiënten bij wie bij initiële diagnostiek geen vasculaire verklaring is gevonden en zo ja, welk onderzoek (digitale subtractie angiografie (DSA), CT-angiografie (CTA), magnetische resonantie angiografie (MRA)) is het meest effectief? Uitzondering zijn patiënten met een perimesencephale bloeding.
Aanbeveling
Verricht na een subarachnoidale bloeding met een aneurysmatisch patroon, zonder vasculaire verklaring bij CTA en/of 3D DSA onderzoek in eerste termijn, herhalingsonderzoek in tweede termijn.
- Hierbij is er voorkeur voor 3D DSA boven CTA.
- Kies voor een 3D DSA indien er twijfel is op de CTA over het aanwezig zijn van een vaatmalformatie of als de CTA van onvoldoende kwaliteit is.
- Overweeg een CTA in plaats van 3D DSA indien er sprake is van een verhoogd katherisatie-risico door onderliggend vasculair lijden.
- Zie ook het stroomschema ‘Diagnostiek in het behandelcentrum’.
Bij een doorgemaakte CT negatieve (>6 uur na ictus), LP positieve subarachnoïdale bloeding is er indicatie tot aanvullende vasculaire diagnostiek in eerste termijn, waarbij gestart kan worden met CTA.
- Indien de CTA negatief is, voer dan een 3D DSA uit (ook in de eerste termijn).
- Zie ook het stroomschema ‘Diagnostiek in het behandelcentrum’.
Bij een doorgemaakte CT negatieve (>6 uur na ictus), LP positieve subarachnoidale bloeding is er geen indicatie tot herhalingsonderzoek (in tweede termijn) bij initieel negatieve vasculaire (bij voorkeur DSA) diagnostiek.
- Zie ook het stroomschema ‘Diagnostiek in het behandelcentrum’.
Overwegingen
Voor- en nadelen van de interventie en de kwaliteit van het bewijs
Er zijn op basis van het bloedverdelingspatroon op een CT-scan drie patiëntengroepen te onderscheiden; 1) patiënten met een SAB met een aneurysmatische bloedverdeling, 2) patiënten met een SAB met een perimesencephale bloedverdeling, en 3) patiënten met een normale CT-scan 6 uur na eerste klinische symptomen (ictus) bij wie door lumbale punctie de klinische verdenking op een SAB is bevestigd. Voor geen van de bovengenoemde situaties zijn vergelijkende studies verricht om de waarde van CTA (of MRA) als herhalingsonderzoek in tweede termijn te bepalen ten opzichte van de gouden standaard 3D DSA. Wel kan voor elk van de drie bovengenoemde patiëntengroepen aangegeven worden wat de waarde is van herhalingsonderzoek in tweede termijn, waarbij zowel CTA als DSA als onderzoekstechniek zijn gebruikt.
PICO 1
Bij patiënten met een CT bewezen SAB met een aneurysmatische bloedverdeling met bij initiële beeldvorming een negatieve CTA en/of DSA is herhalingsonderzoek in tweede termijn geïndiceerd. Bij herhalingsonderzoek wordt in de meeste studies gebruik gemaakt van het referentie onderzoek DSA om een vasculaire oorzaak van de bloeding uit te sluiten. De diagnostische waarde van CTA en MRA ten opzichte van DSA kon niet beoordeeld worden voor deze specifieke vraagstelling, vanwege het feit dat in studies alleen specifieke subgroepen zowel een CTA als een DSA herhalingsonderzoek kregen. De toegevoegde waarde van DSA kan met name gelden voor kleine en dissectie aneurysmata, maar daarnaast kunnen ook vasculaire malformaties als oorzaak van de bloeding worden gedetecteerd. De argumentatie om voor een invasief DSA onderzoek te kiezen is dat de consequenties van een gemiste diagnose voor de individuele patiënt groot kunnen zijn en dat het lage risico (Kaufman, 2007) op het ontstaan van trombo-embolische complicaties daarbij kan worden geaccepteerd. In geval van contra-indicatie of verhoogd risico bij het uitvoeren van een DSA, zoals bij patiënten met ernstig stenoserend vaatlijden of elongatie van de brachiocephale vaten, kan als alternatief gekozen worden voor een CTA of MRA. Dit verhoogde katherisatie risico kan vooral aan het licht komen tijdens de initiële vasculaire diagnostiek waarin DSA onderzoek is verricht.
De interval periode waarin een herhalingsonderzoek moet plaatsvinden varieert in de meerderheid van de studies tussen de zeven en 21 dagen. Slechts in één studie is gekeken naar de waarde van nogmaals beeldvorming na negatief herhalingsonderzoek dat 7 dagen na de initiële diagnostiek plaatsvond (Delgado-Almandoz, 2014). Daarbij werden met herhalings CTA twee vasculaire afwijkingen vastgesteld (5,1%). Hierbij moet opgemerkt worden dat de tweede termijn (herhalings-) beeldvorming plaatsvond na 7 dagen. Dit zou erop kunnen duiden dat de termijn van 7 dagen te kort is, en dat herhalingsonderzoek beter uitgesteld kan worden tot minimaal 14 dagen na de initiële diagnostiek (moment van eerste klachten-ictus). Dit is ook het moment waarop de aanwezigheid van vaatspasme geen beperkende rol meer speelt bij de diagnostische kwaliteit van het vasculaire onderzoek. Er is geen bewijs uit andere studies voor de toegevoegde waarde om vasculaire beeldvorming in derde termijn uit te voeren.
PICO 2
Er is voldoende bewijs gevonden voor het verrichten van vasculair onderzoek naar de oorzaak van de bloeding bij patiënten met een CT negatieve maar lumbaalpunctie positieve uitslag voor subarachnoïdaal bloed. Echter, ook hier geldt dat er geen goed vergelijkend onderzoek is verricht tussen CTA en het referentie onderzoek 3D DSA en dat daardoor de accuratesse van CTA in deze specifieke situatie niet betrouwbaar kan worden bepaald. Als er al sprake is van meerdere vasculaire onderzoeken dan is vaak niet duidelijk vermeld wat het tijdsinterval was tussen het CTA en DSA onderzoek in eerste termijn.
PICO 3
Voor de patiënten met een CT negatieve maar lumbaalpunctie positieve uitslag voor subarachnoïdaal bloed waarbij initieel geen neuro-vasculaire verklaring is gevonden met CTA en/of 3D DSA zijn geen studies gevonden die de diagnostische waarde van een verlate CTA en DSA hebben vergeleken. Wel zijn er zeer beperkt studies beschikbaar waarin gekeken is naar de waarde van herhalingsonderzoek op zich bij deze specifieke patiëntengroep. Bij geen van deze onderzoeken werd getalsmatige ondersteuning gevonden voor het verrichten van herhalingsonderzoek.
De ervaring van de werkgroep is dat met 3D-DSA in een SAB behandelcentrum kleine en dissectie aneurysmata gedetecteerd kunnen worden die op CTA gemist worden. Dit geldt zowel voor onderzoek in de eerste als in de tweede termijn. Gezien de uitgebreide ervaring die aanwezig is bij neuro-interventionalisten in SAB behandelcentra is het risico op procedurele thromboembolische complicaties zeer klein (Kaufman 2007) en weegt het complicatie risico niet op tegen het missen van een vasculaire afwijking.
Waarden en voorkeuren van patiënten (en eventueel hun verzorgers)
Het belangrijkste doel van initieel of herhalingsonderzoek naar de vasculaire oorzaak van een CT bewezen of LP positieve (na 6 uur ictus) SAB is het onomstotelijk aantonen dan wel uitsluiten van een vasculaire oorzaak. Voor de individuele patiënt moet een afweging worden gemaakt tussen de risico’s en de meerwaarde van de invasieve diagnostiek met 3D DSA versus het lagere risico van vasculaire diagnostiek met behulp van CTA of MRA in het licht van een iets hogere kans om een vasculaire afwijking te missen. Het klinisch neurologisch beeld speelt bij het maken van deze keuze eveneens een rol. Voor patiënten met een CT negatieve, LP positieve SAB is de opbrengst van herhalingsonderzoek in tweede termijn, na initiële negatieve vasculaire beeldvorming (CTA en/of 3D DSA in eerste termijn) dermate gering dat eigenlijk alleen in een situatie van sterke klinische verdenking op een doorgemaakte aneurysmatische SAB een vasculair herhalingsonderzoek nodig kan zijn. Een groot deel van de patiënten dat een SAB heeft doorgemaakt heeft last van overprikkeling. Deze overprikkeling kan impact hebben op de manier waarop de patiënt de aanvullende onderzoeken ervaart. Bespreek dat de patiënt aanvullende overprikkeling kan ervaren tijdens de onderzoeken en overleg hoe hiermee om te gaan tijdens de onderzoeken. Als er uiteindelijk geen vasculaire oorzaak voor de SAB wordt gevonden betekent dit niet dat verdere cognitieve en/of maatschappelijke ondersteuning niet meer noodzakelijk is. Zie verder module ‘revalidatie’.
Kosten (middelenbeslag)
De kosten van aanvullend onderzoek met behulp van 3D DSA zijn aanzienlijk hoger dan die van een CTA. De hoge accuratesse van het referentie onderzoek 3D DSA (van Rooij, 2008), geldend als de gouden standaard voor de detectie van aneurysmata en de daaraan eventueel gekoppelde gezondheidswinst lijkt deze kosten wel te rechtvaardigen. Voor patiënten met een CT negatieve en LP positieve SAB met een initieel negatief angiografisch onderzoek is er geen meerwaarde voor herhalingsonderzoek en is er onder goede klinische en neurologische omstandigheden geen indicatie tot een verlengde klinische opname.
Aanvaardbaarheid, haalbaarheid en implementatie
Er worden geen barrières verwacht ten aanzien van de implementatie aangezien alle SAB behandelcentra in Nederland de beschikking hebben over 3D-DSA en personeel in huis hebben die deze techniek goed beheersen.
Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies
Er is geen goed vergelijkend onderzoek naar de waarde van CTA versus 3D DSA bij de diagnostiek in tweede termijn (herhalingsonderzoek) bij patiënten met een aneurysmatische SAB waarbij in eerste termijn geen afwijkingen zijn gevonden. In zijn algemeenheid is 3D DSA accurater dan CTA bij het diagnosticeren van (kleine) aneurysmata. Het risico van een dergelijk onderzoek in ervaren handen is gering en weegt op tegen de risico’s van het het missen van een aneurysma met de hieraan gekoppelde veelal ernstige gevolgen van een hernieuwde bloeding. De sterkte van de aanbeveling is beperkt. Als bij een eerste 3D DSA onderzoek er veel problemen zijn met katheterisatie dan bij 2e beeldvorming overstappen naar CTA.
De kans op het vinden van een vasculaire afwijking bij patiënten met een CT negatieve, LP positieve subarachnoidale bloeding varieert sterk (0 tot 46%) maar rechtvaardigt aanvullende vasculaire diagnostiek. Vergelijkende CTA versus DSA studies ontbreken voor deze specifieke vraagstelling. Er is een voorkeur voor het invasieve referentie onderzoek DSA vanwege de hogere accuratesse voor het vinden van kleine vasculaire afwijkingen. De sterkte van deze aanbeveling is beperkt.
Onderbouwing
Achtergrond
Er spelen meerdere situaties bij de diagnostiek naar de oorzaak van een SAB in het SAB-behandelcentrum. Ten eerste is er de meest voorkomende presentatie waarbij de CT subarachnoïdaal bloed laat zien zonder voorafgaand trauma, en waarbij CTA en/of DSA een vasculaire oorzaak (meestal aneurysma) van de bloeding laat zien. Ten tweede zijn er patiënten met een SAB met een perimesencephaal verspreidingspatroon en een negatieve CTA (of evt. DSA). Deze twee situaties worden besproken in module 2.1. Daarnaast kunnen er nog twee minder frequente situaties voorkomen die in het kader van module 2.2 zijn geanalyseerd.
Situatie 1: Patiënten met een aneurysmatisch subarachnoidaal bloedingspatroon op de blanco CT scan en negatieve vasculaire bevindingen bij CTA en/of DSA onderzoek in eerste termijn (tijdens initiële presentatie). Daarbij is de vraag of het verrichten van follow-up onderzoek in tweede termijn noodzakelijk is en zo ja, met welke modaliteit dit bij voorkeur zou moeten worden verricht (CTA of MRA enerzijds of met DSA als gouden standaard) en wat het optimale tijdsinterval is waarna dit moet plaatsvinden.
Situatie 2: Patiënten die zich presenteren later dan 6 uur na de eerste klinische verschijnselen van een SAB en waarbij op de initiële CT geen subarachnoïdaal bloed te zien is maar waarbij liquoronderzoek na lumbaalpunctie (LP) een SAB aantoont. Wat is bij deze patiënten de waarde van CTA ten opzichte van het referentie onderzoek DSA tijdens de initiële diagnostiek (in eerste termijn)? Daarnaast is er de vraag of er een indicatie is tot het verrichten van follow-up onderzoek in tweede termijn en zo ja, met welke modaliteit dit bij voorkeur zou moeten worden verricht (CTA of MRA enerzijds of met DSA als gouden standaard) en wat het optimale tijdsinterval is waarna dit moet plaatsvinden.
DSA (een invasief onderzoek) inclusief 3D rotatie (hierna aangeduid als ‘3D DSA’) is de gouden standaard voor het aantonen of uitsluiten van een vaatafwijking ten grondslag liggend aan een SAB, maar dit brengt geringe risico’s met zich mee. De diagnostische opbrengst van aanvullend invasief onderzoek middels DSA (en de meerwaarde ten opzichte van non-invasief onderzoek) moet opwegen tegen de risico’s van het onderzoek. Bepalend voor de keuze van de termijn waarin herhalingsonderzoek moet plaatsvinden is de afweging tussen enerzijds te lang wachten met kans op een hernieuwde bloeding en anderzijds te snel opnieuw afbeelden met de kans op het nog niet detecteren van een vasculaire afwijking als oorzaak van de SAB.
Conclusies
PICO 1: CT-positive patients and negative CTA/DSA in first term; value of CTA versus DSA repeat vascular imaging in second term
- GRADE |
In none of the selected studies, a structured and solid comparison was performed between DSA and CTA as a diagnostic modality in the second term. Therefore, no data can be given on the diagnostic accuracy of non-invasive imaging compared to DSA for repeat vascular imaging in the second term. Only descriptive data can be given showing a yield of 3,1% for repeat imaging (CTA or DSA) to find a cause for the SAH. |
PICO 2: CT-negative patients and negative CTA in first term
- GRADE |
In none of the selected studies a structured and solid comparison was performed between CTA and DSA in CT negative LP positive SAH patients. All of the studies reported on selections of patients who underwent non-invasive imaging (CTA) and/or invasive imaging (DSA) in CT negative patients. A 22% yield to find a vascular cause of SAH is seen in patients with a CT negative-LP positive SAH. |
PICO 3: CT-negative patients and negative CTA in first term à imaging in second term
- GRADE |
None of the studies reported outcomes on delayed CTA/MRA (C) versus delayed DSA (R) in CT negative patients. Only descriptive data are given for findings of repeat imaging in unspecified subsets of patients. |
Samenvatting literatuur
Description of studies with diagnostic yield of imaging
PICO 1
Bakker (2014a) performed a retrospective analysis of SAH patients with a diffuse aneurysmal pattern of haemorrhage and a negative initial cranial CTA (N=45) and additionally performed a DSA and a repeat DSA 14 days after the initial DSA. No direct comparison was made between DSA and CTA. In addition, MRI and MR angiography (MRA) of the neuraxis were performed after 14 days. CTA was performed on a 64-multidetector CT machine and DSA was performed with standard 6-vessel angiography with intracranial views (frontal, lateral) and was completed using 3D rotational angiography. A joint multidisciplinary team of interventional neuroradiologists, vascular neurosurgeons, and vascular neurologists evaluated all imaging results. Patient characteristics were not presented.
The retrospective study of Agid (2010) evaluated whether negative findings on CTA can reliably exclude aneurysms in patients with acute SAH. Patients who presented with an acute SAH from 2005 to 2009 in Sweden and Canada and in whom the initial CTA findings were negative for intradural cerebral aneurysms were included in the study. DSA was additionally performed in 193 patients. CTA was performed using a 64-section multidetector row CT-scanner. Each CTA was interpreted by an experienced neuroradiologist before performing the DSA. DSA was performed in most patients (168/193, 87%) on the same day or within 24 hours following CTA. In the remainder of the patients (25/193, 13%) DSA was performed between 24 hours and 5 days (mean 1.25 days). Four subgroups were identified: 1) diffuse aneurysmal pattern (N=50) (CT positive), 2) positive LP (xanthochromic LP) with no blood on CT (N=32) (CT negative, LP positive); 3) peripheral sulcal pattern (with absence of basal cistern blood) (N=18); 4) perimesencephalic (N=93). Repeat DSA was additionally performed in 28 patients with diffuse aneurysmal pattern and these data were included for PICO 1.
The prospective cohort study of Delgado-Almandoz (2012) evaluated 77 patients with SAH-as documented by noncontrast CT or CSF xanthochromia and a negative initial catheter angiogram—using CTA and MRA to assess for causative cerebral aneurysms.
The prospective cohort study of Delgado-Almandoz (2013) performed in the USA assessed the yield of repeat DSA in patients with a non-tramatic SAH. Patients suspected of SAH by either CT or a LP in the period of January 1, 2005, until September 1, 2010 and with a negative initial CTA and DSA were included (N=72, mean age of 53.1 year (range 19-88 y). All patients underwent repeat 3D- DSA after 7 days.
The retrospective study of Heit (2016) performed in the USA aimed to investigate the value of DSA among patients with SAH or intraventricular hemorrhage and a negative CTA in the time period of January 2002 and December 2012. In total, 230 patients were included in the study and underwent an initial 3D DSA at the discretion of the interventional neuroradiologist within a mean of 1.5 days (median, 1 day; range, 0 to14 days).
The retrospective study of Ringelstein (2014) performed in Germany aimed to assess the diagnostic impact of 3D rotational angiography in order to avoid repeat DSA. Patients with an acute non-traumatic SAH in the period January 2004 and December 2012 and a negative initial angiographic imaging were included. Of the 91 patients (with a mean age of 57.7y (22-91y), 9 patients had a CT-negative, LP-positive pattern and underwent a delayed DSA. A part of the total cohort underwent 3D DSA.
PICO 2
The retrospective study of Agid (2010) evaluated whether negative findings on CTA can reliably exclude aneurysms in patients with acute SAH (see above). No direct comparison was performed between DSA and non-invasive imaging.
In the study by Bakker (Bakker, 2014a, JNNP) from the Netherlands, a consecutive cohort of 94 patients with CT-negative, LP-positive SAH was prospectively collected between 1998 and 2013. The yield of diagnostic modalities as well as patient outcome was studied. In addition, risk factors for the presence of a vascular lesion were analyzed.
The retrospective study of Bakr (2017) from the UK evaluated CTA and DSA outcomes in patients suspected of SAH from January 2012 to November 2013. A cohort of 796 patients with a negative CT (mean age 43 years), underwent LP. Patients with a positive LP (positive for xanthochromia, N=31, based on spectrophotometry) or equivocal findings (n=37) were included in the study. No direct or structured comparison was performed between DSA and CTA.
The retrospective study of Heit (2016) performed in the USA aimed to investigate the value of DSA among patients with SAH or intraventricular hemorrhage and a negative CTA in the time period of January 2002 and December 2012. In total, 230 patients were included in the study and underwent an initial 3D DSA at the discretion of the interventional neuroradiologist within a mean of 1.5 days (median, 1 day; range, 0 to14 days). Of these 230 patients, 16 patients showed a negative CT but positive LP and 130 patients showed a non-perimesencephalic (sulcal N= 37 and diffuse N=93) CT positive pattern. It is not clear how many of these patients underwent both delayed CTA and delayed DSA.
The retrospective study of Kelliny (2011) performed in Switzerland aimed to identify if a ruptured aneurysm can be excluded by CTA, thereby avoiding DSA. All consecutive 241 adult patients (mean age 50.3 ± 14.2 years) who underwent both CTA and DSA suspected of SAH in the period of January 1998 to December 2007 were included in the study. SAH was diagnosed by non-contrast CT or LP. A negative CT was present in 16 patients (described as ‘no hemorrhage’). Every patient underwent four-vessel DSA via a transfemoral intra-arterial approach with multiple projections. 3D Rotational angiography was done whenever deemed necessary, mainly to improve aneurysm preoperative planning. Catheter angiographies were performed on average one day after the CTA (with a maximum of 13 days).
The retrospective study of Lim (2014) performed in Australia aimed to investigate the utility of CTA as a substitute for DSA in patients who are CT scan negative but LP positive. A database containing the results of every spectrophotometric xanthochromia analysis of cerebrospinal fluid (CSF) requested from 2007 to 2010 was obtained. Electronic discharge summaries of patients from 2000 to 2010 were reviewed to recruit patients with SAH and normal CT-scans. Out of 127 patients, 63 patients had both CTA and DSA examinations.
The retrospective study by Wallace (2013) evaluated the accuracy of cerebrospinal fluid xanthochromia and erythrocytosis for aneurysmal SAH. Fifty-seven patients were identified.
The retrospective study by Chalouhi (2013) assessed the diagnostic yield of cerebral angiography in patients with CT-/LP+ SAH and to determine the clinical and laboratory predictors of a vascular abnormality on angiography. A total of 35 patients, with a mean age of 53 years, with CT-/LP+ SAH underwent cerebral angiography at our institution between 2008 and 2011. Twenty-five patients (71.4%) were female and 10 (28.6%) were male,.
In the study by Martin (2015) the proportion of patients with conclusive CSF xanthochromia results following a negative CT scan in suspected SAH was assessed to determine the diagnostic efficacy of LP. Data from all centers in a regional health board were identified for consecutive patients over a 6-month period. 239 of 255 (93.7%) results were conclusive of and 16 were inconclusive.
In the study by Chong (2018) data of 609 consecutive patients with spontaneous SAH in a 3-year period (August 2010 to August 2013) were prospectively collected. Patients were divided into 3 diagnostic subgroups: CT positive for SAH; CT negative but positive cerebrospinal fluid examination by spectrophotometry for SAH; CT negative for SAH and inconclusive cerebrospinal fluid examination. All patients fit for intervention underwent CT angiography with or without digital subtraction angiography to identify vascular abnormalities for subsequent treatment. Of these 609 patients, 554 were fit for further investigation and consideration of further intervention; 514 patients had confirmed SAH. Of patients with confirmed SAH, 76 (14.8%) had negative CT scan but positive lumbar puncture (group 2).
In the study by Backes (2012) patients suspicious of SAH and a normal level of consciousness presenting to our tertiary care hospital between 2005 and 2012 were included. All patients had a head CT interpreted by experienced neuroradiologists and CSF spectrophotometry if head CT was negative or inconclusive. In total 250 patients were analyzed.
In the study by Van den Berg (2021) the performance of non-contrast CT (NCCT) to rule out SAH was evaluated in 111 patients with positive CSF findings. The presence of an underlying aneurysm or other causative vascular lesion was also assessed.
PICO 1 en 3
The retrospective study of Ringelstein (2014) performed in Germany aimed to assess the diagnostic impact of 3D rotational angiography in order to avoid repeat DSA. Patients with an acute non-traumatic SAH in the period January 2004 and December 2012 and a negative initial angiographic imaging were included. Of the 91 patients (with a mean age of 57.7y (22-91y), 9 patients had a CT-negative, LP-positive pattern and underwent a delayed DSA. A part of the total cohort underwent 3D DSA, it remains unclear whether the 9 CT-, LP+ patients all underwent 3D repeat DSA.
The prospective cohort study of Delgado-Almandoz (2012) performed in the USA assessed the yield of repeat DSA in patients with a non-traumatic SAH. Four out of 72 patients were CT-negative, LP-positive and are relevant for PICO 3. All four patients underwent repeat 3D- DSA after 7 days.
Results
PICO 1
Diagnostic accuracy
In none of the selected studies focusing on findings after repeat vascular imaging (in second term) in CT positive (aneurysmal) SAH patients, a structured and solid comparison was performed between DSA and CTA. Therefore, no data can be given on the negative predictive value, sensitivity, specificity and positive predictive value of non-invasive imaging compared to DSA.
The yield of imaging (CTA of DSA) (versus no imaging)
When focusing on the value of repeat imaging in second term versus no repeat imaging, the majority of studies describe identification of vascular abnormalities (mostly aneurysms).
Bakker (Bakker, 2014b, JNS) did not find an aneurysm in their own series of 45 patients (with both MRA and DSA).
In the study by Agid (2010) a causative aneurysm or other vascular lesion was found in 4 out of 28 (14%) patients with an aneurysmal SAH pattern. Of these four, two were missed on initial CTA and DSA.
In the study by Heit (2016), all patients with initial negative findings underwent either follow up CTA or DSA. In six cases (4%) positive findings were seen at repeat CTA and confirmed with DSA. All patients had a diffuse SAH pattern.
In the study by Delgado (2012 JNS), after repeat imaging (median interval of 9 days) an aneurysm was detected in 4 out of 43 patient (5.2%) with CTA. No comparison was made with DSA.
In the study by Delgado (2013 AJNR), after repeat imaging (median interval of 9 days) an aneurysm was detected in 2 out of 39 patient (5.1%) with DSA.
In the study by Ringelstein (2014) 4 out of 91 patients (with an acute nontraumatic SAH) had positive findings on repeat DSA. No comparison was made with CTA.
Summary of results of the yield of imaging:
Combining the data of the above-mentioned studies results in positive findings for a vascular cause of SAH after repeat imaging (in second term) in 20 out of 642 patients (3.1%; range 0 to 14%).
PICO 2
Diagnostic accuracy
In none of the selected studies focusing on findings of initial vascular imaging (in first term) a structured and solid comparison was performed between DSA and CTA in patients with a CT-negative but positive lumbar puncture. All of the studies reported only on selections of patients with non-invasive imaging (CTA) versus invasive imaging (DSA) in CT negative patients. Only descriptive data are given for subsets of patients on findings of vascular imaging.
The yield of imaging In the study by Agid (2010) in one patient, vasculitis as cause for the SAH was diagnosed by DSA (undetected on CTA). In the other 31 patients no abnormal vascular findings were noticed. (PICO 3: Only three patients had follow-up imaging after 3 months, with normal findings).
In the study by Bakker (2014b), in 40 out of 97 patients, (43%), an intracranial vascular abnormality was detected: 37 aneurysms and three arterial dissections. The yield of additional DSA in patients with a negative CT-angiography was zero.
In the study by Bakr (2017), out of 31 patients with positive CSF findings 17 patients received a CTA; in two an aneurysm was detected. Of the 15 patients with a negative CTA, 9 patients additionally received a DSA, with negative findings. Of 37 patients with equivocal findings on LP, 13 patients received a CTA, an aneurysm was detected in one patient. In the other 12 patients, a DSA was performed in 4 with negative findings.
In the study by Heit (2016) repeat imaging (either CTA or DSA) did not reveal a causative lesion in 16 patients with xanthochromia on lumbar puncture. In one patient a cavernous malformation was identified with MRI as cause of the SAH.
In the study by Kelliny (2011) 16 patients had a negative CT scan for SAH, on initial imaging with either CTA or DSA no aneurysms were found. Although repeat imaging was performed, no specific data are given for CT negative SAH patients.
In the study by Lim (2014) 63 patients underwent both CTA and DSA, this is the largest study directly comparing CTA with DSA in CT negative LP positive SAH patients. In 10 patients an aneurysm was detected with DSA in concordance with CTA in nine patients (one aneurysm was not detected on CTA but was not held responsible for the SAH due to its extradural location). Unequivocal CTA and DSA findings were seen in one patient with an intradural dissection.
In the study by Wallace (2013) two angiographic lesions were identified in patients with xanthochromia (2/24 patients, ie, 8.3%), both of which were confirmed to have ruptured. In patients with positive xanthochromia where serial samples were obtained and non-clearing erythrocytosis was present, the diagnostic yield was 29% (2/7). The diagnostic yield in patients with nonclearing erythrocytosis and no xanthochromia was 6.3% (1/16 patients), although this lesion was not considered the source of SAH. In total 5 vascular lesions were detected in 57 patients.
In the study by Chalouhi (2013) out of 35 patients with CT-/LP+ SAH who underwent cerebral angiography, 26 patients (74.3%) had cerebrospinal fluid xanthochromia. 16 out of 35 patients (45.7%) were found to have an aneurysm on cerebral angiography.
In the study by Martin (2015) 4.7% of patients had positive CSF findings (CT-/LP+) for SAH (12 of 255), revealing 4 cerebral aneurysms requiring treatment. In patients with inconclusive CSF samples, in one out of 16 patients an aneurysm was found requiring treatment. In total 5 aneurysms out of 28 NCCT negative - LP positive or inconclusive patients were detected.
In the study by Chong (2018) out of 76 patients with a negative CT-scan but positive lumbar puncture, 35 patients (46.1%) had vascular abnormalities. Three out of 40 patients with inconclusive cerebrospinal fluid examination had lesions requiring treatment. In total 38 out of 114 patients a vascular lesion was found
In the study by Backes (2012) in the subgroup of 137 patients that were scanned within 6 hours after symptom onset, because of negative or inconclusive CT findings in 69 patients, CSF examination was performed. One vascular abnormality (cervical AVM) was detected with DSA. For the subgroup of 113 patients presenting later than 6 hours after symptom onset, five vascular abnormalities in 76 patients (4 aneurysms and one thoracic AVM) were detected with vascular imaging. In total 6 out of 145 patients showed positive findings for a vascular abnormality (4.1%).
In the study by Van den Berg (2021) 86 patients had a CT negative and lumbar puncture positive SAH. In 42 of these patients (49%) a causative aneurysm was found.
Summary of results of the yield of imaging:
The combined data of the above mentioned studies on vascular imaging with CTA and/or DSA shows that a vascular cause was seen in 167 out of 756 patients (22%; range 0 to 49%).
PICO 3
Diagnostic accuracy
CT negative, LP positive patients; no delayed imaging versus delayed imaging. None of the studies reported outcomes on delayed CTA/MRA (C) versus delayed DSA (R) in CT negative patients. Only descriptive data are given for findings of repeat imaging in unspecified subsets of patients.
The yield of imaging
In the study by Ringelstein (2014) none of the nine patients with a CT negative SAH had positive findings on repeat DSA.
In the two described studies by Delgado (see also PICO 1) from 2012 and 2013, in respectively five and four patients with xantochromia repeat vascular imaging did not show vascular abnormalities.
Summary of results of the yield of imaging
Combining the data of the above mentioned studies in repeat imaging in second term after CSF positive SAH showed a vascular cause in none out of 18 patients (0%).
Level of evidence from the literature
The level of evidence regarding all outcome measures started high because observational studies for diagnostic purposes starts high.
PICO 1: CT+ patients; repeat CTA/MRA (in second term) versus repeat DSA (in second term)
The level of evidence for sensitivity specificity, positive and negative predictive value cannot be given as no solid data are available.
There are no comparative studies reporting on the diagnostic accuracy of CTA or MRA versus DSA in repeat imaging in second term after SAH in the detection of vascular abnormalities. All included studies used either CTA or DSA with only subsets of patients who received imaging with both modalities.
PICO 2: CT- patients; initial CTA/MRA versus initial DSA
There are no comparative studies reporting on the performance of CTA or MRA versus DSA in imaging after CT negative, LP positive SAH in the detection of vascular abnormalities. All included studies described findings with either CTA or DSA with only very small subsets of patients who received imaging with both modalities.
PICO 3: CT-patients; no repeat angiography versus repeat CTA/MRA (in second term) versus repeat DSA (in second term)
There are no comparative studies reporting on the performance of CTA or MRA versus DSA in repeat vascular imaging after CT negative, LP positive SAH in the detection of vascular abnormalities.
Zoeken en selecteren
A systematic review of the literature was performed to answer the following questions:
PICO 1
What is the yield (in numbers of detected vascular abnormalities) of repeat vascular imaging (in second term) with computed tomography angiography (CTA) or magnetic resonance angiography (MRA) compared to digital subtraction angiography with 3D rotation of all vessels (3D DSA) in patients with (CT-positive) subarachnoid hemorrhage and an aneurysmal pattern of haemorrhage after initial (first) negative vascular imaging (including first DSA)?
P: patients patients with a SAH-positive CT and initial negative vascular imaging (initial imaging includes first CTA and, if performed, first negative DSA).
I: intervention repeat (in second term) non-invasive vascular imaging (CTA or MRA);
R: reference repeat (in second term) invasive vascular imaging 3D DSA;
O: outcome level 1: diagnostic accuracy (sensitivity, specificity, positive predictive value and negative predictive value); level 2: late FU.
PICO 2
What is the yield (in numbers of detected vascular abnormalities) of initial non-invasive vascular imaging with CTA or MRA in patients with a CT-negative but positive lumbar puncture for SAH compared to the invasive vascular reference technique DSA.
P: patients patients with a CT-negative, lumbar puncture positive SAH;
I: intervention non-invasive initial vascular imaging (CTA and/or MRA) in first term;
R: reference invasive initial vascular imaging 3D DSA in first term;
O: outcome level 1: diagnostic accuracy (sensitivity, specificity, positive predictive value and negative predictive value); level 2: late FU (rebleed / mortality).
PICO 3
What is the yield (in numbers of detected vascular abnormalities) of repeat vascular imaging in patients with a CT-negative but positive lumbar puncture for SAH after initial negative vascular imaging (including first DSA)?
In case there is value of repeat imaging, what is the added value of DSA as repeat imaging technique over CTA/MRA in diagnostic performance?
P: patients patients with suspicion of CT-negative, lumbar puncture positive SAH and an initial negative (first) CTA and/or (first) negative DSA;
I: intervention no repeat vascular imaging after first CTA and / or first DSA;
R: reference repeat (in second term) vascular imaging (including DSA, CTA of MRA) after first CTA and/or first 3D DSA;
O: outcome level 1: diagnostic accuracy (sensitivity, specificity, positive predictive value and negative predictive value); level 2: late FU (rebleed / mortality).
Relevant outcome measures
The guideline development group considered the negative predictive value as a critical outcome measure for decision making and sensitivity, specificity and positive predictive value as an important outcome measure for decision making, if applicable. If comparative studies are lacking, or study groups are incomplete, percentages of positive findings on imaging will be given, which we defined as ‘the diagnostic yield of imaging’.
Search and select (Methods)
The databases Medline (via OVID) and Embase (via Embase.com) were searched with relevant search terms until June 3,-2020. The detailed search strategy is depicted under the tab Methods. The systematic literature search resulted in 303 hits. Studies were selected based on the following criteria: randomized controlled trials, comparative observational studies, or systematic reviews on the diagnostic accuracy of non-invasive vascular imaging (CTA/MRA) compared to DSA in patients with a suspected SAH. In total 23 studies were initially selected based on title and abstract screening. One study was added from the previous guideline and 13 studies were added through snowballing or through an included systematic review. After reading the full text, 21 studies were excluded (see the table with reasons for exclusion under the tab Methods) and 16 studies were included.
Results
For all PICOs, no studies with a structured and solid comparison between CTA and 3D DSA were found. Therefore, studies with partial or even absent comparison between CTA and DSA were also described to determine the diagnostic yield of vascular imaging to detect a vascular cause of the subarachnoid hemorrhage. Important study characteristics and descriptives are summarized in the tables. The assessment of the risk of bias is summarized in the risk of bias tables.
Referenties
- 10 - Agid, R., Andersson, T., Almqvist, H., Willinsky, R. A., Lee, S. K., Farb, R. I., & Söderman, M. (2010). Negative CT angiography findings in patients with spontaneous subarachnoid hemorrhage: when is digital subtraction angiography still needed? American journal of neuroradiology, 31(4), 696-705.
- 20 - Backes D, Rinkel G, Kemperman H, Linn F, Vergouwen M. Time-Dependent Test Characteristics of Head Computed Tomography in Patients Suspected of Nontraumatic Subarachnoid Hemorrhage. Stroke. 2012;43(8):2115-2119
- 30 - Bakker NA, Groen RJ, Foumani M, Uyttenboogaart M, Eshghi OS, Metzemaekers JD, Luijckx GJ, Van Dijk JM. Appreciation of CT-negative, lumbar puncture-positive subarachnoid haemorrhage: risk factors for presence of aneurysms and diagnostic yield of imaging. J Neurol Neurosurg Psychiatry. 2014 Aug;85(8):885-8. (Bakker 2014a)
- 40 - Bakker NA, Groen RJ, Foumani M, Uyttenboogaart M, Eshghi OS, Metzemaekers JD, Lammers N, Luijckx GJ, Van Dijk JM. Repeat digital subtraction angiography after a negative baseline assessment in nonperimesencephalic subarachnoid hemorrhage: a pooled data meta-analysis. J Neurosurg. 2014 Jan;120(1):99-103. (Bakker, 2014b)
- 50 - Bakr, A., Silva, D., Cramb, R., Flint, G., & Foroughi, M. (2017). Outcomes of CSF spectrophotometry in cases of suspected subarachnoid haemorrhage with negative CT: two years retrospective review in a Birmingham hospital. British Journal of Neurosurgery, 31(2), 223-226.
- 60 - Chalouhi N, Witte S, Penn DL, et al. Diagnostic yield of cerebral angiography in patients with CT-negative, lumbar puncture-positive subarachnoid hemorrhage. Neurosurgery 2013;73:282–7.
- 70 - Chong M, Martin S, Phang I, St George E, Suttner N, Teo M. The Prevalence of Cerebrovascular Abnormalities Detected in Various Diagnostic Subgroups of Spontaneous Subarachnoid Hemorrhage in the Modern Era. World Neurosurgery. 2018;111:e355-e361
- 80 - Delgado Almandoz JE, Jagadeesan BD, Refai D, Moran CJ, Cross DT 3rd, Chicoine MR, Rich KM, Diringer MN, Dacey RG Jr, Derdeyn CP, Zipfel GJ. Diagnostic yield of repeat catheter angiography in patients with catheter and computed tomography angiography negative subarachnoid hemorrhage. Neurosurgery. 2012 May;70(5):1135-42.
- 90 - Delgado Almandoz JE, Crandall BM, Fease JL, Scholz JM, Anderson RE, Kadkhodayan Y, Tubman DE. Diagnostic yield of catheter angiography in patients with subarachnoid hemorrhage and negative initial noninvasive neurovascular examinations. AJNR Am J Neuroradiol. 2013 Apr;34(4):833-9.
- 100 - Delgado Almandoz JE, Kadkhodayan Y, Crandall BM, Scholz JM, Fease JL, Anderson RE, Tubman DE. Diagnostic yield of delayed neurovascular imaging in patients with subarachnoid hemorrhage, negative initial CT and catheter angiograms, and a negative 7 day repeat catheter angiogram. J Neurointerv Surg. 2014 Oct;6(8):637-42.
- 110 - Heit, J. J., Pastena, G. T., Nogueira, R. G., Yoo, A. J., Leslie-Mazwi, T. M., Hirsch, J. A., & Rabinov, J. D. (2016). Cerebral angiography for evaluation of patients with CT angiogram-negative subarachnoid hemorrhage: an 11-year experience. American Journal of Neuroradiology, 37(2), 297-304.
- 120 - Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology. 2007 Jun;243(3):812-9. doi: 10.1148/radiol.2433060536. PMID: 17517935.
- 130 - Kelliny, M., Maeder, P., Binaghi, S., Levivier, M., Regli, L., & Meuli, R. (2011). Cerebral aneurysm exclusion by CT angiography based on subarachnoid hemorrhage pattern: a retrospective study. BMC neurology, 11(1), 1-6.
- 140 - Lim LK, Dowling RJ, Yan B, Mitchell PJ. Can CT angiography rule out aneurysmal subarachnoid haemorrhage in CT scan-negative subarachnoid haemorrhage patients? J Clin Neurosci. 2014 Jan;21(1):191-3.
- 150 - Martin S, Teo M, Young A, Godber I, Mandalia S, St George E et al. Defending a traditional practice in the modern era: The use of lumbar puncture in the investigation of subarachnoid haemorrhage. British Journal of Neurosurgery. 2015;29(6):799-803.
- 160 - Ringelstein A, Mueller O, Mönninghoff C, Hahnemann ML, Sure U, Forsting M, Schlamann M. 3D Rotational Angiography After Non-Traumatic SAH. Rofo. 2014 Jul;186(7):675-9.
- 170 - van den Berg R, Jeung L, Post R, Coert BA, Hoogmoed J, Coutinho JM, Majoie CB, Verbaan D, Emmer BJ, Vandertop WP. The added value of cerebrospinal fluid analysis in patients with subarachnoid hemorrhage after negative noncontrast CT. J Neurosurg. 2021 Sep 24:1-5.
- 180 - van Rooij WJ, Sprengers ME, de Gast AN, Peluso JP, Sluzewski M. 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol. 2008 May;29(5):976-9.
- 190 - Wallace AN, Dines JN, Zipfel GJ, et al. Yield of catheter angiography after computed tomography negative, lumbar puncture positive subarachnoid hemorrhage. Stroke 2013;44:1729–31
Evidence tabellen
*comparator test equals the C of the PICO; two or more index/ comparator tests may be compared; note that a comparator test is not the same as a reference test (golden standard)
Risk of bias assessment diagnostic accuracy studies (QUADAS II, 2011)
Table of excluded studies
Author and year |
Reason for exclusion |
Akcakaya, 2017 |
Geen 3D DSA |
Andaluz& Zuccarello, 2008 |
Geen 3D DSA |
Bashir, 2018 |
Voldoet niet aan PICO: alleen CT+ patiënten en geen vergelijk herhalings CTA – herhalings DSA |
Bechan, 2015 |
Geen aparte resultaten voor CT- en CT+ patiënten vermeld |
Dalyai, 2013 |
Voldoet niet aan PICO: alleen CT+ patiënten en geen vergelijk herhalings CTA – herhalings DSA |
Delgado, 2014 |
Voldoet niet aan PICO: alleen CT+ patiënten en geen vergelijk herhalings CTA – herhalings DSA |
Galal, 2016 |
Conference abstract |
Gaughen, 2010 |
Voldoet niet aan PICO, alleen patiënten met een positieve DSA kregen CTA |
Khan, 2013 |
Geen 3D DSA |
Kikuchi, 2018 |
Artikel niet in Engels beschikbaar |
Kumar, 2014 |
Voldoet niet aan PICO: alleen CT+ patiënten en geen vergelijk herhalings CTA – herhalings DSA |
Lin, 2012 |
Apart uitgewerkt per bloedingspatroon maar niet duidelijk wie (CT- of CT+ patiënten) welk herhalingsonderzoek kreeg |
Little, 2007 |
Interval tussen DSA en CTA/MRA te lang (12-20 weeks) |
MacKinnon, 2013 |
Geen aparte resultaten voor CT- en CT+ patiënten vermeld |
Prestigiacomo, 2010 |
Geen aparte resultaten voor CT- en CT+ patiënten vermeld |
Sadigh, 2019 |
Geen aparte resultaten voor CT- en CT+ patiënten vermeld |
Westerlaan, 2007 |
Geen 3D DSA |
Westerlaan, 2011 |
Voldoet niet aan PICO: Voldoet niet aan PICO: alleen CT+ patiënten en geen herhalings CTA of herhalings DSA |
Weyerbrock, 2009 |
Geen 3D DSA |
Yap, 2015 |
Geen 3D DSA |
Yu, 2012 |
Geen 3D DSA |
Verantwoording
Autorisatiedatum en geldigheid
Laatst beoordeeld : 02-08-2022
Laatst geautoriseerd : 02-08-2022
Geplande herbeoordeling : 02-08-2025
Algemene gegevens
De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten en werd gefinancierd uit de Stichting Kwaliteitsgelden Medisch Specialisten (SKMS).
De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.
Samenstelling werkgroep
Voor het ontwikkelen van de richtlijnmodule is in 2019 een multidisciplinaire werk- en klankbordgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de zorg voor patiënten met (verdenking op) subarachnoïdale bloeding.
Werkgroep
- Dr. M.D.I. Vergouwen, neuroloog, UMC Utrecht, Utrecht, voorzitter (NVN)
- Drs. J. Manuputty, neuroloog, Elisabeth-Twee Steden Ziekenhuis, Tilburg (NVN)
- Prof. dr. G.J.E Rinkel, neuroloog, UMC Utrecht, Utrecht (NVN)
- Dr. I.R. van den Wijngaard, neuroloog, Haaglanden MC, Den Haag (NVN)
- Dr. H.D. Boogaarts, neurochirurg, Radboud UMC, Nijmegen (NVvN)
- Prof. dr. J.M.C. van Dijk, neurochirurg, UMCG, Groningen (NVvN)
- Dr. R. van den Berg, radioloog, Amsterdam UMC, Amsterdam (NVvR)
- Dr. G.J. Lycklama à Nijheholt, radioloog, Haaglanden MC, Den Haag (NVvR)
- Dr. W.J.M. Schellekens, anesthesioloog, UMC Utrecht, Utrecht (tot okt 2020) (NVA)
- Dr. A. Akkermans, anesthesioloog, Fellow Intensive Care, UMC Utrecht, Utrecht (vanaf okt 2020) (NVA)
- Dr. M. van der Werf, revalidatiearts, Rijndam revalidatie, Erasmus MC, Rotterdam (VRA)
- Dr. M. van der Jagt, neuroloog-intensivist, Erasmus MC, Rotterdam (NVIC)
- J. Hennipman-Bikker, verpleegkundige, UMC Utrecht, Utrecht (tot sep 2021) (V&VN)
- J.C. Toerse, MSc, verpleegkundig specialist, Isala, Zwolle (vanaf nov 2021) (V&VN)
Klankbord
- Carola Deurwaarder, patiëntvertegenwoordiger, Hersenaneurysma Patiënten Platform
Met ondersteuning van
- Dr. M. Molag, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
- Dr. A. Balemans, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
Belangenverklaringen
De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.
Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.
Achternaam werkgroeplid |
Hoofdfunctie |
Neven werkzaamheden |
Persoonlijke financiële belangen |
Extern gefinancierd onderzoek |
Intellectuele belangen en reputatie |
Overige belangen |
Actie |
* Vergouwen |
Neuroloog UMC Utrecht, afdeling Neurologie en Neurochirurgie |
Geen |
Vergoedingen aan UMC Utrecht van: - NeuroScios (ivm reviewer van klinische data ihkv NicaPlant studie (Phase llb : randomized, - CSL Behring voor een eenmalige advisory board meeting over een eventueel nieuw onderzoek. |
Mijn wetenschappelijk onderzoek wordt gefinancieerd door de Hartstichting, Hersenstichting, ZonMw, Vrienden UMC Utrecht, Dr Rolf Schwiete stichting.
Hoofd-onderzoeker van een fase II onderzoek naar de veiligheid en werkzaamheid van eculizumab bij patienten met een subarachnoidale bloeding, mede-gefinancierd door de producent van het middel, Alexion Pharma |
Geen |
Geen |
Geen: eculizumab zal niet worden behandeld in de richtlijn |
Van der Werf |
Revalidatiearts bij Rijndam locatie Erasmus MC |
Werkgroep WHR, onbetaald |
Geen |
Geen |
Geen |
Geen |
Geen |
Van den Berg |
Interventie neuro-radioloog |
Consultant bij Cerenovus neurovascular (onderdeel van Johnson & Johnson) |
Geen |
Geen |
Geen |
Geen |
Geen |
Lycklama à Nijeholt |
Radioloog Haaglanden MC Den Haag |
Geen |
Geen |
Geen |
Geen |
Geen |
Geen |
Van Dijk |
Afdelingshoofd Neurochirurgie UMCG |
Voorzitter Neurovasculair Expertisecentrum UMCG (onbetaald) |
Geen |
Geen |
Geen |
Geen |
Geen |
Van der Jagt |
Neuroloog-intensivist |
Voorzitter commissie richtlijnontwikkeling van de NVIC (onbetaald). Commissielid van de Adviescommissie richtlijnen SKMS2 |
Geen |
Geen |
Geen |
Geen |
Geen |
Manuputty |
Neuroloog ETZ (Elisabeth TweeSteden Ziekenhuis (Tilburg) |
Bestuurslid Vereniging Nederlandse Hoofdpijncentra (VNHC) tot 2021; onbetaald |
Geen |
Deelname aan studie "Determinants of physical behaviour after SAH", |
Geen |
Geen |
Geen |
Rinkel |
Hoogleraar neurologie, UMC Utrecht, 1.0FTE |
Geen |
Geen |
Lid van de stuurgroep van ULTRA, een door de Nederlandse Hartstichting gefinancieerd fase III onderzoek naar de effectiviteit van tranexaminezuur bij patienten met een subarachoidale bloeding |
Geen |
Geen |
Geen: eculizumab zal niet worden behandeld in de richtlijn |
Hennipman-Bikker |
Medium Care verpleegkundige op de Medium Care Neurologie / Neurochirurgie |
Geen |
Geen persoonlijke financiele belangen |
Geen |
Geen |
Geen |
Geen |
Van den Wijngaard |
Vasculair neuroloog, Haaglanden MC & LUMC (40%) |
Bestuurslid Nederlands Neurovasculair Genootschap (onbetaald) Imaging committee MR Clean Studies (onbetaald) |
nvt |
nvt |
|
nvt |
Geen |
Schellekens |
Anesthesioloog, staflid UMC Utrecht |
Geen |
Geen |
Geen |
Geen |
nvt |
Geen |
Boogaarts |
Neurochirurg, RadboudMC, Nijmegen |
Voorzitter stichting kwaliteit neurochirurgie (onkostenvergoeding). Voorzitter QRNS (Quality Registry Neurosurgery SAB (onbetaald). Voorzitter Nederlands Neurovasculair genootschap (onbetaald). |
Consultant Stryker Neurovascular (vergoeding gaat naar afdeling). Endovasculaire producten (coils, flow diverters, stroke). Advies tijdens proceduren, presentaties op congres, onderwijs |
SKMS subsidie voor ontwikkelen PROM SAB |
Geen |
Geen |
Geen penvoerder module over endovasculaire producten |
Akkermans |
Anesthesioloog / Fellow Intensive Care UMC Utrecht |
Geen |
Geen |
Geen |
Geen |
Geen |
|
Toerse |
Verpleegkundig specialist, Isala Zwolle, afdeling neurochirurgie |
Geen |
Niet van toepassing |
Niet van toepassing |
Niet van toepassing |
Niet van toepassing |
Geen |
Inbreng patiëntenperspectief
Er werd aandacht besteed aan het patiëntenperspectief door afvaardiging van het Hersenaneurysma Patiënten Platform in de klankbordgroep. De verkregen input is meegenomen bij het opstellen van de uitgangsvragen, de keuze voor de uitkomstmaten en bij het opstellen van de overwegingen en aanbevelingen. De conceptmodules zijn tevens voor commentaar voorgelegd aan het Hersenaneurysma Patiënten Platform.
Methode ontwikkeling
Evidence based
Werkwijze
AGREE
Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).
Knelpuntenanalyse en uitgangsvragen
Tijdens de voorbereidende fase inventariseerde de werkgroep de knelpunten in de zorg voor patiënten met subarachnoïdale bloeding. De werkgroep beoordeelde de aanbeveling(en) uit de eerdere richtlijnmodules (NVN, 2013) op noodzaak tot revisie. Tevens zijn er knelpunten aangedragen via een schriftelijke knelpuntanalyse. Op basis van de uitkomsten van de knelpuntenanalyse zijn door de werkgroep concept-uitgangsvragen opgesteld en definitief vastgesteld.
Uitkomstmaten
Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.
Methode literatuursamenvatting
Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur en de beoordeling van de risk-of-bias van de individuele studies is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.
Beoordelen van de kracht van het wetenschappelijke bewijs
De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).
GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).
Definitie |
|
Hoog |
|
Redelijk |
|
Laag |
|
Zeer laag |
|
Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).
Overwegingen (van bewijs naar aanbeveling)
Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Guideline development group (Alonso-Coello, 2016a; Alonso-Coello, 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE-methodiek.
De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.
In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.
Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers |
||
|
Sterke aanbeveling |
Zwakke (conditionele) aanbeveling |
Voor patiënten |
De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet. |
Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet. |
Voor behandelaars |
De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen. |
Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren. |
Voor beleidsmakers |
De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid. |
Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen. |
Organisatie van zorg
In de knelpuntenanalyse en bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen.
Commentaar- en autorisatiefase
De conceptrichtlijnmodule werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.
Literatuur
Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.
Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Guideline development group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.
Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Guideline development group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.
Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.
Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Guideline development group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.
Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwaliteit. https://richtlijnendatabase.nl/werkwijze/richtlijnontwikkeling.html
Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.
Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Guideline development group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.
Zoekverantwoording
Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.