Osteoporose en fractuurpreventie

Initiatief: NOV Aantal modules: 19

Percutane cementaugmentatie

Uitgangsvraag

Wat is de plaats van percutane cementaugmentatie in de behandeling van patiënten van 50 jaar of ouder met een symptomatische stabiele wervelfractuur?

Aanbeveling

Voer geen percutane cementaugmentatie uit bij patiënten met een stabiele symptomatische acute wervelfractuur (korter dan 6 weken).

 

Overweeg percutane cementaugmentatie uitsluitend bij patiënten van 50 jaar of ouder met een symptomatische stabiele wervelfractuur indien:

  • de patiënt ernstige/onhoudbare lokale pijn blijft ervaren die onvoldoende reageert op pijnmedicatie en maximale conservatieve therapie, en
  • de (ernstige) pijn onvoldoende afneemt in de tijd zoals te verwachten bij een normale fractuurgenezing (3 maanden), en
  • er sprake is van botoedeem in de betreffende wervel op MRI-overeenkomend met het niveau/de plaats van focale pijnklachten bij lichamelijk onderzoek.

Bespreek daarbij met de patiënt dat de kosten van de interventie voor eigen rekening zullen komen.

Overwegingen

Voor- en nadelen van de interventie en de kwaliteit van het bewijs

Er is literatuuronderzoek verricht naar de effectiviteit en mogelijk nadelige effecten (veiligheid) van percutane cementaugmentatie – dat wil zeggen vertebroplastiek en kyfoplastiek - bij patiënten van 50 jaar of ouder met een symptomatische stabiele wervelfractuur. Voor vertebroplastiek waren er gerandomiseerde vergelijkende studies met een sham behandeling en met conservatieve behandeling beschikbaar, kyfoplastiek is alleen vergeleken met conservatieve behandeling.

 

De resultaten van de in Nederland uitgevoerde Vertos 5 studie zijn gepubliceerd na het uitvoeren van de literatuursearch en derhalve niet meegenomen in de analyse. Voor de volledigheid nemen we deze in de overwegingen wel mee. De Vertos 5 studie is een gerandomiseerde studie: vertebroplastiek (N=40) versus sham (N=40), die patiënten met een wervelfractuur met botoedeem en 3 maanden of langer pijnklachten heeft geïncludeerd (Carli, 2023).

 

Vergeleken met placebo (sham) behandeling geeft percutane vertebroplastiek waarschijnlijk geen klinisch relevante verbetering in de cruciale uitkomstmaten pijn en kwaliteit van leven en de belangrijke uitkomstmaat beperkingen in activiteiten van het dagelijks leven (GRADE bewijskracht redelijk). Er lijkt ook geen verschil te zijn tussen behandeling met vertebroplastiek of met placebo ten aanzien van het optreden van nieuwe – aangrenzende en niet aangrenzende - wervelfracturen. Het verschil in opgetreden complicaties was onduidelijk door de zeer lage bewijskracht (klein aantal opgetreden events). Participatie en mortaliteit werden niet gerapporteerd in de geïncludeerde literatuur.

 

Op basis van waardering van de eerder genoemde studies is de algehele bewijskracht, d.w.z. de laagste bewijskracht voor de cruciale uitkomstmaten, gewaardeerd als redelijk vanwege de beperkte aantallen geïncludeerde patiënten. Concluderend kan gesteld worden dat op basis van de literatuur de voorkeur niet uitgaat naar behandeling van patiënten van 50 jaar of ouder met een symptomatische stabiele wervelfractuur met percutane vertebroplastiek, aangezien er geen zekere meerwaarde ten opzichte van een sham procedure is gevonden.

 

Vergeleken met standaardzorg (d.w.z. conservatieve behandeling, zoals pijnmedicatie) lijkt percutane vertebroplastiek geen klinisch relevante verbetering te geven in de cruciale uitkomstmaten pijn en kwaliteit van leven (GRADE bewijskracht laag). Wel lijkt vertebroplastiek beperkingen in activiteiten van het dagelijks leven (ADL) te verminderen ten opzichte van standaardzorg (GRADE bewijskracht laag). Daarnaast lijkt er geen verschil te zijn in het optreden van nieuwe wervelfracturen en complicaties tussen vertebroplastiek en standaardbehandeling. Hiermee kan gesteld worden dat vertebroplastiek dus een relatief veilige (invasieve) procedure is. Participatie en mortaliteit werden niet gerapporteerd in de geïncludeerde literatuur.

 

De algehele bewijskracht (de laagste bewijskracht voor de cruciale uitkomstmaten) komt uit op laag, onder andere vanwege de beperkte aantallen geïncludeerde patiënten en het ontbreken van blindering. Op basis van de literatuur is er alleen op het gebied van ADL een voorzichtige voorkeur voor behandeling met percutane vertebroplastiek ten opzichte van standaardbehandeling bij patiënten van 50 jaar of ouder met een symptomatische stabiele wervelfractuur.

 

Voor de vergelijking tussen ballon kyfoplastiek en standaardzorg werd maar één studie gevonden. Door beperkingen in de onderzoeksopzet, beperkte patiëntaantallen en risico op publicatiebias is de bewijskracht voor deze vergelijking op alle uitkomstmaten zeer laag. De literatuur kan daardoor geen richting geven aan de besluitvorming.

 

Kritische punten ten aanzien van de interpretatie van de genoemde studies richten zich op de volgende punten:

1) heterogene en matig beschreven inclusiecriteria;

2) de aard van de sham behandeling: geen ‘echte’ sham, maar een alternatieve pijninterventie (facet- of medial branch blokkade) met lidocaïne en bupivacaine;

3) de relatief korte duur van klachten en tijd tot interventie in verhouding tot het (in het algemeen goedaardige) natuurlijke beloop van de stabiele wervelfractuur bij patiënten >50 jaar.

 

Inclusiecriteria

Het interpreteren van de literatuur wordt bemoeilijk door de over het algemeen matige beschrijving van de gehanteerde inclusiecriteria (Buchbinder, 2009; Clark, 2016). Met name de aanwezigheid van botoedeem wordt algemeen aangenomen om van cruciaal belang te zijn om onderscheid te maken tussen een geconsolideerde (oude, niet langer pijnlijke) wervelfractuur en niet-geconsolideerde (verse, pijnlijke) wervelfractuur. Focale pijnklachten corresponderend met botoedeem in het wervellichaam is de belangrijkste indicator dat de ervaren pijn ook daadwerkelijk veroorzaakt wordt door een niet-geconsolideerde wervelfractuur (Voormolen, 2006). Patiënten die in aanmerking komen voor een vertebroplastiek dienen botoedeem op MRI in de wervel corresponderend met focale pijn bij lichamelijk onderzoek met een pijnscore (VAS) van 5 of hoger te hebben. Het enige sham gecontroleerde onderzoek dat dit nauwkeurig beschrijft is de Vertos 4 studie van Firanescu (2018). Ook de Vertos 5 studie heeft alleen patiënten met botoedeem op de MRI geïncludeerd (Carli, 2023).

 

De VERTOS 4 studie is een Nederlandse studie en derhalve representatief voor de Nederlandse populatie en praktijkvoering. Noemenswaardige relevante bevindingen uit deze studie anders dan beschreven in de literatuursamenvatting zijn de volgende:

Na 12 maanden follow-up heeft een significant hoger percentage patiënten in de sham groep (41%; n=30) een VAS score van 5 of hoger vergeleken met patiënten in de vertebroplastiek groep (20%; n=16): (χ2 (1)=8.08, P=0.005).

Ook de analyse van de samengevoegde resultaten van de Vertos 2 (controle behandeling conservatief) en 4 (controle behandeling sham, Firanescu, 2022) laten dit zien; 40.1% van de patiënten in de conservatieve behandeling en sham groep hebben na 12 maanden follow up een VAS ≥ 5. 20.7% van de patiënten in de vertebroplastiek groep hebben na 12 maanden follow up een VAS ≥ 5. Het verschil is significant (χ2(1) = 15.26, p < 0.0001, OR = 2.57, 95% CI = 1.59 - 4.15). Zowel in VERTOS 2 als 4 wordt gekeken naar patienten met recent opgetreden symptomatische wervelfracturen (<6 weken symptomatisch, zogenaamde ‘acute’ wervelfracturen).

 

Klachtenduur en natuurlijk beloop

Als klinisch relevant verschil in VAS score hebben we een verschil van 20% gedefinieerd. Zeker als patiënten met acute wervelfracturen voor behandeling worden geïncludeerd, weten we uit de normale fractuur genezing dat een groot aantal overbehandeld zal worden, omdat de pijn ook zonder behandeling zal afnemen conform het natuurlijk beloop van fractuurgenezing. (Klazen, 2010). Dan is een verschil van 20% in VAS-score als relevant verschil tussen twee behandelmodaliteiten een strenge eis. Vertebroplastiek is bedoeld voor patiënten die onvoldoende ‘normale fractuurgenezing’ ervaren. Daarmee lijkt de Vertos 5 studie een betere patiëntencategorie te includeren. Zij includeren patiënten met een pijnlijke osteoporotische wervelfractuur (met botoedeem op MRI) en een klachtenduur van ≥ 3 maanden. In deze studie is de pijn afname significant beter in de vertebroplastiek groep dan in de sham groep. Echter, ook hier wordt het verschil van 20% tussen beide groepen niet gehaald (Carli, 2023).      

 

Implementatie

Concluderend kan gesteld worden dat het effect van vertebroplastiek op pijn onzeker blijft. Vertebroplastiek lijkt de kans op hoge pijnscores (VAS>5) na 12 maanden te verminderen in vergelijking met conservatieve therapie en sham procedures ((Firanescu, 2022, Vertos 2 + 4) Tevens beschermt vertebroplastiek de behandelde wervel tegen verdere hoogteafname en daarmee toename van de standsafwijking (Vertos 2), hoewel de klinische relevantie hiervan nog niet vastgesteld is. Desondanks is de toegevoegde waarde van vertebroplastiek te onzeker om deze als standaard zorg aan te bieden.

 

Vertebroplastiek zou in subgroepen wel een mogelijke behandeling kunnen zijn. Er is in de literatuur echter te weinig informatie om een duidelijke subgroep te definiëren. Ongeveer 70% van de patiënten met een pijnlijke acute osteoporotische wervelfractuur ervaart significante pijnafname in de loop van de tijd door normale fractuurgenezing en conservatieve therapie (Klazen, 2010). Bij 30% van de patiënten resulteert een acute osteoporotische wervelfractuur in chronische pijn (>2 jaar). Bij deze groep patiënten, wanneer klachten chronisch dreigen te worden (minimaal 3 maanden pijnklachten (Carli, 2023; Nieuwenhuijse, 2012)) onvoldoende reagerend op conservatieve therapie, zou een interventie overwogen kunnen worden. Voorwaarde is dan wel dat de diagnose niet/onvoldoende geconsolideerde wervelfractuur, gesteld wordt middels de combinatie van focale pijnklachten bij lichamelijk onderzoek corresponderend met een (al dan niet ingezakte) wervel met botoedeem op MRI.

 

Bij onhoudbare pijnklachten, die onvoldoende reageren op pijnmedicatie zou ook een lokale injectie (lidocaine/bupivacaine/dexamethason/ kenacort) overwogen kunnen worden. Hier is echter geen systematische literatuuranalyse voor uitgevoerd. Medicatie injectie onder röntgendoorlichting wordt op de radiologie vergoed, echter op de pijnpolikliniek is dit afhankelijk van de locatie. Deze kan poliklinisch verricht worden. De effectiviteit van lokale pijnbehandeling is momenteel echter onvoldoende duidelijk.

 

Waarden en voorkeuren van patiënten (en evt. hun verzorgers)

Vertebroplastiek is een interventie met weinig complicaties. Het is een minimaal invasieve procedure die onder lokale verdoving (lidocaïne) wordt uitgevoerd. Patiënten krijgen een dagopname en eventuele antistolling kan tijdelijk gestaakt worden. De periprocedurele risico’s en complicaties zijn verwaarloosbaar in Nederland (Vertos 2, 4). Voor veel patiënten is vermindering van pijn zeer belangrijk. Daarom zullen sommige patiënten met persisterende klachten de voorkeur geven aan vertebroplastiek boven conservatieve therapie. Op dit moment is vertebroplastiek in Nederland onverzekerde zorg en zal door de patiënt zelf betaald moeten worden. Bespreek daarom met de patiënt de mogelijkheden van de ingreep, maar ook de risico’s en de kosten.

 

Kosten (middelenbeslag)

Vertebropastiek is kosten-effectief ten opzichte van conservatieve therapie (Pron, 2022). Echter in Nederland is het onverzekerde zorg en zal door de patiënt zelf betaald moeten worden. De kosten bedragen inclusief dagopname rond de 2000 euro (Vertos 2). Pijnmedicatie en fysio-/oefentherapie worden wel (deels) vergoed. De kosten van kyfoplastiek liggen hoger dan vertebroplastiek door het materiaal  en veelal ziekenhuisopname, en algehele anaesthesie die bij kyphoplastiek nodig is (Mathis, 2004).

 

Aanvaardbaarheid, haalbaarheid en implementatie

Omdat vertebroplastiek in Nederland niet wordt vergoed, kunnen alleen patiënten met voldoende financiële middelen hiervoor kiezen. Deze behandeling is daarom niet voor iedereen toegankelijk. Derhalve wordt de overigens laagcomplexe eenvoudig opschaalbare behandeling momenteel slechts in enkele centra sporadisch of in studieverband verricht.

 

Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies

De toegevoegde waarde van vertebroplastiek is te onzeker om deze als standaard zorg aan te bieden. Vertebroplastiek zou in subgroepen wel een adequate behandeling kunnen zijn, echter om welke groepen dit exact gaat is momenteel onvoldoende duidelijk en verdient nader onderzoek om deze te kunnen identificeren. Vertebroplastiek zou overwogen kunnen worden bij patiënten met persisterend onhoudbare pijn langer dan 3 maanden met onvoldoende verlichting door pijnmedicatie. De kans op chroniciteit van de klachten wordt hiermee verminderd. Vertebroplastiek is een interventie met lokale verdoving en weinig complicaties. Nadeel is dat patiënten in Nederland de interventie en dagopname zelf moeten bekostigen. Tevens brengt het eventueel staken van antistolling voor de interventie mogelijk risico’s met zich mee.

Onderbouwing

Percutane cementaugmentatie wordt sinds 2003 in Nederland verricht in het kader van pijnbestrijding en het behoud van wervelhoogte voornamelijk bij een symptomatische stabiele wervelfractuur (i.e. waarvoor geen operatieve stabilisatie middels osteosynthese is geïndiceerd). Doordat de procedure in Nederland niet meer vergoed wordt door de zorgverzekeraars is deze behandeling alleen voor patiënten die de kosten zelf kunnen/willen betalen beschikbaar. De plaats van percutane cementaugmentatie in de behandeling van symptomatische stabiele wervelfracturen is zodoende nog altijd onduidelijk.

  1. Percutaneous vertebroplasty versus sham operation

Critical outcomes

Moderate GRADE

Compared with sham operation, percutaneous vertebroplasty likely results in little to no relevant difference in pain reduction in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Li, 2022.

 

Moderate GRADE

Compared with sham operation, percutaneous vertebroplasty likely results in little to no relevant difference in disease-specific quality of life as assessed by QUALEFFO from 1 week to 12 months of follow-up, in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Sources: Buchbinder, 2018; Firanescu, 2018.

 

Important outcomes

Moderate GRADE

Compared with a sham operation, percutaneous vertebroplasty likely results in little to no relevant difference in disability as assessed by Roland-Morris disability questionnaire from 1 week to 6 months of follow-up, in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Sources: Buchbinder, 2018; Firanescu, 2018.

 

Low GRADE

Compared with sham operation, percutaneous vertebroplasty may result in little to no relevant difference in secondary fractures at 12-month follow-up, in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Firanescu, 2018.

 

Very low GRADE

The evidence is very uncertain about the effect of percutaneous vertebroplasty on adverse events (other than secondary fractures) when compared with sham operation in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Sources: Buchbinder, 2018; Firanescu, 2018.

 

No GRADE

No evidence was found regarding the effect of percutaneous vertebroplasty on participation when compared with sham operation in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

No GRADE

No evidence was found regarding the effect of percutaneous vertebroplasty on mortality when compared with sham operation in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

  1. Percutaneous vertebroplasty versus usual care

Critical outcomes

Low GRADE

Compared with usual care, percutaneous vertebroplasty may result in little to no relevant difference in pain as assessed by VAS at 1-week to 12-month follow-up, in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Sources: Li, 2022; Tantawi, 2022.

 

Low GRADE

Compared with usual care, percutaneous vertebroplasty may result in little to no relevant difference in disease-specific quality of life as assessed by QUALEFFO at 1-week to 12-month follow-up, in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Buchbinder, 2018.

 

Important outcomes

Low GRADE

Compared with usual care, percutaneous vertebroplasty may reduce disability as assessed by Roland-Morris or ODI disability score at 1-week to 6-month follow-up, in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Sources: Buchbinder, 2018; Tantawi 2022.

 

Low GRADE

Compared with usual care, percutaneous vertebroplasty may result in little to no relevant difference in secondary fractures in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Sources: Li, 2022; Tantawi, 2022.

 

Low GRADE

Compared with usual care, percutaneous vertebroplasty may result in little to no relevant difference in adverse events in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Sources: Li, 2022; Tantawi, 2022.

 

No GRADE

No evidence was found regarding the effect of percutaneous vertebroplasty on participation when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

No GRADE

No evidence was found regarding the effect of percutaneous vertebroplasty on mortality when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

  1. Balloon kyphoplasty versus usual care

Critical outcomes

Very low GRADE

The evidence is very uncertain about the effect of balloon kyphoplasty on pain when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Van Meirhaeghe, 2013

 

Very low GRADE

The evidence is very uncertain about the effect of balloon kyphoplasty on quality of life when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Van Meirhaeghe, 2013

 

Important outcomes

Very low GRADE

The evidence is very uncertain about the effect of balloon kyphoplasty on disability when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Van Meirhaeghe, 2013

 

Very low GRADE

The evidence is very uncertain about the effect of balloon kyphoplasty on secondary fractures when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Van Meirhaeghe, 2013

 

Very low GRADE

The evidence is very uncertain about the effect of balloon kyphoplasty on adverse events (other than secondary fractures) when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

Source: Van Meirhaeghe, 2013

 

No GRADE

No evidence was found regarding the effect of balloon kyphoplasty on participation when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

 

No GRADE

No evidence was found regarding the effect of balloon kyphoplasty on mortality when compared with usual care in patients aged ≥50 with a symptomatic stable vertebral fracture.

Description of studies

The meta-analysis by Li (2022) compared the effectiveness and safety of vertebral augmentation procedures with non-surgical management for treatment of osteoporotic vertebral compression fractures. The primary outcome of this meta-analysis was pain relief evaluated by visual analogue scale (VAS). The review included 20 publications, 9 of which were in line with the PICO for the current analysis. This comprehensive meta-analysis had a low risk of bias. The inclusion criteria for the individual studies are outlined in table 1. Li (2022) did not report the data of individual studies for disability and disease-specific quality of life. Therefore, the review by Buchbinder (2018) was used for these outcome measures for vertebroplasty. For balloon kyphoplasty, the only original RCT reported in this meta-analysis in line with the PICO (Van Meirhaeghe, 2013) was consulted.

 

The Cochrane review by Buchbinder (2018) included randomised and quasi-randomised controlled trials (RCTs) of adults with painful osteoporotic vertebral fractures, comparing vertebroplasty with placebo (sham), usual care, or another intervention. Major outcomes were mean overall pain, disability, disease-specific and overall health-related quality of life, patient-reported treatment success, new symptomatic vertebral fractures and the number of other serious adverse events. The search was performed in November 2017. The meta-analysis included 19 trials, 9 of which were in line with the PICO for the current analysis.

 

The RCT by Tantawy (2022), published after the above-mentioned reviews, investigated efficacy of vertebroplasty for osteoporotic vertebral fractures. In this open-label Egyptian single-center study, 35 patients in the intervention group underwent percutaneous vertebroplasty and were compared with 35 patients receiving conservative treatment, consisting of a regular physical therapy program in addition to medical treatment and bracing for three months. Inclusion criteria were painful OVCFs, evidence of osteoporosis (DEXA), bone marrow edema in MRI (acute fracture), pain duration less than one month and vertebral level between thoracic 5 and lumbar 5 (T5-L5). Pain relief (VAS) and improvement of functional disability (ODI) were the primary outcomes. The rate of new vertebral fractures after the procedure was considered the secondary outcome.

 

In the VERTOS IV trial, Firanescu (2018) investigated whether percutaneous vertebroplasty

results in more pain relief than a sham procedure in patients with acute osteoporotic compression fractures of the vertebral body. The inclusion criteria were: age 50 years or more, 1-3 vertebral compression fractures, T5-L5 focal back pain at the level of fracture for up to six weeks, score of 5 or higher on a VAS, diminished bone density (T score −1 or less) on a dual energy x ray absorptiometry (DEXA) scan, 15% or more loss of vertebral height,

and bone edema on magnetic resonance imaging. The Dutch multicenter RCT included 180 participants requiring treatment for acute osteoporotic vertebral compression fractures and

randomised them to either vertebroplasty (n=91) or a sham procedure (n=89). Main outcome measure was mean reduction in visual analogue scale (VAS) scores at one day,

one week, and one, three, six, and 12 months. Secondary outcome measures were the differences between groups for changes in the quality of life for osteoporosis and Roland-Morris disability questionnaire scores during 12 months’ follow-up.

 

In the FREE trial, Van Meirhaeghe (2013) compared the efficacy and safety of balloon kyphoplasty (BKP, N=149) and nonsurgical management (NSM, N=151) with NSM alone during 24 months in patients with painful vertebral compression fractures. NSM consisted of analgesics, bed rest, bracing, physiotherapy, rehabilitation programs, and walking aids according to standard practices of participating physicians and hospitals. Patients were eligible for enrolment if they had one to three vertebral fractures from T5 through L5. At least one fracture needed to have edema assessed by MRI and at least one had to show a 15% loss of height or more; single fractures were to meet both these criteria. In addition to the 1- and 2-year quality of life (QOL) outcomes of the fracture reduction evaluation, this multinational multicenter study reported timed up and go, clinical and radiographical outcomes, with a follow-up of 24 months.

 

Table 2 provides an overview of the study characteristics of the individual trials included in the current analysis.

 

Five studies reported in the systematic review were not included in the current analysis, because the presence of bone edema was not mentioned as an inclusion criterion, or it was unclear for how many patients an MRI was performed: Chen, 2014; Chen, 2015; Comstock, 2013 (INVEST trial); Kallmes, 2009; Rousing, 2010.

 

Table 1. Inclusion criteria

Study

Fracture

Bone edema

Pain

Blasco, 2012

Acute, painful osteoporotic vertebral fracture confirmed by spine radiograph

Edema present on MRI or positive bone scan if MRI was contraindicated

Pain at least 4 on a 0-10 VAS

Chen, 2014

Osteoporotic thoracolumbar vertebral compression fractures

Low signal on T1-weighted and high signal on T2-weighted MRI scans

Persistent back pain

Clark, 2016

VAPOUR

One or two compression fractures of the vertebrae in the areas T4 to L5 in the previous 6 weeks.

Fracture confirmed with a sagittal STIR (short tau inversion recovery) and sagittal T1 weighted MRI scan of the spine.

Pain which is not adequately controlled by oral analgesia or which has required hospitalisation and prevents early mobilisation

Farrokhi, 2011

Vertebral compression fracture

Vacuum phenomenon or bone marrow edema of the vertebral fracture on MRI

Severe back pain refractory to analgesic medication

Klazen, 2010

VERTOS II

Vertebral compression fracture on spine radiograph

Bone edema of vertebral fracture on MRI

Pain on 0-10 VAS of 5 or more

 

Voormolen, 2007

Height loss of the vertebral body of a minimum of 15% on plain radiograph of

the spine

Bone edema of the affected vertebra on MRI

Back pain due to vertebral fracture refractive to medical therapy

Yang, 2016

Vertebral compression fracture after acute minor or mild trauma

Low signal on T1-weighted and high signal on T2-weighted in MRI

Back pain 5 or more on a 0 to 10 cm VAS

Tantawi, 2022

One or two vertebral fractures

due to primary or secondary osteoporosis

Bone marrow edema in MRI (acute fracture)

Acute back pain

Buchbinder, 2009

Presence of one or two recent vertebral fractures

Bone edema, a fracture line, or both within the vertebral body on MRI or positive bone scan if MRI contraindicated

Back pain

Firanescu, 2018 VERTOS IV

Vertebral fracture on X-ray of the spine

Bone edema on MRI of the fractured vertebral body

Pain

Van Meirhaeghe, 2013

One to three vertebral fractures from T5 through L5

At least one fracture needed to have edema assessed by MRI

Back pain score of 4 points or more on a 0–10 scale.

MRI: magnetic resonance imaging; VAS: visual analogue scale.

 

Table 2. study characteristics

Study

N

(I/C)

Mean age (y)

(I/C)

% female

(I/C)

Fracture location

Duration of back pain (I/C, in weeks)

Percutaneous vertebroplasty versus usual care/conservative therapy

Blasco, 2012

125

(61/64)

73.3

(71.3/75.3)

73.0/82.0

T4–L5

20.0 ± 13.7/20.4 ± 18.6

Chen, 2014

89

(46/43)

65.5 (64.6/66.5)

69.6/69.8

Not specified

28.28 ± 12/ 27.24 ± 10.04

Farrokhi, 2011

82

(40/42)

73.02 (72.0/74.0)

75.0/71.0

T4–L5

27 (4–50)/ 30 (6–54)

Klazen, 2010

VERTOS II

202

(101/101)

75.3 (75.2/75.4)

75.3/73.7

T5–L5

4.2 ± 2.4/ 3.8 ± 2.3

Voormolen, 2007

34

(18/16)

73.0 (72.0/74.0)

78.0/88.0

T6–L5

12.1 (6.7–19.7)/ 10.9 (6.6–20.1)

Yang, 2016

107

(56/51)

76.7 (77.1/76.2)

64.3/64.7

T5–L5

1.2 ± 0.66/ 1.2 ± 0.66

Tantawi, 2022

70

(35/35)

67.2/66.9

74.3/68.6

T5-L5

Not specified

(< 1 month)

Percutaneous vertebroplasty versus sham operation

Buchbinder, 2009

78

(38/40)

76.6 (74.2/78.9)

82.0/78.0

Not specified

9 (3.8–13.0)/ 9.5 (3.0–17.0)

Firanescu, 2018

VERTOS IV

176

(90/86)

75.8 (74.7/76.9)

74.0/77.0

T5-L5

5.28 (4.14-7.43)/ 5.14 (3.43-7.29)

Clark, 2016

VAPOUR

120 (61/59)

80.5 (80.0/81.0)

79.0/68.0

T4–L5

2.8 + 1.6/

2.4 + 1.4

Balloon kyphoplasty versus usual care/conservative therapy

Van Meirhaeghe, 2013

300

(149/151)

72.2/74.1

77.2/77.5

T5-L5

Not specified

(≤ 3 months)

 

Results

Results are presented as mean ± standard deviation (SD). Pooled differences are (standardized) mean difference or risk ratio (95% confidence interval, CI).

 

1. Percutaneous vertebroplasty versus sham operation

Pain (critical outcome)

Li (2022) reported postoperative pain assessed by Visual Analogue Scale (VAS) 0-10, in which a higher score indicates more pain.

 

At 2 weeks, the study by Clark (2016) reported 3.9 ± 2.8 in the vertebroplasty group (N=41) versus 4.9 ± 2.8 in the sham group (N=47). The difference of 1.00 (95% CI -2.17 to 0.17) was not considered clinically relevant. Buchbinder (2009) and Firanescu (2018) reported pain improvement and pain score, respectively, at 1 and 3 months. As depicted in figure 1, the vertebroplasty groups (N=125) scored better than the sham groups (N=124), but differences were not considered clinically relevant.

 

At 12 months, Firanescu (2018) reported 2.72 ± 2.58 in the vertebroplasty group (N=90) versus 3.17 ± 2.68 in the sham group (N=86). The difference of -0.45 (95% CI -1.23 to 0.33) was not considered clinically relevant.

Figure 1. Pain after vertebroplasty versus sham operation


Pain assessed by visual analog score (VAS) 0-10, higher score indicates more pain. Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Disease-specific quality of life (critical outcome)

Buchbinder (2018) and Firanescu (2018) reported disease-specific quality of life as assessed by QUALEFFO questionnaire (score 0 to 100), where higher score indicates worse QOL. The results at 1 week and 3, 6 and 12 months are outlined in figure 2. At all time points, differences between the groups were small and not considered clinically relevant.

 

Figure 2. Disease-specific quality of life after vertebroplasty versus sham operation

Disease-specific quality of life as assessed by QUALEFFO questionnaire (score 0 to 100), higher score indicates worse QOL. Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Activities/limitations of daily living

Buchbinder (2018) and Firanescu (2018) reported disability using the Roland-Morris Disability Questionnaire (RMDQ), ranging from 0 to 24, with a higher score indicating more disability. At 1-2 weeks, the pooled mean difference was 0.35 (95% CI -1.79 to 2.49; total N=426) in favor of the sham group, as depicted in figure 3. At 3 months, the pooled mean difference was -0.81 (95% CI -3.15 to 1.52; total N=341) in favor of the vertebroplasty group. At 6 months, the pooled mean difference was -1.82 (95% CI -4.12 to 0.47; total N=243) in favor of the vertebropasty group. Overall, the differences were not considered clinically relevant.

Figure 3. Disability after vertebroplasty versus sham operation

Disability as assessed by Roland–Morris Disability Questionnaire (RMDQ, 0 to 24), higher score indicates more disability. Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Secondary fractures

Firanescu (2018) reported new fractures during the 12-month follow-up of the study. 31 new fractures occurred in 15/76 participants in the vertebroplasty group and 28 fractures in 19/76 participants in the sham procedure group. The risk difference of -0.05 (95% CI -0.18 to 0.08) in favor of vertebroplasty was not considered clinically relevant.

 

Adverse events

Buchbinder (2009) and Firanescu (2018) reported adverse events and found a risk difference of 0 and 2%, respectively, as outlined in figure 4. The differences were not considered clinically relevant.

Figure 4. Adverse events after vertebroplasty versus sham operation

Adverse events other than secondary fractures. Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Participation (including work)

The outcome participation was not reported in the included publications.

 

Mortality

The outcome mortality was not reported in the included publications.

 

Level of evidence of the literature

The level of evidence regarding all outcome measures was based on randomized controlled studies and therefore started at high.

 

For the outcome measures pain, QOL and activities/limitations in daily living, the level of evidence was downgraded by one level to MODERATE because the confidence interval crossed the limit of clinical decision-making (imprecision, -1).

 

For the outcome measure secondary fractures, the level of evidence was downgraded by 2 levels to LOW because only a single study reported the outcome measure and because of the limited number of included patients (both imprecision, -2).

 

For the outcome measure adverse events, the level of evidence was downgraded by 3 levels to VERY LOW because of conflicting results (inconsistency, -1) and due to the very limited number of events (imprecision, -2).

 

For the outcome measures participation and mortality, the level of evidence could not be determined due to a lack of data.

 

2. Percutaneous vertebroplasty versus usual care

 

Pain (critical outcome)

Li (2022) and Tantawi (2022) reported postoperative pain assessed by Visual Analogue Scale (VAS) 0-10, in which a higher score indicates more pain. Pain scores are presented in figure 5.

 

At 1-week follow-up, the mean difference based on 4 studies was -2.98 (95% CI -4.91 to -1.04) in favor of vertebroplasty (N=218) compared with usual care (N=213) . At 1-month follow-up, Chen (2014) and Klazen (2010) reported mean differences of -1.20 (95% CI -1.41 to -0.99; N=89) and -2.40 (95% CI -3.13 to -1.67; N=188), respectively. At 3-month follow-up, the mean difference from 3 studies was -1.74 (95% CI -2.44 to -1.04) in favor of vertebroplasty (N=173) compared with usual care (N=164). At 6-month follow-up, the mean difference based on 3 studies was -1.55 (95% CI -1.82 to -1.29) in favor of vertebroplasty (N=175) compared with usual care (N=166). At 12-month follow-up, the mean difference from 3 studies was -1.63 (95% CI -1.82 to -1.37) in favor of vertebroplasty (N=170) compared with usual care (N=159). Only the difference in pain relief at 1 week in favour of PVP was considered clinically relevant.

Figure 5. Pain after vertebroplasty versus usual care

Pain assessed by visual analog score (VAS) 0-10. Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Disease-specific quality of life (critical outcome)

Buchbinder (2018) reported disease-specific quality of life as assessed by the QUALEFFO questionnaire (score 0 to 100), where a higher score indicates worse QOL. The scores at 2 weeks to 12 months follow-up are presented in figure 6.

 

At 2-week follow-up, the mean difference based on 4 studies was -5.66 (95% CI -11.65 to 0.33) in favor of vertebroplasty (N=231) compared with usual care (N=217). At 3-month follow-up, the mean difference based on 3 studies was -5.83 (95% CI -15.41 to -3.75) in favor of vertebroplasty (N=213) compared with usual care (N=202). At 6-month follow-up, the mean difference based on 3 studies was -5.16 (95% CI -15.02 to 4.70) in favor of vertebroplasty (N=213) compared with usual care (N=202). At 12-month follow-up, the mean difference from 3 studies was -3.40 (95% CI -9.90 to -3.11) in favor of vertebroplasty (N=213) compared with usual care (N=202). The differences were not considered clinically relevant.

Figure 6. Disease-specific quality of life after vertebroplasty versus usual care

Disease-specific quality of life as assessed by QUALEFFO questionnaire. Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Activities/limitations of daily living

For the outcome measure activities/limitations in daily living, Buchbinder (2018) reported disability assessed by RMDQ (0 to 24, higher score indicates more disability) and Oswestry Disability Index (ODI, 0-100, higher score indicates more disability). As presented in figure 7, the standardized mean difference based on 5 studies was -2.06 (95% CI -3.28 to -0.83) in favor of vertebroplasty (N=253) compared with usual care (N=241) at 1 to 2 weeks follow-up. At 3-month follow-up, the mean difference based on 5 studies was -2.58 (95% CI -4.05 to -1.12) in favor of vertebroplasty (N=270) compared with usual care (N=260). At 6-month follow-up, the mean difference based on 4 studies was -1.84 (95% CI -3.37 to -0.30) in favor of vertebroplasty (N=235) compared with usual care (N=226). These differences were considered clinically relevant.

Figure 7. Disability after vertebroplasty versus usual care

Disability as assessed by Roland–Morris Disability Questionnaire (RMDQ, 0-24) or Oswestry Disability Index (ODI, 0-100). Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Secondary fractures

Li (2022) and Tantawi (2022) reported secondary fractures. Based on 5 studies with follow-up ranging from 3 to 31 months, 58 secondary fractures occurred in 292 patients after vertebroplasty versus 49 fractures in 275 patients receiving usual care. The risk difference was 0.03 (95% CI -0.10 to 0.16) , as outlined in figure 8. The RR of 1.20 (95% CI 0.45 to 3.19) was not considered clinically relevant. The studies did not specify whether the secondary fracures were adjacent to the primary fractures.

 


Figure 8. Secondary fractures after vertebroplasty versus usual care

Secondary fractures after 3-31 months follow-up. Random effects model; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; Z: p-value of pooled effect.

 

Adverse events

Tantawi (2022) and Li (2022) reported adverse events (other than new fractures). Tantawi reported no events in either groupat 3 motnhs follow-up (both N=35). Yang (2016) reported 9/56 (16%) adverse events in the vertebroplasty group versus 18/51 (35%) in the usual care group at 12 months follow-up. The risk differences of 0 and 19% were not considered clinically relevant.

 

Participation (including work)

The outcome participation was not reported in the included publications.

 

Mortality

The outcome mortality was not reported in the included publications.

 

Level of evidence of the literature

The level of evidence regarding all outcome measures was based on randomized controlled studies and therefore started at high.

 

For the outcome measures pain, disease-specific quality of life and activities/limitations in daily living, the level of evidence was downgraded by 2 levels to LOW because of study limitations (risk of bias due to lack of blinding, -1), and the limited number of included patients (imprecision, -1).

 

For the outcome measures secondary fractures and adverse events, the level of evidence was downgraded by 2 levels to LOW because of conflicting results (inconsistency, -1) and the limited number of included patients (imprecision, -1).

 

For the outcome measures participation and mortality, the level of evidence could not be determined due to a lack of data.

 

3. Balloon kyphoplasty versus usual care

 

Pain (critical outcome)

Van Meirhaeghe (2013) reported pain with a VAS 0-10. At 1 month, the difference between the groups was most pronounced, with a mean (95% CI) of 3.52 (3.14 to 3.90) in the BKP group (N=149) versus 5.48 (5.08 to 5.87) in the control group (N=151), resulting in a difference of 1.96. At 3, 6, 12 and 24 months, the difference between the groups in favor of treatment was 1.59, 1.62, 0.98 and 0.83, respectively. The differences were not considered clinically relevant.

 

Quality of life (critical outcome)

Van Meirhaeghe (2013) did not report disease-specific QOL, but reported the physical component score SF-36 PCS (0-100, lower score indicates more disability). In addition, general QOL was assessed by EQ-5D (0–1). For PCS, all scores were in favor of the BKP group. At 1, 3, 6, 12 and 24 months, differences between the groups were 5.9, 4.5, 3.87, 2.1 and 2, respectively. The differences were not considered clinically relevant.

With QOL as assessed by EQ-5D, the most pronounced difference (i.e. 0.17) was reported at 1 month, with a mean (95% CI) of 0.54 (0.49 to 0.60) in the BKP group (N=149) versus 0.37 (0.31 to 0.42) in the control group (N=151). At 3, 6, 12 and 24 months, the differences between the groups in favor of treatment were 0.10, 0.13, 0.10 and 0.08, respectively. The differences were not considered clinically relevant.

 

Activities/limitations of daily living

Van Meirhaeghe (2013) reported disability with RMDQ (0 to 24). At 1 month, the difference between the groups was most pronounced, with a mean (95% CI) of 10.9 (9.9 to 11.8) in the BKP group (N=149) versus 15.1 (14.1 to 16.0) in the control group (N=151), resulting in a difference of 4.2. At 3, 6, 12 and 24 months, the differences between the groups in favor of treatment were 3.69, 3.05, 2.9 and 1.43, respectively. The differences were not considered clinically relevant.

 

Secondary fractures

Van Meirhaeghe (2013) reported 11/149 (7%) new fractures in the BKP group, of which 5 were considered possibly related to cement by local investigator. In the control group, 7/151 (5%) new fractures were observed. The risk difference of 0.03 (-0.03 to 0.08) was not considered clinically relevant.

 

Adverse events

Van Meirhaeghe (2013) reported adverse events within 30 days of surgery/enrollment and found 49/149 (33%) in the BKP group versus 55/151 (36%) in the control group. The risk difference of -0.04 (-0.14 to 0.07) was not considered clinically relevant. For serious adverse events within 30 days of surgery/enrollment, the study reported 24/149 (16%) in the BKP group versus 17/151 (11%) in the control group. The risk difference of 0.05 (-0.03 to 0.13) was not considered clinically relevant.

 

Participation (including work)

The outcome participation was not reported in the included publications.

 

Mortality

The outcome mortality was not reported in the included publications.

 

Level of evidence of the literature

The level of evidence regarding all outcome measures was based on a randomized controlled trial and therefore started at high.

 

For the outcome measures pain, disease-specific quality of life and activities/limitations in daily living, the level of evidence was downgraded to VERY LOW because of study limitations (risk of bias due to lack of blinding, considerable loss to follow-up, -2), the limited number of included patients (imprecision, -1) and publication bias (single study, sponsored, -1).

 

For the outcome measures secondary fractures and adverse events, the level of evidence was downgraded by 2 levels to VERY LOW because of study limitations (risk of bias due to considerable loss to follow-up, -1), the limited number of included patients (imprecision, -1) and publication bias (single study, sponsored, -1).

 

For the outcome measures participation and mortality, the level of evidence could not be determined due to a lack of data.

A systematic review of the literature was performed to answer the following question: What are the (un)favorable effects of percutaneous vertebroplasty or balloon kyphoplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared to a sham operation or usual care?

 

PICO 1

P: patients aged 50 years or older with a symptomatic stable vertebral fracture (bone edema in the fractured vertebra on MRI and local pain);

I: percutaneous vertebroplasty;

C: sham operation;

O: pain, quality of life, activities/limitations of daily living, secondary fractures, (other) adverse events, participation (including work), mortality.

 

PICO 2

P: patients aged 50 years or older with a symptomatic stable vertebral fracture (bone edema in the fractured vertebra on MRI and local pain);

I: percutaneous vertebroplasty;

C: usual care / conservative treatment;

O: pain, quality of life, activities/limitations of daily living, secondary fractures, (other) adverse events, participation (including work), mortality.

 

PICO 3

P: patients aged 50 years or older with a symptomatic stable vertebral fracture (bone edema in the fractured vertebra on MRI and local pain);

I: balloon kyphoplasty;

C: usual care / conservative treatment;

O: pain, quality of life, activities/limitations of daily living, secondary fractures, (other) adverse events, participation (including work), mortality.

 

Relevant outcome measures

The guideline development group considered pain and quality of life (QOL) as critical outcome measures for decision making; and activities/limitations of daily living, secondary fractures, complications and participation (including work) as important outcome measures for decision making.

 

The working group defined the outcome measure pain as quantified by a VAS score, NRS score, and/or use of pain medication. Most relevant time points for pain were considered 2 weeks, 3 months and 6 months after treatment. For quality of life, the osteoporosis-specific QUALEFFO was preferred over EQ5D. The working group did not define the other outcome measures a priori, but followed the definitions as used in the studies.

 

The working group defined for pain and QOL a 20% reduction of the maximum score as a minimal clinically important difference for the patient, 30% of the baseline score for RMDQ (Jordan, 2006), 9.5 points for ODI (Monticone, 2012), 25% for risk ratios and 0.5 for standardized mean differences.

 

Search and select (Methods)

The databases Embase and Ovid/Medline were searched with relevant search terms from 2017 until 23-6-2022. The detailed search strategy is depicted under the tab Methods. The systematic literature search resulted in 387 unique hits. Studies were selected based on the following criteria: (1) randomized controlled trials or a meta-analysis thereof; (2) comparison between percutaneous vertebroplasty and sham operation or conservative treatment; (3) patients with at least one symptomatic stable vertebral fracture (inclusion criteria included presence of bone edema and local back pain). Thirty studies were initially selected based on title and abstract screening. After reading the full text, 26 studies were excluded (see the table with reasons for exclusion under the tab Methods), and two meta-analyses and two RCTs were included. In addition, one original RCT reported in a meta-analysis was analyzed to retrieve all relevant outcome measures.

 

Results

Five studies were included in the analysis of the literature. Important study characteristics and results are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.

  1. Buchbinder R, Johnston RV, Rischin KJ, Homik J, Jones CA, Golmohammadi K, Kallmes DF. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev. 2018 Apr 4;4(4):CD006349. doi: 10.1002/14651858.CD006349.pub3. Update in: Cochrane Database Syst Rev. 2018 Nov 06;11:CD006349. PMID: 29618171; PMCID: PMC6494647.
  2. Carli D, Venmans A, Lodder P, Donga E, van Oudheusden T, Boukrab I, Schoemaker K, Smeets A, Schonenberg C, Hirsch J, de Vries J, Lohle P. Vertebroplasty versus Active Control Intervention for Chronic Osteoporotic Vertebral Compression Fractures: The VERTOS V Randomized Controlled Trial. Radiology. 2023 Jul;308(1):e222535. doi: 10.1148/radiol.222535. PMID: 37462495.
  3. Jordan K, Dunn KM, Lewis M, Croft P. A minimal clinically important difference was derived for the Roland-Morris Disability Questionnaire for low back pain. J Clin Epidemiol. 2006 Jan;59(1):45-52. Doi: 10.1016/j.jclinepi.2005.03.018. Epub 2005 Nov 4. PMID: 16360560.
  4. Firanescu CE, de Vries J, Lodder P, Venmans A, Schoemaker MC, Smeets AJ, Donga E, Juttmann JR, Klazen CAH, Elgersma OEH, Jansen FH, Tielbeek AV, Boukrab I, Schonenberg K, van Rooij WJJ, Hirsch JA, Lohle PNM. Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): 96andomized sham controlled clinical trial. BMJ. 2018 May 9;361:k1551. Doi: 10.1136/bmj.k1551. Erratum in: BMJ. 2018 Jul 4;362:k2937. Smeet AJ [corrected to Smeets AJ]. PMID: 29743284; PMCID: PMC5941218.
  5. Firanescu CE, Venmans A, de Vries J, Lodder P, Schoemaker MC, Smeets AJ, Donga E, Juttmann JR, Schonenberg K, Klazen CAH, Elgersma OEH, Jansen FH, Fransen H, Hirsch JA, Lohle PNM. Predictive Factors for Sustained Pain after (sub)acute Osteoporotic Vertebral Fractures. Combined Results from the VERTOS II and VERTOS IV Trial. Cardiovasc Intervent Radiol. 2022 Jun 9. Doi: 10.1007/s00270-022-03170-7. Epub ahead of print. PMID: 35680675.
  6. Klazen CA, Verhaar HJ, Lohle PN, Lampmann LE, Juttmann JR, Schoemaker MC, van Everdingen KJ, Muller AF, Mali WP, de Vries J. Clinical course of pain in acute osteoporotic vertebral compression fractures. J Vasc Interv Radiol. 2010 Sep;21(9):1405-9. Doi: 10.1016/j.jvir.2010.05.018. PMID: 20800779.
  7. Li WS, Cai YF, Cong L. The Effect of Vertebral Augmentation Procedure on Painful OVCFs: A Meta-Analysis of Randomized Controlled Trials. Global Spine J. 2022 Apr;12(3):515-525. Doi: 10.1177/2192568221999369. Epub 2021 Mar 11. PMID: 33706568; PMCID: PMC9121160.
  8. Mathis JM, Ortiz AO, Zoarski GH. Vertebroplasty versus kyphoplasty: a comparison and contrast. AJNR Am J Neuroradiol. 2004 May;25(5):840-5. PMID: 15140732; PMCID: PMC7974486.
  9. Nieuwenhuijse MJ, van Erkel AR, Dijkstra PD. Percutaneous vertebroplasty for subacute and chronic painful osteoporotic vertebral compression fractures can safely be undertaken in the first year after the onset of symptoms. J Bone Joint Surg Br. 2012 Jun;94(6):815-20. doi: 10.1302/0301-620X.94B6.28368. PMID: 22628598.
  10. Pron G, Hwang M, Smith R, Cheung A, Murphy K. Cost-effectiveness studies of vertebral augmentation for osteoporotic vertebral fractures: a systematic review. Spine J. 2022 Aug;22(8):1356-1371. doi: 10.1016/j.spinee.2022.02.013. Epub 2022 Mar 5. PMID: 35257838.
  11. Tantawy MF. Efficacy and safety of percutaneous vertebroplasty for osteoporotic vertebral compression fractures. Journal of Orthopaedics, Trauma and Rehabilitation. 2022 Jun;29(1):22104917221082310.
  12. Van Meirhaeghe J, Bastian L, Boonen S, Ranstam J, Tillman JB, Wardlaw D; FREE investigators. A randomized trial of balloon kyphoplasty and nonsurgical management for treating acute vertebral compression fractures: vertebral body kyphosis correction and surgical parameters. Spine (Phila Pa 1976). 2013 May 20;38(12):971-83. doi: 10.1097/BRS.0b013e31828e8e22. PMID: 23446769; PMCID: PMC3678891.
  13. Voormolen MH, van Rooij WJ, Sluzewski M, van der Graaf Y, Lampmann LE, Lohle PN, Juttmann JR. Pain response in the first trimester after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures with or without bone marrow edema. AJNR Am J Neuroradiol. 2006 Aug;27(7):1579-85. PMID: 16908585; PMCID: PMC7977523.

Evidence table for systematic review of RCTs and observational studies (intervention studies)

 

Research questions:             

1. What are the benefits and harms of percutaneous vertebroplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with sham operation?

2. What are the benefits and harms of percutaneous vertebroplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with usual care?

3. What are the benefits and harms of balloon kyphoplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with usual care?

Study reference

Study characteristics

Patient characteristics

Intervention (I)

Comparison / control (C)

 

Follow-up

Outcome measures and effect size

Comments

Li, 2022

SR and meta-analysis of RCTs

 

Literature search up to March, 2020.

 

A: Blasco, 2012

B: Chen, 2014

C: Farrokhi, 2011

D: Klazen, 2010

F: Voormolen, 2007

G: Yang, 2016

H: Buchbinder, 2009

I: Frianescu, 2018

J: Clark, 2016

 

Study design: RCT

 

Setting and Country:

SR: Single-center, China

A: Spain

B: China

C: Iran

D: the Netherlands and Belgium

F: the Netherlands

G: China

H: Australia and New Zealand

I: the Netherlands

J:

 

Source of funding and conflicts of interest:

This study

was supported by National Natural Science Foundation of China (NO:

81 871 803). The funder had no role in the study design, data collection

and analysis, decision to publish, or preparation of the manuscript.

The author(s) declared no potential conflicts of interest with respect to

the research, authorship, and/or publication of this article.

Inclusion criteria SR:

(1) conducting the comparison between VAP (PVP and/ or BKP) and NSM (conservative treatment or sham procedure); (2) patients aged 50 or older with painful OVCFs; (3) describing at least one outcome of interest.

 

Exclusion criteria SR:

Interventions were different from the previous description; or original data was lost after confirmation with corresponding author.

 

20 studies included in systematic review, 10 of which are in line with the PICO of the current analysis

 

Important patient characteristics at baseline:

 

N, mean age (y)

A: 125, 73.3

B: 89, 65.5

C: 82, 73.02

D: 202, 75.3

F: 34, 73.0

G: 107, 76.7

H: 78, 76.6

I: 176, 75.8

J: 120, 81

 

Sex (% female, I/C):

A: 73/82

B: 70/70

C: 75/71

D: 75/74

F: 78/88

G: 64/65

H: 82/78

I: 74/77

J: 79/68

 

Fracture location

A: T4-L5

B: Not specified

C: T4-L5

D: T5-L5

F: T6-L5

G: T5-L5

H: Not specified

I: T5-L5

J: T4-L5

 

Duration of back pain (I/C, in weeks)

A: 20.0 ± 13.7/20.4 ± 18.6

B: 28.28 ± 12/ 27.24 ± 10.04

(< 6 weeks)

C: 27 (4–50)/ 30 (6–54)

D: 4.2 ± 2.4/ 3.8 ± 2.3

F: 12.1 (6.7–19.7)/ 10.9 (6.6–20.1)

G: 1.2 ± 0.66/ 1.2 ± 0.66

H: 9 (3.8–13.0)/ 9.5 (3.0–17.0)

I: 5.28 (4.14-7.43)/ 5.14 (3.43-7.29)

J: 77/81% 1-3 weeks, 23/19% 4-6 weeks

 

Groups were comparable at baseline

Percutaneous vertebroplasty (PVP)

 

 

 

Conservative care or sham1

 

A-G: Conservative therapy. For details see Buchbinder, 2018

H-J: Sham vertebroplasty

 

 

End-point of follow-up:

 

A: 12 months

B: 31 months

C: 36 months

D: 12 months

F: 2 weeks

G: 12 months

H: 24 months

I: 12 months

J: 6 months

 

For how many participants were no complete outcome data available?

Not specified in SR

 

 

 

Pain

Visual Analogue Scale (VAS) 0-10, higher score indicates more pain.

Effect measure: mean difference [95% CI]:

 

PVP vs usual care

1 week

B: -1.60 [-1.85, -1.35]

C: -3.10 [-3.89, -2.31]

D: -2.10 [-2.81, -1.39]

Pooled effect (random effects model): -2.98 [-4.91, -1.04] in favor of PVP. I2 99%.

 

1 month

PVP vs usual care

B: -1.20 [-1.41, -0.99]

D: -2.40 [-3.13, -1.67]

 

3 months

A: Blasco, 2012

B: -1.40 [-1.65, -1.15]

C: Farrokhi, 2011

D: -1.40 [-2.21, -0.59]

 

6 months

B: -1.50 [-1.80, -1.20]

C: -1.90 [-2.69, -1.11]

D: -1.60 [-2.44, -0.76]

Pooled effect (random effects model): -1.55 [-1.82, -1.29] in favor of PVP. I2 0%.

 

12 months

B: -1.60 [-1.88, -1.32]

C: -1.90 [-2.77, -1.03]

D: -1.60 [-2.45, -0.75]

 

PVP vs sham

2 weeks

J:

in favor of PVP

 

1 month

PVP vs usual care

H: -0.60 [-1.96, 0.76]

I: -0.41 [-1.14, 0.32]

in favor of PVP

 

3 months

H: -0.70 [-2.12, 0.72]

I: -0.21 [-0.96, 0.54]

in favor of PVP

 

12 months

I: -0.45 [-1.23, 0.33]

in favor of PVP

 

Quality of life

Not reported per individual study. SR Buchbinder used.

 

Activities/limitations of daily life

Not reported per individual study. SR Buchbinder used.

 

New vertebral fracture

PVP vs usual care

A: 3.46 [1.72, 6.96]

B: 0.53 [0.17, 1.70]

D: 0.56 [0.34, 0.93]

G: 1.14 [0.32, 4.01]

Pooled effect (random effects model): 1.09 [0.46, 2.61] in favor of PVP. I2 79%.

 

PVP vs sham

I: 0.79 [0.43, 1.44]

 

Adverse events (other than fractures)

PVP vs usual care

G: 0/35 in both groups

 

PVP vs sham

H: 1.05 [0.16, 7.10]

I: 4.78 [0.23, 98.16]

J:

Pooled effect (random effects model): 1.31 [0.38, 4.51] in favor of sham. I2 0%.

Author’s conclusions:

PVP is associated with on beneficial effect on treatment of painful OVCFs compared with sham procedure. The optimal timing for VAP remains unclear based

on existing data. The indication and timing of VAP need further research. More independently high-quality RCTs with sufficiently large sample sizes reporting careful patient selection, strict inclusion criteria and cost-effectiveness are needed.

 

Studies in systematic review excluded from current analysis:

Chen, 2010: insufficient information about inclusion criteria (and original article in Chinese)

Chen, 2015: insufficient information about inclusion criteria (and original article in Chinese)

Comstock, 2013: bone edema not an inclusion criterion

Berenson, 2011: balloon kyphoplasty

Boonen, 2011: balloon kyphoplasty

Li, 2017: balloon kyphoplasty

Van Meirhaeghe, 2013: balloon kyphoplasty

Rousing, 2010: MRI performed in limited precentage of patients, only when more than one fracture;

Xie, 2011: balloon kyphoplasty

Staples, 2015: follow-up study, no relevant outcomes

 

Buchbinder, 2018

 

Cochrane review

SR and meta-analysis of RCTs

 

Literature search up to 15 November 2017.

 

A: Blasco, 2012

B: Chen, 2014

C: Farrokhi, 2011

D: Klazen, 2010

F: Voormolen, 2007

G: Yang, 2016

H: Buchbinder, 2009

J: Clark, 2016

 

Study design: RCT

 

Setting and Country:

SR: Single-center, China

A: Spain

B: China

C: Iran

D: the Netherlands and Belgium

F: the Netherlands

G: China

H: Australia and New Zealand

J:

 

Source of funding and conflicts of interest:

R Buchbinder was a principal investigator of Buchbinder 2009. D Kallmes was a principal investigator of Kallmes 2009 and Evans 2015.

D Kallmes participated in IDE trial for BenvenueMedical spinal augmentation device. He is a stockholder,MarbleheadMedical, LLC, Development of spine augmentation devices. He holds a spinal fusion patent license, unrelated to spinal augmentation/ vertebroplasty. For all other authors there were no known declarations of interest.

Inclusion criteria SR:

(1) conducting the comparison between VAP (PVP and/ or BKP) and NSM (conservative treatment or sham procedure); (2) patients aged 50 or older with painful OVCFs; (3) describing at least one outcome of interest.

 

Exclusion criteria SR:

Interventions were different from the previous description; or original data was lost after confirmation with corresponding author.

 

19 studies included in systematic review, 8 of which are in line with the PICO of the current analysis

 

Important patient characteristics at baseline:

See Li, 2022

Percutaneous vertebroplasty

 

A: percutaneous vertebroplasty and usual care

B: percutaneous vertebroplasty

C: percutaneous vertebroplasty

D: percutaneous vertebroplasty

F: percutaneous vertebroplasty

G: percutaneous vertebroplasty

H: percutaneous vertebroplasty

J: percutaneous vertebroplasty

 

 

Conservative/usual care or sham1

 

A: usual care alone: analgesics with a standardised format and nasal calcitonin for

the first month

B: Conservative therapy: participants in the conservative care group were hospitalised and offered brace treatment, analgesia, general mobilising physiotherapy and treatment for osteoporosis including calcitriol and alendronate.

C: usual care: 250 mg acetaminophen with codeine twice daily, 400 mg ibuprofen twice a day, 1000 mg calcium daily, 400 IU vitamin D daily, 70 mg alendronate orally once weekly, and 200 IU calcitonin daily. Analgesia could be increased by the treating physician as needed.

D: Usual care: Optimal Pain Management consisted of the use of analgesics in ascending order Acetaminophen; Tramadol; Tramadol and acetaminophen; Morphine; Non-steroidal anti-inflammatory drugs (NSAIDs) for those already using or intolerant to opiate-derivatives. Corrections in dose and classification of pain medication were made when necessary by the internist, and in most cases physiotherapy was prescribed

F: usual care: participants were treated with the following medications, in ascending order Paracetamol (acetaminophen); Non-steroidal anti-inflammatory drugs (NSAIDs); Opioids. The dose per day of prescribed analgesics was regulated, and the class of pain medication was adjusted as needed.

G: Usual care: patients were confined to horizontal bed rest for the initial 2 weeks after diagnosis. Then, they were encouraged to stand up and walk with brace and assistance. The bed rest time was extended if the back pain worsened when they stood up and walked. For pain medication, nonsteroidal anti-inflammatory drugs (NSAIDs) were prescribed for every patient. Additional analgesics, such as tramadol and morphine, would be added in case NSAIDs were not effective. Two weeks after diagnosis, physical therapy was started.

H: Sham vertebroplasty

J: Sham vertebroplasty

 

End-point of follow-up:

 

A: 12 months

B: 31 months

C: 36 months

D: 12 months

E: 12 months

F: 2 weeks

G: 12 months

H: 24 months

J: 12 months

 

For how many participants were no complete outcome data available?

Not specified.

 

 

 

Quality of life

Scores on the Quality of Life Questionnaire of the European Foundation of Osteoporosis (QUALEFFO)

range from 0 to 100, higher scores are indicating worse quality of life.

Effect measure: mean difference [95% CI]

 

PVP vs usual care

1-2 weeks

A: 3.16 [-3.30, 9.62]

D: -3.90 [-8.27, 0.47]

F: -14.04 [-24.39, -3.69]

G: -9.47 [-11.68, -7.26]

Pooled effect (random effects model): -5.66 [-11.65, 0.33] in favor of vertebroplasty. I2 83%

 

3 months

A: 2.06 [-4.36, 8.48]

D: -4.60 [-9.48, 0.28]

G: -13.88 [-15.95, -11.81]

Pooled effect (random effects model): -5.83 [-15.41, 3.75] in favor of vertebroplasty. I2 93%

 

6 months

A: 2.30 [-3.84, 8.44]

D: -3.54 [-8.77, 1.69]

G: -13.30 [-15.35, -11.25]

Pooled effect (random effects model): -5.16 [-15.02, 4.70] in favor of vertebroplasty. I2 93%

 

12 months

A: 2.31 [-4.12, 8.74]

D: -2.48 [-7.72, 2.76]

G: -8.42 [-10.50, -6.34]

Pooled effect (random effects model): -3.40 [-9.90, 3.11] in favor of vertebroplasty. I2 84%

 

PVP vs sham

1 week

H: -4.10 [-7.90, -0.30]

J:

 

3 months

H: 0.40 [-4.58, 5.38]

J:

 

6 months

H: 0.30 [-5.93, 6.53]

J:

 

12 months

H: -2.10 [-8.21, 4.01]

J:

 

Disability

Scores either on the Roland – Morris Disability Questionnaire (RMDQ) range from 0 to 24, higher scores

indicating worse physical functioning, or on Oswestry Disability Index (ODI, 0-24).

 

PVP vs usual care

1-2 weeks

B: -1.60 [-2.08, -1.12]

C: -5.00 [-5.89, -4.10]

D: -0.40 [-0.69, -0.10]

F: -1.32 [-2.07, -0.57]

G: -2.18 [-2.66, -1.70]

SMD (random effects model): --2.06 [-3.28, -0.83] in favor of vertebroplasty. I2 97%

 

3 months

B: -2.33 [-2.87, -1.78]

C: -5.51 [-6.47, -4.54]

D: -0.39 [-0.68, -0.10]

G: -2.89 [-3.43, -2.34]

SMD (random effects model): -2.74 [-4.60, -0.88] in favor of vertebroplasty. I2 98%

 

6 months

B: -0.20 [-0.62, 0.22]

C: -4.80 [-5.67, -3.93]

D: -0.25 [-0.54, 0.04]

G: -2.28 [-2.77, -1.79]

SMD (random effects model): -1.84 [-3.37, -0.30] in favor of vertebroplasty. I2 98%

 

PVP vs sham

RMDQ

1-2 weeks

H: 2.20 [-0.48, 4.88]

J:

 

3 months

H: 1.60 [-1.66, 4.86]

 

6 months

H: -0.40 [-3.36, 2.56]

Author’s conclusions:

Our review does not support a role of vertebroplasty for the

treatment of acute or subacute osteoporotic vertebral fractures in

routine clinical care. There were no demonstrable clinically important

benefits compared with a placebo (sham procedure) and

subgroup analyses indicated that results did not differ according to duration of pain ≤ 6 weeks versus > 6 weeks.

 

Evidence table for intervention studies (randomized controlled trials and non-randomized observational studies [cohort studies, case-control studies, case series])

 

Research questions:             

1. What are the benefits and harms of percutaneous vertebroplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with sham operation?

2. What are the benefits and harms of percutaneous vertebroplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with usual care?

3. What are the benefits and harms of balloon kyphoplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with usual care?

Study reference

Study characteristics

Patient characteristics 

Intervention (I)

Comparison / control (C)

 

Follow-up

Outcome measures and effect size 

Comments

Tantawi, 2022

Type of study:

RCT

 

Setting and country:

Single-center, Egypt

 

Funding and conflicts of interest:

The author(s) received no financial support for the research, authorship, and/or publication of this article.

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Inclusion criteria:

Painful OVCFs; Evidence of osteoporosis (DEXA); Bone marrow edema in MRI (acute fracture); Pain duration less than one month; Vertebral level between thoracic 5 and lumbar 5 (T5-L5)

 

Exclusion criteria:

• Bleeding disorders incurable

• Retropulsion of bone fragment into the spinal canal

• Presence of infection (local or systemic)

• Unstable cardiopulmonary state

• Spinal cord compression

• Pathological fractures due to metastasis

• Spinal instability

• Fractures more than 80% of vertebral height

 

N total at baseline:

Intervention: 35

Control: 35

 

Important prognostic factors2:

age ± SD:

I: 67.20±2.112

C: 66.91±1.915

 

Sex:

I: 26/35 74.3% F

C: 24/35 68.6% F

 

Baseline pain (VAS 0-10)

I: 8.66±0.968

C: 8.40±0.914

 

Baseline Oswestry disability index

I: 60.57±7.648

C: 59.71±9.544

 

Groups were comparable at baseline

Percutaneous vertebroplasty (PVP)

 

PVP was done under general anesthesia using the transpedicular

approach. The intervention was done with the

patient in the prone position

 

 

Conservative treatment

 

Regular physical therapy program in addition

to medical treatment for three months. The conservative

therapy involved pain medication, osteoporosis

medication, topical analgesics and bracing.

Length of follow-up:

3 months

 

Loss-to-follow-up:

none

 

Incomplete outcome data:

none

 

 

Pain

(VAS 0-10, higher values indicate more pain)

1 week

I: 2.71±0.622

C: 7.80±1.132

P=0.000

 

3 months

I: 3.06±0.802

C: 5.46±1.291

P=0.000

 

Quality of life

Not reported

 

Activities/limitations of daily living

ODI

3 months

I: 23.57±6.921

C: 37.00±6.207

P=0.000

 

Secondary fractures

I: 2/35

C: 0/35

 

Adverse events

cement leakage, embolism,

infection or neurological deficit

I: 0

C: 0

 

Participation

Not reported

 

Mortality (3 months)

I: 0

C: 0

Authors’ conclusions:

Our study showed that PVP is highly effective and safe in

the management of back pain due to OVCFs. It was associated

with marked improvement of pain intensity and

quality of life.

Firanescu, 2018

 

VERTOS IV

 

NCT 01200277

Type of study:

RCT

 

Setting and country:

Multicenter, the Netherlands

 

Funding and conflicts of interest:

This study was supported by Stryker (grant No S-I-013). The sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

 

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work. JAH has received consulting fees from Medtronic and Globus as well as serving on a data and safety monitoring board of a study sponsored by Codman Neurovascular.

Inclusion criteria:

age 50 years or more, 1-3 vertebral compression fractures, T5-L5 focal back pain at the level of fracture for up to six weeks, score of 5 or higher on a VAS, diminished bone density (Tscore −1 or less) on a dual energy x ray absorptiometry (DEXA) scan, 15% or more loss of vertebral height, and bone oedema on magnetic resonance imaging. Owing to difficulties with recruitment, six months after initiating recruitment we also included patients with

pain up to nine weeks.

 

Exclusion criteria:

severe cardiopulmonary morbidity, untreatable coagulopathy, systemic or local spine infection, suspected malignancy, neurological symptoms, or inability to undergo magnetic resonance imaging.

 

N total at baseline:

Intervention: 90

Control: 86

 

Important prognostic factors2:

Age, mean (SD):

I: 74.7 (10.7)

C: 76.9 (8.1)

 

Sex:

I: 67 (74%) F

C: 66 (77%) F

 

Median (interquartile range) No of days with back pain before procedure

I: 43 (29-52)

C: 36 (24-51)

 

No of vertebral compression fractures at baseline

I: 115

C: 108

 

Mean (SD) initial VAS score

I: 7.7 (1.4)

C: 7.9 (1.6)

 

Mean (SD) QUALEFFO score

I: 68.4 (17.1)

C: 69.7 (17.9)

 

Mean (SD) RMDQ score

I: 18 (4.5)

C: 17.8 (4.7)

 

Groups were comparable at baseline.

Percutaneous vertebroplasty (PVP)

 

 

 

 

Sham operation

 

 

All participants were outpatients. Because participants and nurses were blinded to the intervention, both study groups received the same

patient care during hospital stay and at discharge. Participants were advised to restart daily activities after discharge. Drugs for osteoporosis were prescribed according to the standard protocol of the participating institutions for patients with osteoporotic vertebral fractures.

Length of follow-up:

12 months

 

Loss-to-follow-up:

1 participant did not receive allocated vertebroplasty: >3 acute vertebral compression fractures.

Intervention: 8/90 (8.9%)

Control: 5/89 (5.6%)

 

Incomplete outcome data:

Not specified

 

 

Values are Mean (95% CI)

 

Pain

See SR Li, 2022

 

Quality of life

QUALEFFO= Scores on the Quality of Life Questionnaire of the European Foundation of Osteoporosis

range from 0 to 100, higher scores are indicating worse quality of life

 

1 week

I: 53.07 (49.29 to 56.85)

C: 51.84 (47.97 to 55.70)

Diff: –1.23 (–6.64 to 4.17)

 

3 months

I: 44.24 (40.44 to 48.04)

C: 44.97 (41.07 to 48.87)

Diff: 0.73 (–4.72 to 6.17)

 

6 months

I: 43.56 (39.73 to 47.38)

C: 42.90 (38.95 to 46.84)

Diff: –0.66 (–6.16 to 4.83)

 

12 months

I: 41.41 (37.54 to 45.28)

C: 42.09 (38.05 to 36.13)

0.68 (–4.91 to 6.27)

 

Activities/limitations of daily living

RMDQ= Scores on the Roland – Morris Disability Questionnaire range from 0 to 24, higher scores

indicating worse physical functioning.

 

1 week

I: 14.83 (13.55 to 16.10)

C: 14.01 (12.71 to 15.31)

Diff: –0.81 (–2.63 to 1.01)

 

3 months

I: 10.90 (9.62 to 12.20)

C: 11.51 (10.18 to 12.84)

Diff: 0.60 (–1.25 to 2.46)

 

6 months

I: 10.09 (8.79 to 11.39)

C: 10.97 (9.62 to 12.33)

Diff: 0.88 (–1.00 to 2.76)

 

12 months

I: 10.31 (8.98 to 11.63)

C: 10.32 (8.92 to 11.72)

Diff: 0.01 (–1.92 to 1.94)

 

Secondary fractures

I: 31 in 15 participants

C: 28 in 19 participants

 

Adverse events

I: 2

(One participant with severe chronic obstructive pulmonary disease developed respiratory insufficiency the day after the procedure, related to underlying pulmonary disease. Another participant had a vasovagal reaction during the procedure that spontaneously resolved.

C: 0

 

Participation

Not reported

 

Mortality (12 months)

I: 4

(2 respiratory insufficiency, 1 cardiac failure, 1 old age)

C: 4

(2 old age, 1 cardiac failure, 1 subdural bleeding)

Authors’ conclusions:

Percutaneous vertebroplasty did not result in statistically significant greater pain relief than a sham procedure during 12 months follow-up among a group of patients with acute osteoporotic compression fractures of the vertebral body. These results do not support using percutaneous vertebroplasty to treat acute osteoporotic vertebral compression fractures.

Van Meirhaeghe, 2013

FREE trial

NCT 00211211

Type of study:

RCT

 

Setting and country:

Multicenter, 21 sites in 8

countries in Europe and the UK

 

Funding and conflicts of interest:

Medtronic Spine LLC was the sponsor, contributed to the study design, data monitoring, and reporting of results, and paid for statistical analysis (Advanced Research Associates, Mountain View, CA), core laboratory services and open access of article. Relevant financial activities outside the submitted work: consulting fee or honorarium, support for travel to meetings for the study or other purposes, fees for participation in review activities, payment for writing or reviewing the manuscript, provision of writing assistance, medicines, equipment, or administrative support, payment for lectures, payment for manuscript preparation, travel/accommodations/meeting expenses unrelated to activities, and stock/stock options.

 

Inclusion criteria:

one to three vertebral fractures from T5 through L5. At least one fracture needed to have oedema assessed by MRI and at least one had to show a 15% loss of height or more; single fractures were to meet both these criteria. Patients with fractures due to osteopenia arising from primary or secondary osteoporosis, multiple myeloma, or osteolytic metastatic tumours were included. Painful fractures were diagnosed by investigators; patients with up to three contiguous or non-contiguous fractures at any level could be included in the study if these additional fractures also had MRI signal changes, progressive height loss, or pseudoarthrosis. Participants also had to have a back pain score of 4 points or more on a 0–10 scale.

 

Exclusion criteria:

Patients were excluded if they were younger than 21 years of age; had chronic fractures (estimated fracture age more than 3 months), pedicle fracture, previous vertebroplasty, neurological deficit, radicular pain, spinal cord compression, or canal narrowing; were taking uninterruptible anticoagulation therapy; had allergies to kyphoplasty materials or contraindications to MRI; had dementia or were unable to walk before fracture (walking aids were allowed); or if their vertebral fractures were from primary bone tumours, osteoblastic metastases, or high energy trauma.

 

N total at baseline:

Intervention: 149

Control: 151

 

Important prognostic factors2:

Age, mean (SD):

I: 72·2 (9·3)

C: 74·1 (9·4)

 

Sex:

I: 115 (77%) F

C: 117 (77%) F

 

Underlying cause:

Primary osteoporosis

I: 145 (97%)

C: 143 (95%)

Secondary osteoporosis

I: 2 (1%)

C: 6 (4%)

Multiple myeloma/metastatic

I: 2 (1%)

C: 2 (1%)

 

Mean (95% CI) baseline VAS score (0-10)

I: 6.79 (6.42, 7.16)

C: 6.93 (6.56, 7.30)

 

Mean (95% CI) EQ-5D (0-1)

I: 0.16 (0.11, 0.22)

C: 0.17 (0.12, 0.22)

 

Mean (95% CI) RMDQ score (0-24)

I: 16.9 (16.0, 17.8)

C: 17.0 (16.1, 18.0)

 

Groups were comparable at baseline.

Balloon kyphoplasty in addition to nonsurgical management

 

 

 

 

 

Nonsurgical management: analgesics, bed rest, bracing, physiotherapy,

rehabilitation programs, and walking aids according to

standard practices of participating physicians and hospitals.

 

 

Length of follow-up:

24 months

 

Loss-to-follow-up:

Not specified in paper, but in other publications from the FREE trial, 120/149 completed follow-up at 24 months in intervention group, versus 112/151 in the control group.

 

Incomplete outcome data:

Not specified

 

 

Values are Mean (95% CI)

 

Pain

VAS 0-10

1 month

I: 3.52 (3.14, 3.90)

C: 5.48 (5.08, 5.87)

P< 0.0001

 

3 months

I: 2.93 (2.55, 3.32)

C: 4.52 (4.11, 4.93)

P< 0.0001

 

6 months

I: 2.73 (2.34, 3.12)

C: 4.35 (3.93, 4.76)

P< 0.0001

 

12 months

I: 2.81 (2.40, 3.21)

C: 3.79 (3.37, 4.21)

P= 0.001

 

24 months

I: 2.82 (2.41, 3.22)

C: 3.65 (3.23, 4.07)

P=0.0063

 

Quality of life

PCS (0-100; higher value better QOL)

1 month

I: 33.4 (31.8, 35.0)

C: 27.5 (25.9, 29.1)

P< 0.0001

 

3 months

I: 35.6 (34.0, 37.2)

C: 31.1 (29.4, 32.8)

P< 0.0001

 

6 months

I: 36.4 (34.8, 38.0)

C: 32.6 (31.0, 34.3)

P=0.001

 

12 months

I: 35.9 (34.3, 37.5)

C: 33.8 (32.1, 35.5)

P=0.0956

 

24 months

I: 35.8 (34.2, 37.4)

C: 33.8 (32.1, 35.5)

P=0.1284

 

EQ-5D (0–1; higher value better QOL)

1 month

I: 0.54 (0.49, 0.60)

C: 0.37 (0.31, 0.42)

P< 0.0001

 

3 months

I: 0.59 (0.53, 0.65)

C: 0.49 (0.44, 0.55)

P=0.0022

 

6 months

I: 0.63 (0.57, 0.68)

C: 0.50 (0.45, 0.56)

P=0.0009

 

12 months

I: 0.61 (0.56, 0.67)

C: 0.51 (0.45, 0.57)

P=0.006

 

24 months

I: 0.61 (0.56, 0.67)

C: 0.53 (0.47, 0.59)

P=0.0397

 

Activities/limitations of daily living

RMDQ, 0 to 24, higher scores indicating worse physical functioning.

 

1 month

I: 10.9 (9.9, 11.8)

C: 15.1 (14.1, 16.0)

P< 0.0001

 

3 months

I: 9.21 (8.22, 10.2)

C: 12.9 (11.9, 13.9)

P< 0.0001

 

6 months

I: 8.45 (7.44, 9.45)

C: 11.5 (10.4, 12.5)

P< 0.0001

 

12 months

I: 8.60 (7.57, 9.63)

C: 11.5 (10.4, 12.5)

P< 0.001

 

24 months

I: 8.87 (7.82, 9.91)

C: 10.3 (9.3, 11.4)

P= 0.0595

 

Timed up and go (s)

1 month

I: 14.9 (12.6, 17.1)

C: 18.8 (16.4, 21.2)

P= 0.0973

 

3 months

I: 12.7 (10.4, 15.0)

C: 18.7 (16.3, 21.1)

P= 0.0006

 

6 months

I: 12.7 (10.4, 15.0)

C: 16.4 (14.0, 18.9)

P= 0.0493

 

12 months

I: 13.5 (11.1, 15.8)

C: 16.0 (13.6, 18.5)

P=0.3037

 

24 months

I: 13.8 (11.4, 16.2)

C: 16.9 (14.4, 19.4)

P= 0.137

 

Vertebral fractures within 30 days of surgery/enrollment

I: 11/149 (7%)

5 considered possibly related to cement by local investigator

C: 7/151 (5%)

 

Adverse events

Adverse events within 30 days of surgery/enrollment

I: 49/149 (33%)

C: 55/151 (36%)

 

Serious adverse events within 30 days of surgery/enrollment

I: 24/149 (16%)

C: 17/151 (11%)

 

Participation

Not reported

 

Mortality (12 months)

Not reported

Authors’ conclusions:

We conclude that, compared with NSM, BKP rapidly reduces pain and improves function, disability, and QOL during the course of 2 years and the reduction in pain, EQ-5D QOL, patient satisfaction, and kyphotic angulation remain statistically significant at all time points. Perioperative complications could be minimized with more care in patient positioning.

 

Table of quality assessment for systematic reviews of RCTs and observational studies

Based on AMSTAR checklist (Shea et al.; 2007, BMC Methodol 7: 10; doi:10.1186/1471-2288-7-10) and PRISMA checklist (Moher et al 2009, PLoS Med 6: e1000097; doi:10.1371/journal.pmed1000097)

Study

 

 

 

 

First author, year

Appropriate and clearly focused question?1

 

 

Yes/no/unclear

Comprehensive and systematic literature search?2

 

 

Yes/no/unclear

Description of included and excluded studies?3

 

 

Yes/no/unclear

Description of relevant characteristics of included studies?4

 

 

Yes/no/unclear

Appropriate adjustment for potential confounders in observational studies?5

 

 

Yes/no/unclear/notapplicable

Assessment of scientific quality of included studies?6

 

 

Yes/no/unclear

Enough similarities between studies to make combining them reasonable?7

 

Yes/no/unclear

Potential risk of publication bias taken into account?8

 

 

Yes/no/unclear

Potential conflicts of interest reported?9

 

 

 

Yes/no/unclear

Li, 2022

Yes

Yes

No

Excluded studies were not.described.

Yes

N/A

Yes

Yes

Yes

Unclear

Not specified for included studies

Buchbinder, 2018

Yes

Yes

Yes

Yes

N/A

Yes

Yes

Yes

Yes

 

  1. Research question (PICO) and inclusion criteria should be appropriate and predefined
  2. Search period and strategy should be described; at least Medline searched; for pharmacological questions at least Medline + EMBASE searched
  3. Potentially relevant studies that are excluded at final selection (after reading the full text) should be referenced with reasons
  4. Characteristics of individual studies relevant to research question (PICO), including potential confounders, should be reported
  5. Results should be adequately controlled for potential confounders by multivariate analysis (not applicable for RCTs)
  6. Quality of individual studies should be assessed using a quality scoring tool or checklist (Jadad score, Newcastle-Ottawa scale, risk of bias table etc.)
  7. Clinical and statistical heterogeneity should be assessed; clinical: enough similarities in patient characteristics, intervention and definition of outcome measure to allow pooling? For pooled data: assessment of statistical heterogeneity using appropriate statistical tests (e.g. Chi-square, I2)?
  8. An assessment of publication bias should include a combination of graphical aids (e.g., funnel plot, other available tests) and/or statistical tests (e.g., Egger regression test, Hedges-Olken). Note: If no test values or funnel plot included, score “no”. Score “yes” if mentions that publication bias could not be assessed because there were fewer than 10 included studies.
  9. Sources of support (including commercial co-authorship) should be reported in both the systematic review and the included studies. Note: To get a “yes,” source of funding or support must be indicated for the systematic review AND for each of the included studies.

Risk of bias table for intervention studies (randomized controlled trials; based on Cochrane risk of bias tool and suggestions by the CLARITY Group at McMaster University)

 

Research questions:             

1. What are the benefits and harms of percutaneous vertebroplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with sham operation?

2. What are the benefits and harms of percutaneous vertebroplasty in patients aged 50 years or older with a symptomatic stable osteoporotic vertebral fracture, compared with usual care?

3. What are the benefits and harms of balloon kyphoplasty in patients aged 50 years or older with a symptomatic stable vertebral fracture, compared with usual care?

Study reference

 

(first author, publication year)

Was the allocation sequence adequately generated?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definitely yes

Probably yes

Probably no

Definitely no

Was the allocation adequately concealed?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definitely yes

Probably yes

Probably no

Definitely no

Blinding: Was knowledge of the allocated

interventions adequately prevented?

 

Were patients blinded?

 

Were healthcare providers blinded?

 

Were data collectors blinded?

 

Were outcome assessors blinded?

 

Were data analysts blinded?

Definitely yes

Probably yes

Probably no

Definitely no

Was loss to follow-up (missing outcome data) infrequent?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definitely yes

Probably yes

Probably no

Definitely no

Are reports of the study free of selective outcome reporting?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definitely yes

Probably yes

Probably no

Definitely no

Was the study apparently free of other problems that could put it at a risk of bias?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definitely yes

Probably yes

Probably no

Definitely no

Overall risk of bias

If applicable/necessary, per outcome measure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOW

Some concerns

HIGH

 

Tantawi, 2022

Definitely yes;

 

Reason: Randomization was done using random number table preferred by the statistician to

determine to which group the patient was assigned.

No information

Probably no;

 

Reason: No blinding reported

Definitely yes;

 

Reason: There was no loss to follow-up.

Probably yes;

 

Reason: the were no indications of selective outcome reporting

Probably yes;

 

Reason: No other problems noted

Some concerns due to lack of blinding

Firanescu, 2018

Definitely yes;

 

Participants were randomised by computer in a block size of six, randomisation ratio 1:1, and a maximum sample size of 84 for each participating centre.

Definitely yes;

 

Each participant received two

stab incisions at the level of the vertebral body, after which the sealed randomisation envelope was opened.

Definitely yes;

 

Participants, internists, and outcome assessors were blinded and remained so during the 12 months’ follow-up.

It was not possible to mask the interventional and

diagnostic radiologists.

Definitely yes;

 

Loss to follow-up was limited and similar between the groups.

Probably yes;

 

Reason: the were no indications of selective outcome reporting

Probably yes;

 

Reason: No other problems noted

LOW

 

for the outcomes of interest

Van Meirhaeghe, 2013

Definitely yes;

 

Computer-generated

randomisation was stratified by sex, aetiology, current treatment with corticosteroids, and any bisphosphonate treatment within 12 months before enrolment. A permuted block randomisation (stratifi ed as indicated) was generated before the study start by Advanced Research Associates, (Mountain View, CA, USA), the statistical contract research organisation, by use of SAS PROC PLAN.

No information

Definitely no;

 

The intervention was not blinded.

Probably no;

 

Not specified in paper, but in other publications from the FREE trial, loss to follow-up was considerable.

Probably yes;

 

Reason: the were no indications of selective outcome reporting

Probably no;

 

The study sponsor contributed to the study design, data

monitoring, and reporting of results, and paid for statistical analysis, core laboratory services and open access of article

HIGH

 

Randomization: generation of allocation sequences have to be unpredictable, for example computer generated random-numbers or drawing lots or envelopes. Examples of inadequate procedures are generation of allocation sequences by alternation, according to case record number, date of birth or date of admission.

Allocation concealment: refers to the protection (blinding) of the randomization process. Concealment of allocation sequences is adequate if patients and enrolling investigators cannot foresee assignment, for example central randomization (performed at a site remote from trial location). Inadequate procedures are all procedures based on inadequate randomization procedures or open allocation schedules..

Blinding: neither the patient nor the care provider (attending physician) knows which patient is getting the special treatment. Blinding is sometimes impossible, for example when comparing surgical with non-surgical treatments, but this should not affect the risk of bias judgement. Blinding of those assessing and collecting outcomes prevents that the knowledge of patient assignment influences the process of outcome assessment or data collection (detection or information bias). If a study has hard (objective) outcome measures, like death, blinding of outcome assessment is usually not necessary. If a study has “soft” (subjective) outcome measures, like the assessment of an X-ray, blinding of outcome assessment is necessary. Finally, data analysts should be blinded to patient assignment to prevents that knowledge of patient assignment influences data analysis.

Lost to follow-up: If the percentage of patients lost to follow-up or the percentage of missing outcome data is large, or differs between treatment groups, or the reasons for loss to follow-up or missing outcome data differ between treatment groups, bias is likely unless the proportion of missing outcomes compared with observed event risk is not enough to have an important impact on the intervention effect estimate or appropriate imputation methods have been used.

Selective outcome reporting: Results of all predefined outcome measures should be reported; if the protocol is available (in publication or trial registry), then outcomes in the protocol and published report can be compared; if not, outcomes listed in the methods section of an article can be compared with those whose results are reported.

Other biases: Problems may include: a potential source of bias related to the specific study design used (e.g. lead-time bias or survivor bias); trial stopped early due to some data-dependent process (including formal stopping rules); relevant baseline imbalance between intervention groups; claims of fraudulent behavior; deviations from intention-to-treat (ITT) analysis; (the role of the) funding body (see also downgrading due to industry funding https://kennisinstituut.viadesk.com/do/document?id=1607796-646f63756d656e74). Note: The principles of an ITT analysis implies that (a) participants are kept in the intervention groups to which they were randomized, regardless of the intervention they actually received, (b) outcome data are measured on all participants, and (c) all randomized participants are included in the analysis.

Overall judgement of risk of bias per study and per outcome measure, including predicted direction of bias (e.g. favors experimental, or favors comparator). Note: the decision to downgrade the certainty of the evidence for a particular outcome measure is taken based on the body of evidence, i.e. considering potential bias and its impact on the certainty of the evidence in all included studies reporting on the outcome.  

 

Table of excluded studies

Reference

Reason for exclusion

Diamond T, Clark W, Bird P, Gonski P, Barnes E, Gebski V. Early vertebroplasty within 3 weeks of fracture for acute painful vertebral osteoporotic fractures: subgroup analysis of the VAPOUR trial and review of the literature. Eur Spine J. 2020 Jul;29(7):1606-1613. doi: 10.1007/s00586-020-06362-2. Epub 2020 Mar 13. PMID: 32170438.

Subgroup analysis from RCT

Firanescu CE, de Vries J, Lodder P, Schoemaker MC, Smeets AJ, Donga E, Juttmann JR, Klazen CAH, Elgersma OEH, Jansen FH, van der Horst I, Blonk M, Venmans A, Lohle PNM. Percutaneous Vertebroplasty is no Risk Factor for New Vertebral Fractures and Protects Against Further Height Loss (VERTOS IV). Cardiovasc Intervent Radiol. 2019 Jul;42(7):991-1000. doi: 10.1007/s00270-019-02205-w. Epub 2019 Apr 2. PMID: 30941490.

No relevant outcomes

Martinez-Ferrer A, Blasco J, Carrasco JL, Macho JM, Román LS, López A, Monegal A, Guañabens N, Peris P. Risk factors for the development of vertebral fractures after percutaneous vertebroplasty. J Bone Miner Res. 2013 Aug;28(8):1821-9. doi: 10.1002/jbmr.1899. PMID: 23427068.

No relevant outcomes

Clark W, Bird P, Gonski P, Diamond TH, Smerdely P, McNeil HP, Schlaphoff G, Bryant C, Barnes E, Gebski V. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2016 Oct 1;388(10052):1408-1416. doi: 10.1016/S0140-6736(16)31341-1. Epub 2016 Aug 17. Erratum in: Lancet. 2017 Feb 11;389(10069):602. PMID: 27544377.

Inclusion criteria not in line with PICO

Leali PT, Solla F, Maestretti G, Balsano M, Doria C. Safety and efficacy of vertebroplasty in the treatment of osteoporotic vertebral compression fractures: a prospective multicenter international randomized controlled study. Clin Cases Miner Bone Metab. 2016 Sep-Dec;13(3):234-236. doi: 10.11138/ccmbm/2016.13.3.234. Epub 2017 Feb 10. PMID: 28228788; PMCID: PMC5318178.

insufficient information about study population and procedures

Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC, Venmans A, van Rooij WJ, Schoemaker MC, Juttmann JR, Lo TH, Verhaar HJ, van der Graaf Y, van Everdingen KJ, Muller AF, Elgersma OE, Halkema DR, Fransen H, Janssens X, Buskens E, Mali WP. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010 Sep 25;376(9746):1085-92. doi: 10.1016/S0140-6736(10)60954-3. Epub 2010 Aug 9. PMID: 20701962.

Reported in meta-analysis

Xiao Q, Zhao Y, Qu Z, Zhang Z, Wu K, Lin X. Association Between Bone Cement Augmentation and New Vertebral Fractures in Patients with Osteoporotic Vertebral Compression Fractures: A Systematic Review and Meta-Analysis. World Neurosurg. 2021 Sep;153:98-108.e3. doi: 10.1016/j.wneu.2021.06.023. Epub 2021 Jun 15. PMID: 34139353.

more recent/complete meta-analysis used

Zhang L, Zhai P. A Comparison of Percutaneous Vertebroplasty Versus Conservative Treatment in Terms of Treatment Effect for Osteoporotic Vertebral Compression Fractures: A Meta-Analysis. Surg Innov. 2020 Feb;27(1):19-25. doi: 10.1177/1553350619869535. Epub 2019 Aug 18. PMID: 31423902.

more recent/complete meta-analysis used

Zhao S, Xu CY, Zhu AR, Ye L, Lv LL, Chen L, Huang Q, Niu F. Comparison of the efficacy and safety of 3 treatments for patients with osteoporotic vertebral compression fractures: A network meta-analysis. Medicine (Baltimore). 2017 Jun;96(26):e7328. doi: 10.1097/MD.0000000000007328. PMID: 28658144; PMCID: PMC5500066.

Network meta-analysis

Pron G, Hwang M, Smith R, Cheung A, Murphy K. Cost-effectiveness studies of vertebral augmentation for osteoporotic vertebral fractures: a systematic review. Spine J. 2022 Aug;22(8):1356-1371. doi: 10.1016/j.spinee.2022.02.013. Epub 2022 Mar 5. PMID: 35257838.

No outcomes as defined in PICO

Zhang H, Xu C, Zhang T, Gao Z, Zhang T. Does Percutaneous Vertebroplasty or Balloon Kyphoplasty for Osteoporotic Vertebral Compression Fractures Increase the Incidence of New Vertebral Fractures? A Meta-Analysis. Pain Physician. 2017 Jan-Feb;20(1):E13-E28. PMID: 28072794.

more recent/complete meta-analysis used

Fan B, Wei Z, Zhou X, Lin W, Ren Y, Li A, Shi G, Hao Y, Liu S, Zhou H, Feng S. Does vertebral augmentation lead to an increasing incidence of adjacent vertebral failure? A systematic review and meta-analysis. Int J Surg. 2016 Dec;36(Pt A):369-376. doi: 10.1016/j.ijsu.2016.11.082. Epub 2016 Nov 15. PMID: 27871806.

more recent/complete meta-analysis used

Luo W, Cui C, Pourtaheri S, Garfin S. Efficacy of Vertebral Augmentation for Vertebral Compression Fractures: A Review of Meta-Analyses. Spine Surg Relat Res. 2018 Apr 7;2(3):163-168. doi: 10.22603/ssrr.2017-0089. PMID: 31440664; PMCID: PMC6698519.

review of meta-analyses, no extractable data

Shi MM, Cai XZ, Lin T, Wang W, Yan SG. Is there really no benefit of vertebroplasty for osteoporotic vertebral fractures? A meta-analysis. Clin Orthop Relat Res. 2012 Oct;470(10):2785-99. doi: 10.1007/s11999-012-2404-6. Epub 2012 Jun 23. PMID: 22729693; PMCID: PMC3442000.

more recent meta-analysis used

Zhai G, Li A, Liu B, Lv D, Zhang J, Sheng W, Yang G, Gao Y. A meta-analysis of the secondary fractures for osteoporotic vertebral compression fractures after percutaneous vertebroplasty. Medicine (Baltimore). 2021 Apr 23;100(16):e25396. doi: 10.1097/MD.0000000000025396. PMID: 33879670; PMCID: PMC8078370.

more recent/complete meta-analysis used

Hinde K, Maingard J, Hirsch JA, Phan K, Asadi H, Chandra RV. Mortality Outcomes of Vertebral Augmentation (Vertebroplasty and/or Balloon Kyphoplasty) for Osteoporotic Vertebral Compression Fractures: A Systematic Review and Meta-Analysis. Radiology. 2020 Apr;295(1):96-103. doi: 10.1148/radiol.2020191294. Epub 2020 Feb 18. PMID: 32068503.

more recent/complete meta-analysis used

Zuo XH, Zhu XP, Bao HG, Xu CJ, Chen H, Gao XZ, Zhang QX. Network meta-analysis of percutaneous vertebroplasty, percutaneous kyphoplasty, nerve block, and conservative treatment for nonsurgery options of acute/subacute and chronic osteoporotic vertebral compression fractures (OVCFs) in short-term and long-term effects. Medicine (Baltimore). 2018 Jul;97(29):e11544. doi: 10.1097/MD.0000000000011544. PMID: 30024546; PMCID: PMC6086478.

Network meta-analysis

Sun HB, Shan JL, Tang H. Percutaneous vertebral augmentation for osteoporotic vertebral compression fractures will increase the number of subsequent fractures at adjacent vertebral levels: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021 Aug;25(16):5176-5188. doi: 10.26355/eurrev_202108_26531. PMID: 34486692.

more recent/complete meta-analysis used

Láinez Ramos-Bossini AJ, López Zúñiga D, Ruiz Santiago F. Percutaneous vertebroplasty versus conservative treatment and placebo in osteoporotic vertebral fractures: meta-analysis and critical review of the literature. Eur Radiol. 2021 Nov;31(11):8542-8553. doi: 10.1007/s00330-021-08018-1. Epub 2021 May 7. PMID: 33963449.

more recent/complete meta-analysis used

Xie L, Zhao ZG, Zhang SJ, Hu YB. Percutaneous vertebroplasty versus conservative treatment for osteoporotic vertebral compression fractures: An updated meta-analysis of prospective randomized controlled trials. Int J Surg. 2017 Nov;47:25-32. doi: 10.1016/j.ijsu.2017.09.021. Epub 2017 Sep 20. PMID: 28939236.

more recent/complete meta-analysis used

Lou S, Shi X, Zhang X, Lyu H, Li Z, Wang Y. Percutaneous vertebroplasty versus non-operative treatment for osteoporotic vertebral compression fractures: a meta-analysis of randomized controlled trials. Osteoporos Int. 2019 Dec;30(12):2369-2380. doi: 10.1007/s00198-019-05101-8. Epub 2019 Aug 3. PMID: 31375875.

more recent/complete meta-analysis used

Beall D, Lorio MP, Yun BM, Runa MJ, Ong KL, Warner CB. Review of Vertebral Augmentation: An Updated Meta-analysis of the Effectiveness. Int J Spine Surg. 2018 Aug 15;12(3):295-321. doi: 10.14444/5036. PMID: 30276087; PMCID: PMC6159665.

more recent/complete meta-analysis used

Halvachizadeh S, Stalder AL, Bellut D, Hoppe S, Rossbach P, Cianfoni A, Schnake KJ, Mica L, Pfeifer R, Sprengel K, Pape HC. Systematic Review and Meta-Analysis of 3 Treatment Arms for Vertebral Compression Fractures: A Comparison of Improvement in Pain, Adjacent-Level Fractures, and Quality of Life Between Vertebroplasty, Kyphoplasty, and Nonoperative Management. JBJS Rev. 2021 Oct 25;9(10). doi: 10.2106/JBJS.RVW.21.00045. PMID: 34695056.

more recent/complete meta-analysis used

Pourtaheri S, Luo W, Cui C, Garfin S. Vertebral Augmentation is Superior to Nonoperative Care at Reducing Lower Back Pain for Symptomatic Osteoporotic Compression Fractures: A Meta-Analysis. Clin Spine Surg. 2018 Oct;31(8):339-344. doi: 10.1097/BSD.0000000000000670. PMID: 29901504.

more recent/complete meta-analysis used

Piazzolla A, Bizzoca D, Solarino G, Moretti L, Moretti B. Vertebral fragility fractures: clinical and radiological results of augmentation and fixation-a systematic review of randomized controlled clinical trials. Aging Clin Exp Res. 2020 Jul;32(7):1219-1232. doi: 10.1007/s40520-019-01289-1. Epub 2019 Aug 30. PMID: 31471888.

more recent/complete meta-analysis used

Firanescu CE, Venmans A, de Vries J, Lodder P, Schoemaker MC, Smeets AJ, Donga E, Juttmann JR, Schonenberg K, Klazen CAH, Elgersma OEH, Jansen FH, Fransen H, Hirsch JA, Lohle PNM. Predictive Factors for Sustained Pain after (sub)acute Osteoporotic Vertebral Fractures. Combined Results from the VERTOS II and VERTOS IV Trial. Cardiovasc Intervent Radiol. 2022 Jun 9. doi: 10.1007/s00270-022-03170-7. Epub ahead of print. PMID: 35680675.

original publications/more complete meta-analysis used

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 18-04-2024

Laatst geautoriseerd  : 18-04-2024

Geplande herbeoordeling  :

Initiatief en autorisatie

Initiatief:
  • Nederlandse Orthopaedische Vereniging
Geautoriseerd door:
  • Koninklijk Nederlands Genootschap voor Fysiotherapie
  • Nederlandse Internisten Vereniging
  • Nederlandse Orthopaedische Vereniging
  • Nederlandse Vereniging voor Anesthesiologie
  • Nederlandse Vereniging voor Heelkunde
  • Nederlandse Vereniging voor Klinische Geriatrie
  • Nederlandse Vereniging voor Radiologie
  • Nederlandse Vereniging voor Reumatologie
  • Osteoporose Vereniging

Algemene gegevens

De ontwikkeling van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut) en werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS). De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.

Samenstelling werkgroep

Voor het ontwikkelen van de richtlijnmodule is in 2022 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de zorg voor patiënten met symptomatishce stabiele wervelfracturen.

 

Werkgroep

  • prof. dr. P.C. (Paul) Willems, orthopedisch chirurg, Maastricht UMC+, Maastricht, NOV (voorzitter)
  • dr. M.J. (Marc) Nieuwenhuijse, orthopedisch chirurg, Amphia Ziekenhuis, Breda, NOV
  • dr. H.C.A. (Harm) Graat, orthopedisch chirurg, Noordwest Ziekenhuisgroep, NOV
  • dr. E. (Eva) Jacobs, orthopedisch chirurg, Maastricht UMC+, Maastricht, NOV
  • dr. A.G. (Annegreet) Vlug, internist-endocrinoloog Jan van Goyen Medisch Centrum en Onze Lieve Vrouwen Gasthuis in Amsterdam, NIV
  • dr. C.A.H (Caroline) Klazen, Radioloog, Medisch spectrum Twente, Enschede, NVvR
  • prof. dr. W.F. (Willem) Lems, reumatoloog, Amsterdam UMC, Amsterdam, NVR
  • dr. H. (Hanna) Willems, Klinisch geriater, Amsterdam UMC, Amsterdam, NVKG
  • drs. J. (Joost) Hoekstra, Traumachirurg UMCG, Groningen, NVvH
  • drs. E.L.S. (Annelies) Kievit, anesthesioloog-pijnspecialist, Medisch Centrum Leeuwarden, NVA
  • drs. C.F.M.G. (Christianne) Bessems, geriatriefysiotherapeut, Bronzwaer Fysiotherapie, Maastricht, KNGF
  • H.J.G. (Harry) van den Broek, patiëntvertegenwoordiger Osteoporose Vereniging, Den Haag, Osteoporose Vereniging

Klankbordgroep

  • E.E. (Erna) Hiddink, Oefentherapeut Mensendieck, Opella, VvOCM
  • H.A.A. (Riekie) van Beers, verpleegkundig specialist, Amphia ziekenhuis, Breda, V&VN
  • Dr. I. (Iris) Ketel, wetenschappelijk medewerker NHG, Nederlands Huisartsen Genootschap, Utrecht, NHG
  • Dr. M.C. (Marloes) Minnaard, wetenschappelijk medewerker NHG, Nederlands Huisartsen Genootschap, Utrecht, NHG

Met ondersteuning van

Dr. M.S. (Matthijs) Ruiter, senior adviseur, Kennisinstituut van de Federatie Medisch Specialisten

Belangenverklaringen

De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.

Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

Bessems

Geriatriefysiotherapeut MSc. Eerstelijnszorg Bronzwaer Fysiotherapie en Valkfysio

Docent en examinator Avans+ opleiding master geriatriefysiotherapie
Bestuurslid Nederlandse Vereniging voor Fysiotherapie in de Geriatrie (NVFG)

Geen

Geen restricties

Hoeks

Traumachirurg UMCG

Docent UMCG/RUG

Geen financiële belangen anders dan als traumachirurg betrokken bij de behandeling van patiënten met wervelfracturen

Geen restricties

Jacobs

Orthopedisch chirurg MUMC+ Maastricht

Geen

Extern gefinancierd onderzoek. ZonMw: Cost-effectiveness of dynamic bracing versus standard care alone in patients suffering from osteoporotic vertebral fractures - a multicenter RCT. Geen projectleider.

Geen restricties

Graat

Orthopedisch chirurg (Noordwest Ziekenhuisgroep)

Geen

Geen

Geen restricties

Klazen

Radioloog, Medisch spectrum Twente

Geen

Geen

Geen restricties

Kievit

anesthesioloog-pijnspecialist medisch centrum leeuwarden (betaald)

Geen

Geen

Geen restricties

Lems

hoogleraar reumatologie in amsterdam umc (o,8 FTE), ook werkzaam in Reade (o,2 fTE)

Hoofdredacteur Ned Tijdschrift reumatologie (betaald), Secretaris IWO (betaald), Steering Committee Capture the Fracture (onderdeel IOF, onbetaald), Board of Directors ECTS (onbetaald).
Sponsoring: speakers fee/adviesraden: Amgen, UCB, Eli Lilly.

Geen

Geen restricties, adviesraden buiten afbakening richtlijn

Nieuwenhuijse

Orthopedisch chirurg Amphia Ziekenhuis Breda

Geen

Geen

Geen restricties

Van den Broek

Voorzitter Osteoporose Vereniging (vrijwilliger, onbezoldigd)

DGA Consultec BV (Eigen holding, houder pensioenrechten) deels betaald.

Bestuurslid Energiek Heusden (energiecoöperatie, onbezoldigd)

De osteoporose vereniging heeft geen extern gefinancierd onderzoek, dus niet van toepassing. Zij ontvangt subsidie, sponsoring en donatie voor het organiseren van verenigingsactiviteiten van VWS, ReumaNederland, contributie en bedrijven (waaronder Farma).

Geen restricties

Vlug

Internist-endocrinoloog Jan van Goyen Medisch Centrum en Onze Lieve Vrouwen Gasthuis in Amsterdam

Onderzoeker Centrum voor Botkwaliteit Leids Universitair Medisch Centrum

Board Member of the European Calcified Tissue Society

Chair of the Academy of the European Calcified Tissue Society

Scientific Board Member of the International Bone Marrow Adiposity Society

Dutch Ambassador of the American Society for Bone and Mineral Research

Lid van de stuurgroep Women's Health van de Nederlandse Vereniging voor Obstetrie en Gynaecologie

Educational activities for Amgen and UCB: develop and present webinars on osteoporosis to educate health care professionals

Educational activities for Abbott: develop and present webinars on flash glucose monitoring for diabetes to educate health care professionals

In afgelopen drie jaar twee keer deelgenomen aan adviesraad, een keer voor Abbott over flash glucose monitoring voor diabetes en een keer voor UCB over het gebruik van Romosozumab.

Op dit moment ben ik niet actief betrokken bij een adviesraad.

Geen restricties

P. Willems

Orthopedisch chirurg, Maastricht UMC;

Hoogleraar lntegrated Spinal Care, Universiteit Maastricht

geen

Extern gefinancierd onderzoek.

Zorginstituut NL: Samen beslissen o.b.v. uitkomstinformatie in een                multidisciplinaire context: setting Stadspoli Rug, Maastricht. Geen projectleider.

 

ZonMw: Cost-effectiveness of dynamic bracing versus standard care alone in patients suffering from osteoporotic vertebral fractures - a multicenter RCT. Projectleider.

Geen restricties

H. Willems

Klinisch geriater en internist, Amsterdam UMC,
hoofd afdeling ouderengeneeskunde, betaald. Omvang 0,9FTE

Bestuurder stichting zorgevaluatie en voorzitter werkgroep Leading the change, 0,1 FTE, betaald.

speakersfee, advisoryboard AMGEN en UCB, gelden worden gedoneerd aan onderzoek van de afdeling ouderengeneeskunde.

Geen restricties

Ruiter

Adviseur Kennisinstituut

Geen

Geen

Geen restricties

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief door deelname van een afgevaardigde van de Osteoporose Vereniging in de werkgroep. De conceptrichtlijn is tevens voor commentaar voorgelegd aan deze vereniging en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.

 

Kwalitatieve raming van mogelijke financiële gevolgen in het kader van de Wkkgz

Bij de richtlijn is conform de Wet kwaliteit, klachten en geschillen zorg (Wkkgz) een kwalitatieve raming uitgevoerd of de aanbevelingen mogelijk leiden tot substantiële financiële gevolgen. Bij het uitvoeren van deze beoordeling zijn richtlijnmodules op verschillende domeinen getoetst (zie het stroomschema op de Richtlijnendatabase).

 

Uit de kwalitatieve raming blijkt dat er waarschijnlijk geen substantiële financiële gevolgen zijn, zie onderstaande tabel.

 

Module

Uitkomst raming

Toelichting

Module fysio-/oefentherapie

geen substantiële financiële gevolgen

Het betreft geen nieuwe manier van zorgverlening of andere organisatie van zorgverlening. Veel patiënten ontvangen nu ook al fysio-/oefentherapie, alleen niet specifiek gericht op wervelfracturen bij osteoporose. Er worden daarom geen substantiële financiële gevolgen verwacht.

Module braces

geen substantiële financiële gevolgen

Het betreft geen nieuwe manier van zorgverlening of andere organisatie van zorgverlening.  Er worden daarom substantiële financiële gevolgen verwacht.

Module cementaugmentatie

geen substantiële financiële gevolgen

Op dit moment wordt cement augmentatie niet vergoed door de zorgverzekeraars. Wanneer dit wel vergoed wordt, dan zou dit een beperkte stijging van de zorgkosten met zich meebrengen. 

Module multidisciplinaire afstemming

geen substantiële financiële gevolgen

Dit betreft een betere afstemming tussen de disciplines, waardoor patiënten mogelijk sneller en adequater geholpen kunnen worden, met een positief effect op de zorgkosten.

Werkwijze

AGREE

Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).

 

Knelpuntenanalyse en uitgangsvragen

De Nederlandse Orthopaedische Vereniging signaleerde bij de herziening van de richtlijn Osteoporose en fracttuurpreventie het ontbreken van modules over conservatieve en invasieve behandelopties voor osteoporotische wervelfacturen. In overleg met de Nederlandse Internisten Vereniging en richtlijnwerkgroep zijn de aanvullende knelpunten vastgesteld. Er is een nieuwe werkgroep gevormd voor de aanvullende modules en deze heeft vervolgens de uitgangsvragen geprioriteerd en definitief vastgesteld.

 

Uitkomstmaten

Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Methode literatuursamenvatting

Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. Indien mogelijk werd de data uit verschillende studies gepoold in een random-effects model. Review Manager 5.4 werd gebruikt voor de statistische analyses. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie GRADE working group). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is mogelijk dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • er is een reële kans dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • de literatuurconclusie is zeer onzeker.

 

Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.

In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.

 

Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers

 

Sterke aanbeveling

Zwakke (conditionele) aanbeveling

Voor patiënten

De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet.

Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet.

Voor behandelaars

De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen.

Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren.

Voor beleidsmakers

De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid.

Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen.

 

Organisatie van zorg

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module Organisatie van zorg.

 

Commentaar- en autorisatiefase

De conceptrichtlijnmodule werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Literatuur

Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.

 

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.

 

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.

 

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.

 

Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.

 

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html

 

Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.

 

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Strategieën tijdens behandeling en op lange termijn