Hypertensieve aandoeningen in de zwangerschap

Initiatief: NVOG Aantal modules: 13

Inleiding van de baring bij hypertensieve aandoening

Uitgangsvraag

Verbetert inleiding van de baring de maternale en perinatale uitkomsten bij zwangere vrouwen met een hypertensieve aandoening vanaf AD32+0?

Aanbeveling

Bespreek met de zwangere vrouw de maternale en perinatale risico’s bij inleiding en bij een afwachtend beleid.

 

Leid niet in vóór 37 weken zwangerschap bij vrouwen met zwangerschapshypertensie.

 

Maak samen met de patiënt een afweging ten aanzien van het beleid, inleiding of monitoring, bij milde zwangerschaphypertensie na 37 weken.

 

Indien gekozen wordt voor monitoring, her-evalueer en spreek het beleid regelmatig door met de zwangere vrouw.

 

Leid niet routinematig in vóór 37 weken zwangerschap bij vrouwen met milde pre-eclampsie.

 

Adviseer inleiding van de baring vanaf 37 weken zwangerschap bij vrouwen met milde pre-eclampsie.

 

Indien gekozen wordt voor monitoring, her-evalueer en spreek het beleid regelmatig door met de zwangere vrouw.

 

Adviseer inleiding van de baring bij vrouwen met ernstige pre-eclampsie.

 

Indien toch gekozen wordt voor monitoring, her-evalueer en spreek het beleid regelmatig door met de zwangere vrouw.

 

Tekenen van ernstige pre-eclampsie zijn: oncontroleerbare hypertensie, lage zuurstofsaturatie (< 90%), progressieve lever- of nierfunctiestoornis, hemolyse/trombocytopenie, progressie van neurologische klachten, abruptio placentae, of andere foetale indicatie.

Overwegingen

Voor- en nadelen van de interventie en de kwaliteit van het bewijs

Op basis van de literatuuranalyse werden een aantal mogelijke voor- en nadelen van inleiden vergeleken met een afwachtend beleid gevonden bij vrouwen met een hypertensieve aandoening vanaf een zwangerschapsduur vanaf 34 weken. Belangrijke opmerking is dat alle geïncludeerde studies louter vrouwen met een zwangerschapsduur vanaf 34 weken beschreven. In de literatuur zijn geen studies beschikbaar tussen 32 en 24 weken.

 

In de literatuur werd een afname van het risico op HELLP/eclampsie ((pooled RR 0,47 (95% CI 0,27 tot 0,82)) gezien na inleiden vergeleken met een afwachtend beleid (GRADE ‘moderate’). Wanneer alleen naar eclampsie werd gekeken (dus zonder HELLP) werd geen verschil gezien, mogelijk door de kleine aantallen (GRADE ‘very low’). Ten aanzien van andere relevante neonatale uitkomsten rapporteerde Bernardes (2019) een verhoogd risico op respiratory distress syndrome (RDS) bij direct inleiden vanaf 34 weken (GRADE ‘moderate’). Overall relatief risico op RDS was RR 1,94 (95%CI 1,05 tot 3,59). Gestratificeerd voor het aantal weken zwangerschap was dit RR 1,8 (95%BI 0,8 tot 3,9) (34 weken), RR 5,5 (95%BCI 1,00 tot 29,6) (35 weken), RR 3,4 (95%BI 0,4 tot 30,3) (36 weken) en RR 2,0 (95%BI 0,1 tot 28,4) (≥ 37 weken). Na inleiding lijken er minder kinderen met een laag geboortegewicht (gedefinieerd als geboortegewicht < 10e geboortepercentiel) te zijn (GRADE ‘low’), maar lijkt het aantal NICU opnamen hoger te zijn vergeleken met een afwachtend beleid (GRADE ‘low’). Het aantal kinderen dat exclusieve borstvoeding krijgt 24 uur voor ontslag uit het ziekenhuis is mogelijk lager na inleiding (GRADE ‘low’). Met redelijke zekerheid (GRADE ‘moderate’) werd geconcludeerd dat er geen verschil tussen inleiden en afwachtend beleid lijkt te zijn voor de uitkomstmaten pre-eclampsie en keizersneden. Voor alle andere uitkomstmaten is het onzeker wat het effect van inleiden vergeleken met een afwachtend beleid, deze uitkomstmaten waren beoordeeld met een GRADE ‘very low’.

 

De overall bewijskracht is gelijk aan de laagst gevonden bewijskracht voor de cruciale uitkomstmaat(en). In dit geval is dat is een GRADE ‘moderate’ voor eclampsie/HELLP. De uitkomstmaat is met één niveau afgewaardeerd wegens mogelijke risico op bias, het is onmogelijk in deze studies om de deelnemers te blinderen voor de interventie. Een kennislacune betreft het gebrek aan studies waarin de volgende uitkomstmaten werden gerapporteerd in de vergelijking tussen inleiden of afwachten bij vrouwen met hypertensieve aandoeningen tijdens de zwangerschap: patiënttevredenheid, PTSS, hechting (moeder-kind) en succesvolle borstvoeding op 6 weken.

 

Bernardes (2019) rapporteerde daarnaast ook een gecombineerd neonatale uitkomstmaat. Deze uitkomstmaat bestond uit het totaal aantal neonaten met RDS, bronchopulmonaire dysplasie, seizures, intracerebrale bloeding, intraventriculaire bloeding graad III of IV, cerebraal infarct, periventriculaire leukomalacie, hypoxisch ischemische encefalopathie, necrotiserende enterocolitis graad II of hoger en sepsis (op basis van kweek). Voor de gecombineerde uitkomstmaat werd een verhoogd risico van inleiding gevonden (RR 2,3 (95%BI 1,38 tot 3,82)) (Bernardes, 2019). Deze uitkomstmaat werd niet gestratificeerd voor het aantal weken zwangerschap gepresenteerd.

 

Inleiding reduceert het gecombineerde eindpunt HELLP/pre-eclampsie bij vrouwen met hypertensieve aandoeningen in de zwangerschap. Ten aanzien van het moment van inleidingsindicatie zal het maternale risico op verslechtering moeten worden ingeschat op basis van het fenotype van de hypertensieve aandoening en de neonatale risico’s op RDS.

 

Waarden en voorkeuren van patiënten (en eventueel hun verzorgers)

De voorkeur van de zwangere voor de interventie of een afwachtend beleid verschilt per persoon. Zwangere vrouwen (en hun partners) willen graag goed geïnformeerd worden over de voor- en nadelen voor henzelf en hun baby van inleiden versus afwachten. Hierbij dienen ook de (mogelijke) consequenties van inleiden te worden besproken die vrouwen als negatief kunnen ervaren (met name minder ‘agency’/ gevoel van regie/controle). Zwangere vrouwen (en hun partners) willen samen met hun gynaecoloog komen tot een afgewogen keuze die het beste bij hen past (‘samen beslissen’). Onderzoek laat zien dat na afloop van de inleiding dan wel afwachtend beleid de kwaliteit van leven door beide groepen gelijkwaardig is. Een keizersnede wordt als grootste negatieve ervaring beschreven (Bijlenga, 2011a; Bijlenga, 2011b). Onderzoeken in de algemene populatie laten zien dat inleiding een belangrijke rol speelt in ontevredenheid met betrekking tot de baring (Adler, 2020; Falk, 2019).

 

Kosten (middelenbeslag)

Kosten-effectiviteitsanalyses over de Nederlandse gezondheidszorg zijn beschikbaar van de HYPITAT-I, HYPITAT-II en DIGITAT trials (Van Baaren, 2017; Vijgen, 2010; Vijgen, 2013). De HYPITAT-I trial concludeerde dat inleiding van de baring goedkoper is dan een afwachtend beleid bij vrouwen met zwangerschapshypertensie of milde pre-eclampsie (36+0 tot 41+0 weken) (gemiddeld verschil -€831 (95%BI -€1561 tot -€144). Dit verschil werd voornamelijk verklaard door een ander gebruik van resources in de antepartum periode (Vijgen, 2010).

 

De HYPITAT-II trial concludeerde dat inleiding van de baring duurder is dan een afwachtend beleid bij vrouwen met milde hypertensieve aandoeningen (34+0 tot 37+0 weken) (gemiddeld verschil €682 (95%BI -€618 tot €2126). Dit verschil werd voornamelijk verklaard door een hoger aantal opnames van de neonaat (Van Baaren, 2017). De studie van Chappell (2019) concludeerde daarentegen dat inleiding van de baring bij vrouwen met pre-eclampsie (34 tot 37 weken) goedkoper zou zijn vergeleken met een afwachtend beleid (-£1478 (95% CI -2354 tot -605). De data van Chappell (2019) gaan over de gezondheidszorg in Engeland en Wales. Verklaring voor het verschil tussen HYPITAT-II trial en Chappell (2019) is dat in de Britse studie er hogere kosten zijn geassocieerd met de langere opname van de moeder in Chappell (2019).

 

De DIGITAT trial concludeerde dat de kosten van inleiding of een afwachtend beleid vergelijkbaar waren bij vrouwen met verdenking op groeivertraging (vanaf 36+0 weken) (gemiddeld verschil €111 (95%BI: €-1296 tot 1641). Echter, vóór 38 weken waren de kosten lager bij afwachtend beleid en ná 38 weken zwangerschap waren de kosten lager na inleiding (Vijgen, 2013).

 

De resultaten uit deze kosten-effectiviteitsanalyses suggereren dat preterme inleiding relatief duurder is en aterme inleiding relatief goedkoper dan een afwachtend beleid.

 

Aanvaardbaarheid, haalbaarheid en implementatie

Er worden geen barrières verwacht ten aanzien van de aanvaardbaarheid, haalbaarheid en implementatie van de aanbeveling.

 

Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies

De resultaten van de literatuuranalyse laten een significante en klinische relevante reductie in het aantal vrouwen met eclampsie/HELLP zien na inleiding van de baring.

Onderbouwing

Er zijn onder andere in Nederland verschillende studies gedaan waarin is gekeken naar het effect van inleiden vergeleken met afwachtend beleid bij zwangere vrouwen met een hypertensieve aandoening, maar deze studies zijn nog niet opgenomen in een landelijke richtlijn. Daardoor bestaat er waarschijnlijk praktijkvariatie en mogelijk substandard care.

Maternal outcome measures

Moderate GRADE

Immediate delivery does not reduce the risk of pre-eclampsia compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of eclampsia in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Moderate GRADE

Immediate delivery probably reduces the risk of HELLP syndrome and/or eclampsia compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of pulmonary oedema in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of hepatic haemorrhage, hepatic rupture or liver failure in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of renal insufficiency or renal failure in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of cerebral haemorrhage in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of placental abruption in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Moderate GRADE

Immediate delivery does not increase the risk of a caesarean section compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of postpartum haemorrhage in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019)

 

-

GRADE

The level of evidence regarding the outcome measures patient satisfaction, PTSD and bonding (mother-child) could not be assessed because of lack of data. None of the included studies reported the outcomes when comparing immediate delivery with expectant management in women suffering from hypertensive disorders of pregnancy after 32 weeks of pregnancy.

 

-

GRADE

None of the included studies reported the effect of immediate delivery compared to expectant management on maternal outcomes in women suffering from hypertensive disorders of pregnancy after 32 weeks of pregnancy. Every included study reported on women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Perinatal outcomes

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of perinatal death in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Very low GRADE

It is uncertain what the effect of immediate delivery compared to expectant management is for the risk of intra-uterine death (stillbirth) or neonatal death in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Chappell, 2019)

 

Moderate GRADE

Immediate delivery likely increases the risk of infant respiratory distress syndrome compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019)

 

Low

GRADE

Immediate delivery might increase the risk of a NICU admission compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019; Chappell, 2019)

 

Low

GRADE

Immediate delivery might reduce the risk of low birth weight for gestational age (defined as birth weight < 10th percentile) compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Bernardes, 2019, Chappell, 2019)

 

Moderate GRADE

Immediate delivery likely increases the risk of preterm birth < 37 weeks compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Chappell, 2019)

 

Low

GRADE

Immediate delivery might lead to less infants receiving exclusive breastfeeding at 24 hours prior to discharge from hospital compared to expectant management in women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

 

Sources: (Chappell, 2019)

 

-

GRADE

The level of evidence regarding the outcome measures successful breastfeeding at 6 weeks could not be assessed because of lack of data. None of the included studies reported the outcome when comparing immediate delivery with expectant management in women suffering from hypertensive disorders of pregnancy after 32 weeks of pregnancy.

 

-

GRADE

None of the included studies reported the effect of immediate delivery compared to expectant management on perinatal outcomes in women suffering from hypertensive disorders of pregnancy after 32 weeks of pregnancy. Every included study reported on women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy.

Description of studies

Bernardes (2019) performed an individual participant data meta-analysis to compare immediate delivery with expectant management for prevention of adverse maternal and neonatal outcomes in women with hypertensive disease in pregnancy. CENTRAL, PubMed, MEDLINE and Clinical Trials.gov were searched till 31 December 2017 for RCT’s comparing immediate delivery to expectant management in women presenting with gestational hypertension or pre-eclampsia without severe features from 34 weeks of pregnancy onwards. The primary neonatal outcome was respiratory distress syndrome (RDS) and the primary maternal outcome was a composite of HELLP syndrome (abbreviation for pregnancy complication, characterized by Hemolysis, Elevated Liver enzymes, and a Low Platelet count) and eclampsia. Secondary outcomes were among others pulmonary oedema, renal failure, placental abruption/antenatal haemorrhage, severe postpartum haemorrhage (> 1000 mL), intracerebral haemorrhage and cerebral infarction. Only pooled results were shown for the secondary outcomes. Five RCT’s with a total of 1778 participants were included (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014; van Bulck, 2003). To avoid selection bias, Bernardes (2019) did not use data from the GRIT study (van Bulck, 2003) to calculate preterm delivery rates and median time to delivery because of foetal compromise. Table 1 presents a brief overview of the study characteristics of the included RCTs in Bernardes (2019).

 

Chappell (2019) performed a parallel-group, non-masked, multicentre, randomised controlled trial to compare initiation of delivery (within 48 hours of randomization) with expectant management (delivery at 37 weeks of pregnancy, or sooner as clinical needs dictated). Pregnant women between 34 to 37 weeks of pregnancy with a diagnosis of pre-eclampsia or superimposed pre-eclampsia with a singleton or dichorionic diamniotic twin pregnancy were included. Women were excluded if the decision to deliver within the next 48 hours had already been made (immediate delivery was indicated according to national guidelines in women with persistent severe features of pre-eclampsia). In total 899 women were eligible for randomization, 448 women (471 infants (5% twins)) were allocated to initiation of delivery and 451 women (475 infants (5% twins)) were allocated to the expectant management group. Groups were comparable at baseline, except that women in the planned delivery group gave birth at 252 days of pregnancy versus 257 days of pregnancy in expectant management, and women in the expectant group were more likely to achieve a spontaneous vaginal delivery (n=2 (<1%) versus n=19 (4%)). Chappell (2019) conducted an intention-to-treat analysis and per protocol analysis (excluding women lost to follow-up (n=1 versus n=2), women who received planned delivery > 48 hours after randomization (n=120 (27%)) in the intervention group, or women who received non-indicated delivery < 37 weeks of pregnancy in the expectant group (n=2 (0.4%)). Results from intention-to-treat analysis and per protocol analysis were similar. Chappell (2019) examined composite score of maternal morbidity and a composite score of perinatal morbidity as co-primary outcome measures.

 

Table 1 Overview of study characteristics of included RCTs in Bernardes (2019)

Study

Trial participants

Non-eligible participants (reason: n)

Eligible participants (n)

GRIT

Van Bulck

(2003)

547 pregnant women with foetal compromise between 24+0 and 36+0weeks, umbilical artery Doppler waveform recorded and clinical uncertainty whether immediate delivery was indicated

Randomized before 34 weeks: 493

54

HYPITAT-I

Koopmans (2009)

756 women with singleton pregnancy between 36+0 and 41+0 weeks and who had gestational hypertension or pre-eclampsia without severe features

None

756

HYPITAT-II

Broekhuijsen (2015)

703 women with non-severe hypertensive disorders of pregnancy between 34+0 and 36+6 weeks of gestation

None

703

DIGITAT

Boers (2010)

650 women with singleton pregnancy between 36+0 and 41+0 weeks with suspected intrauterine growth restriction

Randomized without hypertensive disorder: 540

155

Deliver or Deliberate

Owens (2014)

169 women who met ACOG 2002 criteria for pre-eclampsia without severe features and gestational dating 34+0 to 36+6 weeks

Randomized before 34 weeks: 4; HIV: 2; diabetes: 7; major congenital malformations 1.

703

 

Results

It should be noted at forehand that none of the included studies reported the effect of immediate delivery compared to expectant management on perinatal outcomes in women suffering from hypertensive disorders of pregnancy after 32 weeks of pregnancy. Every included study reported on women suffering from hypertensive disorders of pregnancy after 34 weeks of pregnancy. Meta-analysis with crude data were performed where possible. Subgroup analyses exploring differences between studies including patients with or without suspected foetal growth restriction were performed where possible.

 

Maternal outcomes

1. Pre-eclampsia

All women in the study by Chappell (2019) had pre-eclampsia at inclusion. Five trials included in the review by Bernardes (2019) reported the number of pregnant women with pre-eclampsia, which was defined as hypertension (blood pressure (BP) levels ≥ 140 mmHg systolic or ≥ 90 mmHg diastolic) and proteinuria (300 mg or more total protein in a 24-h urine sample, recurrent positive protein dipstick test or protein/creatinine ratio of 30 mg/mmol or more) (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014; van Bulck, 2003). Bernardes (2019) only reported the pooled results.

 

There was no difference in the number of women with pre-eclampsia between the immediate delivery group (392/861) and the expectant management group (378/863) (RR 1.04 (95%CI 0.94 to 1.15)).

 

2. Eclampsia and/or HELLP syndrome

Two studies examined the outcome measure eclampsia and/or HELLP syndrome (Bernardes, 2019; Chappell, 2019). Five trials included in the review by Bernardes (2019) reported the outcome measure eclampsia (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014; Van Bulck, 2003), which was not defined in text. In addition, Bernardes (2019) reported a composite outcome of HELLP syndrome and/or eclampsia (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014; Van Bulk, 2003). Chappell (2019) also reported HELLP syndrome, but it is unclear if these data overlapped with women with eclampsia.

 

There was no difference in the risk of eclampsia between immediate delivery (3/1309) compared to expectant management (7/1314) (pooled RR 0.53 (95%CI 0.16 to 1.75); Figure 1). Subgroup analysis stratified for study populations with or without suspected foetal growth restriction showed similar effects.

 

When a composite outcome of HELLP syndrome and/or eclampsia was studied, immediate delivery reduced the risk of HELLP syndrome or eclampsia with 53% (pooled RR 0.47 (95% CI 0.27 to 0.82); Figure 2). The calculated number needed to treat (NNT) is 63. When this analysis was repeated without the number of HELLP cases reported by Chappell (2019), to prevent possible duplication of patients with both HELLP and eclampsia diagnosis, the overall effect was the same (pooled RR 0.39 (95%CI 0.19 to 0.78)). Subgroup analysis stratified for study populations with or without suspected foetal growth restriction showed similar effects.

 

Bernardes (2019) analysed the composite outcome HELLP syndrome and/or eclampsia stratified for weeks of gestation. Chappell (2019) did not report this subgroup analysis and was therefore not included. There was no difference in the outcome HELLP syndrome and/or eclampsia stratified for weeks of gestation (Table 2). When stratified based on type of hypertensive disorder of pregnancy, Bernardes (2019) reported an increased risk of HELLP syndrome and/or eclampsia in women with pre-eclampsia (RR 0.39 (95%CI 0.15 to 0.98)). For women with gestational hypertension or chronic hypertension it is unclear whether there is an increased risk for HELLP syndrome and/or eclampsia, because the reported 95% confidence intervals contain the value of no (clinically relevant) effect (Table 3).

 

Figure 1 Eclampsia comparison immediate delivery versus expectant management

F1

 

Figure 2 HELLP syndrome and/or eclampsia comparison immediate delivery versus expectant management

F2

 

Table 2 HELLP syndrome and/or eclampsia comparison immediate delivery versus expectant management, subgroup analysis by Bernardes (2019) by weeks of gestations (2019)

Subgroup: weeks of gestation

Relative Risk (95%CI)

Immediate delivery

Expectant management

Weight%

34 to 35 weeks

0.37 (0.10-1.30)

2/247

8/265

33.9%

36 to 37 weeks

0.44 (0.14-1.30)

4/371

10/338

39.8%

38 to 39 weeks

0.19 (0.02-1.60)

0/186

5/210

22.1%

40 to 41 weeks

0.90 (0.06-14.0)

1/41

1/50

4.2%

 

Table 3 HELLP syndrome and/or eclampsia comparison immediate delivery versus expectant management, subgroup analysis by Bernardes (2019) by type of hypertensive disorder (2019)

Subgroup: hypertensive disorder

Relative Risk (95%CI)

Immediate delivery

Expectant management

Weight%

Gestational hypertension

0.29 (0.06 to 1.30)

1/355

7/365

29.2%

Chronic hypertension

0.58 (0.08 to 4.20)

1/68

2/66

9.9%

Pre-eclampsia

0.39 (0.15 to 0.98)

5/438

15/432

60.9%

 

3. Pulmonary oedema

Two studies reported the outcome measure pulmonary oedema (Bernardes, 2019; Chappell, 2019. The outcome was not defined in text. Three trials included in the review by Bernardes (2019) reported the outcome (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009), but only the pooled results were reported by the review.

There was no difference in the outcome pulmonary oedema between the immediate delivery group (1/1201) and the expectant management group (4/1227) (RR 0.36 (95% CI 0.05 to 2.34) Figure 3).

 

Figure 3 Pulmonary oedema comparison immediate delivery versus expectant management

F3

 

4. Hepatic haemorrhage

No study reported the outcome hepatic haemorrhage specifically. One study reported the outcome hepatic haematoma or rupture (Chappell, 2019). Four trials included in the review by Bernardes (2019) reported the outcome liver failure, which was not defined in text (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014).

 

No patients in either the immediate delivery group (0/1309) or expectant management group (0/1314) developed liver failure, hepatic haematoma or hepatic rupture, whereby the RR could not be calculated for this outcome.

 

5. Renal insufficiency

Chappell (2019) reported the outcome renal insufficiency (defined as creatine > 150 µmol/L; no pre-existing renal disease). Four trials included in the review Bernardes (2019) did not report the outcome renal insufficiency, but did report the outcome renal failure, which was not defined in text (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014). Chappell (2019) also reported renal failure, which was defined as creatinine >200 µmol/L; pre-existing renal disease.

 

No women in either the immediate delivery group (0/448) or expectant management group (0/451) developed renal insufficiency, whereby the RR could not be calculated for this outcome.

 

No women in either the immediate delivery group (0/1309) or expectant management group (0/1314) developed renal failure, whereby the RR could not be calculated for this outcome.

 

6. Cerebral haemorrhage

Five trials included in the review by Bernardes (2019) reported the outcome intracerebral haemorrhage, which was not defined in text (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014; van Bulck, 2003).

 

No women in either the immediate delivery group (0/886) or expectant management group (0/892) developed an intracerebral haemorrhage, whereby the RR could not be calculated for this outcome.

 

7. Placental abruption

Two studies reported the outcome placental abruption (Bernardes, 2019; Chappell, 2019). Four studies reported the outcome placental abruption. Three trials included in the review by Bernardes (2019) reported the outcome (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009), but only the pooled results were reported by the review.

There was no difference in the outcome placental abruption between the immediate delivery group (4/1204) and the expectant management group (6/1227) (RR 0.77; 95% CI 0.22 to 2.69; Figure 4).

 

Figure 4 Placental abruption comparison immediate delivery versus expectant management

F4

 

8. Caesarean section

Two studies reported the outcome caesarean section (Bernardes, 2019; Chappell, 2019). Five trials included in the review by Bernardes (2019) reported the outcome (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014, Van Bulck, 2003), but only the pooled results were reported by the review.

 

Caesarean sections were reported in 493/1357 women undergoing immediate delivery compared to 534/1367 women treated with expectant management (pooled RR 0.92 (95%CI 0.85 to 1.01) figure 5). This was not a clinically relevant difference, as the 95%CI crosses the line of no clinically relevant effect (and the line of no statistically significant effect).

 

Figure 5 Caesarean section comparison immediate delivery versus expectant management.

F5

 

9. Postpartum haemorrhage

One study reported the outcome postpartum haemorrhage (Bernardes, 2019). Four trials included by the review of Bernardes (2019) reported the outcome severe postpartum haemorrhage (defined as > 1000 ml blood loss) (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014), but only the pooled results were reported by Bernardes (2019).

 

Postpartum haemorrhage was reported in 69/861 women undergoing immediate delivery compared to 90/863 women in expectant management (pooled RR 0.77 (95%CI 0.57 to 1.04)). It is uncertain whether this is a clinically relevant difference, as the 95%CI interval includes the limit of no clinically relevant effect (and no statistically significant effect).

 

10. Patient satisfaction

The outcome measure patient satisfaction was not reported in the included studies.

 

11. PTSD (post-traumatic stress disorder)

The outcome measure PTSD was not reported in the included studies.

 

12. Bonding (mother-child)

The outcome measure bonding (mother-child) was not reported in the included studies.

 

Perinatal outcomes

13. Perinatal death (intra-uterine death and neonatal death)

The outcome measure perinatal death was reported by three definitions: perinatal death, intra-uterine death and neonatal death, reported respectively in paragraphs 13.1, 13.2, 13.3. Most studies did not define the outcomes specifically.

 

13.1. Perinatal death

Five studies in the review by Bernardes (2019) reported the outcome perinatal mortality (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014, Van Bulck, 2003). Chappell (2019) reported the number of stillbirths and neonatal deaths. Both studies did not define the outcomes in text.

 

There was no difference in the outcome perinatal death between the immediate delivery group (1/1357) and the expectant management group (1/1367) (pooled RR 1.01 (95% CI 0.06 to 16.07); Figure 6).

 

Figure 6 Perinatal mortality comparison immediate delivery versus expectant management

F6

 

13.2. Intra-uterine death

One study reported the outcome intra-uterine death (Chappell, 2019), which was reported as stillbirth, not further defined in text.

 

There were no stillbirths in either the immediate delivery (0/471 infants) compared to expectant management groups (0/475 infants), hence no RR could be calculated.

 

13.3. Neonatal death

One study reported the outcome neonatal death (Chappell, 2019), which was not defined in text.

 

There were no reports of neonatal death in either the immediate delivery group (0/471) or expectant management groups (0/475), whereby the RR could not be calculated for this outcome.

 

14. Infant respiratory distress syndrome

Five studies in the review by Bernardes (2019) reported the outcome infant respiratory distress syndrome (IRDS) (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014, Van Bulck, 2003) (Figure 7). Bernardes (2019) also reported the pooled RR stratified for gestational age (Table 4).

 

There was an increased risk of IRDS for neonates in the immediate delivery group (29/886) compared to the expectant management group (14/892) (pooled RR 1.94 (95% CI 1.05 to 3.59); Figure 7).

 

Figure 7 IRDS comparison immediate delivery versus expectant management.

F7

 

Table 4 IRDS comparison immediate delivery versus expectant management, subgroup analysis by Bernardes (2019) by weeks of gestations (2019)

Subgroup: weeks of gestation

Relative Risk (95%CI)

Immediate delivery

Expectant management

Weight%

34 weeks

1.8 (0.8 to 3.9)

16/111

9/109

58.1%

35 weeks

5.5 (1.0 to 29.6)

7/136

1/156

9.5%

36 weeks

3.4 (0.4 to 30.3)

4/259

1/232

7.0%

≥37 weeks

2.0 (0.1 to 28.4)

2/355

3/366

25.5%

 

15 NICU admission

Two studies reported the outcome NICU admissions (Bernardes, 2019; Chappell, 2019). Four studies in the review by Bernardes (2019) reported the outcome (Boers, 2010; Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014), but only the pooled results were reported by Bernardes (2019). Chappell (2019) reported the outcome admission to neonatal unit, which was further specified in categories of care where mother and baby were separated: time in intensive care, time in high dependency care and time in special care. These outcomes were not defined in text by Chappell (2019). For the analysis of the outcome measure NICU admission, the time in intensive care by Chappell (2019) was included in the meta-analysis.

 

NICU admission was reported in 80/1279 infants in the immediate delivery group compared to 59/1273 infants in the expectant management group (pooled RR 1.35 (95% CI 0.97 to 1.87); Figure 8). It is uncertain whether this is a clinically relevant difference, as the 95%CI interval includes the limit of no clinically relevant effect (and no statistically significant effect).

 

Figure 8 NICU admission comparison immediate delivery versus expectant management

F8

 

16. Low birth weight for gestational age

Two studies reported the outcome low birth weight for gestational age (Bernades, 2019; Chappell, 2019). Three trials included in the review by Bernardes (2019) reported the outcome measure as small for gestational age (defined as birth weight < 10th percentile) (Broekhuijsen, 2015; Koopmans, 2009; Owens, 2014), but only the pooled results were reported by Bernardes (2019). Chappell (2019) reported the outcome as birthweight < 10th centile.

 

Low birth weight for gestational age (< 10th percentile) was reported in 196/1286 women with immediate delivery (15.2%) compared to 241/1273 women in expectant management (18.9%) (pooled RR 0.81 (95% CI 0.68 to 0.96)) (Figure 9). It is uncertain whether this is a clinically relevant difference, as the 95%CI interval includes the limit of no clinically relevant effect.

 

Figure 9 Low birth weight for gestational age (<10th percentile) comparison immediate delivery versus expectant management

F9

 

17. Preterm birth < 37weeks

One study reported the outcome preterm birth < 37 weeks (Chappell, 2019).

 

There was an increased risk of preterm birth < 37 weeks of pregnancy in women treated with immediate delivery (387/471) compared to expectant management (261/475) (RR 1.50 (95% 1.36 to 1.64) (figure 10).

 

Figure 10 Preterm birth < 37 weeks comparison immediate delivery versus expectant management

F10

 

18. Successful breastfeeding at 6 weeks

The outcome measure successful breastfeeding at 6 weeks was not reported in the included studies. Chappell (2019) reported the outcome method of infant feeding 24 hours prior to discharge, which is reported in Table 5 below.

 

Exclusive breastfeeding at 24 hours prior to discharge from hospital was reported in 112/471 women in the immediate delivery group compared to 139/475 women in the expectant management group (RR 0.81 (95%CI 0.66 to 1.01)). It is uncertain whether this is a clinically relevant difference, as the 95%CI interval includes the limit of no clinically relevant effect (and no statistically significant effect).

 

Table 5 Method of feeding 24 hours prior to discharge comparison immediate delivery versus expectant management, extracted from Chappell (2019)

Method of feeding 24 h prior to discharge

Immediate delivery

(N/n (% total))

Expectant management

(N/n (% total))

RR (95%CI)

Exclusive breastfeeding

112/471 (23.8%)

139/475 (29.3%)

0.81 (0.66, 1.01)

 

 

 

 

Mixed feeding

174/471 (36.9%)

161/475 (33.9%)

1.09 (0.92, 1.29)

 

 

 

 

Exclusive formula feeding

176/471 (37.4%)

168/475 (35.4%)

1.06 (0.89, 1.25)

 

 

 

 

Missing data

9/471 (2%)

7/475 (1.5%)

1.30 (0.49, 3.45)

 

Level of evidence of the literature

RCTs start at a GRADE high.

 

Maternal outcome measures

The level of evidence regarding the outcome measure pre-eclampsia was downgraded by one to a ‘moderate’ level because of risk of bias (impossible to blind participants in Bernardes (2019)).

 

The level of evidence regarding the outcome measure eclampsia was downgraded by three levels to ‘very low’ because of imprecision (low number of events, wide 95%CI) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure HELLP syndrome and/or eclampsia was downgraded by one level to ‘moderate’ because of risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure pulmonary oedema was downgraded by three levels to ‘very low’ because of imprecision (low number of events, wide 95%CI) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure hepatic haemorrhage defined as either liver failure, hepatic heaematoma or hepatic rupture was downgraded by three levels to ‘very low’ because of imprecision (no events) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measures renal insufficiency and renal failure were both downgraded by three levels to ‘very low’ because of imprecision (no events) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure cerebral haemorrhage was downgraded by three levels to ‘very low’ because of imprecision (no events) and risk of bias (impossible to blind participants in Bernardes (2019)).

 

The level of evidence regarding the outcome measure placental abruption was downgraded by three levels to ‘low’ because of imprecision (low number of events, wide 95%CI) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure caesarean section was downgraded by one level to ‘moderate’ because of risk of bias (impossible to blind participants in in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure postpartum haemorrhage was downgraded by three levels to ‘very low’ because of imprecision (95%CI exceeds the limit of no clinically relevant effect) and risk of bias (impossible to blind participants in Bernardes (2019)).

 

The level of evidence regarding the outcome measures patient satisfaction, PTSD and bonding (mother-child) could not be assessed because of lack of data (none of the included studies reported on outcomes).

 

Perinatal outcome measures

The level of evidence regarding the outcome measure perinatal death was downgraded by three levels to ‘very low’ because of imprecision (low number of events, wide 95%CI) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)). The level of evidence regarding the outcome measures intra-uterine death (stillbirths) and neonatal death were downgraded by three levels to ‘very low’ because of imprecision (no events) and risk of bias (impossible to blind participants in Chappell (2019)).

 

The level of evidence regarding the outcome measure infant respiratory distress syndrome was downgraded by one level to ‘moderate’ because of risk of bias (impossible to blind participants in Bernardes (2019)).

 

The level of evidence regarding the outcome measure NICU admission was downgraded by two levels to ‘low’ because of imprecision (95%CI includes the limit of no clinically relevant effect) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure low birth weight for gestational age was downgraded by two levels to ‘low’ because of imprecision (95%CI includes the limit of no clinically relevant effect) and risk of bias (impossible to blind participants in Bernardes (2019) and Chappell (2019)).

 

The level of evidence regarding the outcome measure preterm birth <37 weeks was downgraded by two level to ‘moderate’ because of risk of bias (impossible to blind participants in Chappell (2019)).

 

The level of evidence regarding the outcome measure successful breastfeeding at 6 weeks could not be assessed because of lack of data (none of the included studies reported on outcomes). Proxy outcome measure exclusive breastfeeding at 24 hours prior to discharge from hospital was downgraded by two levels to ‘low’ because of imprecision (95%CI includes the limit of no clinically relevant effect) and risk of bias (impossible to blind participants in Chappell (2019)).

A systematic review of the literature was performed to answer the following question:

Is induction of labour improving maternal and perinatal outcomes compared to expectant management in pregnant women with hypertensive disorders in pregnancy > GA 32+0?

 

P: pregnant women with hypertensive disorders in pregnancy > GA 32+0;

I: induction of labour;

C: expectant management;

O: at least one of the following outcome measures:

 

Maternal outcomes:

  • Pre-eclampsia
  • Eclampsia and/or HELLP syndrome
  • Pulmonary oedema
  • Hepatic haemorrhage
  • Renal insufficiency
  • Cerebral haemorrhage
  • Placental abruption
  • Caesarean section
  • Postpartum haemorrhage
  • Patient satisfaction
  • PTSD (post-traumatic stress disorder)
  • Bonding (mother-child)

 

Perinatal outcomes:

  • Perinatal death (intra-uterine death and neonatal death)
  • Infant respiratory distress syndrome (IRDS)
  • NICU admission
  • Low birth weight for gestational age
  • Preterm birth < 37weeks
    • Successful breastfeeding at 6 weeks

 

Relevant outcome measures

The guideline development group considered eclampsia as a critical outcome measure for decision making; and pre-eclampsia, pulmonary oedema, hepatic haemorrhage, renal insufficiency, cerebral haemorrhage, placental abruption, caesarean section, postpartum haemorrhage, patient satisfaction, PTSD, bonding (mother-child), perinatal death (intra-uterine death and neonatal death), IRDS, NICU admission, low birth weight for gestational age, preterm birth < 37weeks and successful breastfeeding at 6 weeks as important outcome measures for decision making.

 

A priori, the working group did not define the outcome measures listed above but used the definitions used in the studies.

 

For the outcome measures eclampsia, pulmonary oedema, hepatic haemorrhage, renal insufficiency, cerebral haemorrhage, placental abruption and perinatal death (intra-uterine death and neonatal death), any statistically significant difference was considered as a clinically important difference between groups. For the outcome caesarean section, the working group defined a difference of 5% in the relative risk as a minimal clinically important difference. For all other outcome measures, the GRADE default - a difference of 25% in the relative risk for dichotomous outcomes (Schünemann, 2013) and 0.5 standard deviation for continuous outcomes - was taken as a minimal clinically important difference.

 

Search and select (Methods)

The databases Medline (via OVID) and Embase (via Embase.com) were searched with relevant search terms until October 9th, 2019. The detailed search strategy is depicted under the tab Methods. The systematic literature search resulted in 322 hits. Studies were selected based on the following criteria:

  • the study population had to meet the criteria as defined in the PICO;
  • intervention as defined in the PICO;
  • original research or systematic review.

Fifty-five studies were initially selected based on title and abstract screening. After reading the full text, 53 studies were excluded (see the table with reasons for exclusion under the tab Methods) and two studies were included.

 

Results

One systematic review and one randomized controlled trial (RCT) were included in the analysis of the literature. Important study characteristics and results are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.

  1. Adler K, Rahkonen L, Kruit H. Maternal childbirth experience in induced and spontaneous labour measured in a visual analog scale and the factors influencing it; a two-year cohort study. BMC Pregnancy Childbirth. 2020 Jul 21;20(1):415.
  2. Bernardes TP, Zwertbroek EF, Broekhuijsen K, Koopmans C, Boers K, Owens M, Thornton J, van Pampus MG, Scherjon SA, Wallace K, Langenveld J, van den Berg PP, Franssen MTM, Mol BWJ, Groen H. Delivery or expectant management for prevention of adverse maternal and neonatal outcomes in hypertensive disorders of pregnancy: an individual participant data meta-analysis. Ultrasound Obstet Gynecol. 2019 Apr;53(4):443-453.
  3. Bijlenga D, Koopmans CM, Birnie E, Mol BW, van der Post JA, Bloemenkamp KW, Scheepers HC, Willekes C, Kwee A, Heres MH, Van Beek E, Van Meir CA, Van Huizen ME, Van Pampus MG, Bonsel GJ. Health-related quality of life after induction of labor versus expectant monitoring in gestational hypertension or preeclampsia at term. Hypertens Pregnancy. 2011;30(3):260-74.
  4. Bijlenga D, Boers KE, Birnie E, Mol BW, Vijgen SC, Van der Post JA, De Groot CJ, Rijnders RJ, Pernet PJ, Roumen FJ, Stigter RH, Delemarre FM, Bremer HA, Porath M, Scherjon SA, Bonsel GJ. Maternal health-related quality of life after induction of labor or expectant monitoring in pregnancy complicated by intrauterine growth retardation beyond 36 weeks. Qual Life Res. 2011 Nov;20(9):1427-36.
  5. Chappell LC, Brocklehurst P, Green ME, Hunter R, Hardy P, Juszczak E, Linsell L, Chiocchia V, Greenland M, Placzek A, Townend J, Marlow N, Sandall J, Shennan A; PHOENIX Study Group. Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial. Lancet. 2019 Sep 28;394(10204):1181-1190.
  6. Falk M, Nelson M, Blomberg M. The impact of obstetric interventions and complications on women's satisfaction with childbirth a population based cohort study including 16,000 women. BMC Pregnancy Childbirth. 2019 Dec 11;19(1):494.
  7. Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.
  8. van Baaren GJ, Broekhuijsen K, van Pampus MG, Ganzevoort W, Sikkema JM, Woiski MD, Oudijk MA, Bloemenkamp K, Scheepers H, Bremer HA, Rijnders R, van Loon AJ, Perquin D, Sporken J, Papatsonis D, van Huizen ME, Vredevoogd CB, Brons J, Kaplan M, van Kaam AH, Groen H, Porath M, van den Berg PP, Mol B, Franssen M, Langenveld J; HYPITAT-II Study Group. An economic analysis of immediate delivery and expectant monitoring in women with hypertensive disorders of pregnancy, between 34 and 37 weeks of gestation (HYPITAT-II). BJOG. 2017 Feb;124(3):453-461.
  9. Vijgen SM, Koopmans CM, Opmeer BC, Groen H, Bijlenga D, Aarnoudse JG, Bekedam DJ, van den Berg PP, de Boer K, Burggraaff JM, Bloemenkamp KW, Drogtrop AP, Franx A, de Groot CJ, Huisjes AJ, Kwee A, van Loon AJ, Lub A, Papatsonis DN, van der Post JA, Roumen FJ, Scheepers HC, Stigter RH, Willekes C, Mol BW, Van Pampus MG; HYPITAT study group. An economic analysis of induction of labour and expectant monitoring in women with gestational hypertension or pre-eclampsia at term (HYPITAT trial). BJOG. 2010 Dec;117(13):1577-85.
  10. Vijgen SM, Boers KE, Opmeer BC, Bijlenga D, Bekedam DJ, Bloemenkamp KW, de Boer K, Bremer HA, le Cessie S, Delemarre FM, Duvekot JJ, Hasaart TH, Kwee A, van Lith JM, van Meir CA, van Pampus MG, van der Post JA, Rijken M, Roumen FJ, van der Salm PC, Spaanderman ME, Willekes C, Wijnen EJ, Mol BW, Scherjon SA. Economic analysis comparing induction of labour and expectant management for intrauterine growth restriction at term (DIGITAT trial). Eur J Obstet Gynecol Reprod Biol. 2013 Oct;170(2):358-63.

Evidence table for systematic review of RCTs and observational studies (intervention studies)

Research question: Is induction of labour improving maternal and neonatal outcomes compared to expectant management in pregnant women with hypertensive disorders in pregnancy AD32+0?

Study reference

Study characteristics

Patient characteristics

Intervention (I)

Comparison / control (C)

Follow-up

Outcome measures and effect size

Comments

Bernardes, 2019

 

 

SR and meta-analysis of published or registered RCTs

 

Literature search up to December 2017

 

A: Koopmans, 2009 (HYPITAT-I)

B: Boers, 2010 (DIGITAT)

C: Owens, 2014 (Deliver or Deliberate)

D: Broekhuijsen, 2015 (HYPITAT-II)

E: GRIT study group, 2003 (GRIT)

 

Study design: RCT

 

Setting and Country:

A: 7 academic and 44 non-academic hospitals, The Netherlands

B: 8 academic and 44 non-academic hospitals, The Netherlands

C: Single center, USA

D: 7 academic and 44 non academic hospitals, The Netherlands

E: 69 hospitals in 13 EU countries

 

Source of funding and conflicts of interest:

Not reported.

 

Inclusion criteria SR: published or

Registered RCT’s comparing immediate delivery with expectant management in

women presenting with gestational hypertension or

pre-eclampsia without severe features from 34 weeks of gestation.

 

Exclusion criteria SR: Participants with signs of severe disease (BP ≥ 160 mmHg systolic or ≥ 110 mmHg diastolic, proteinuria ≥ 5 g/24 h, oliguria, cerebral/visual

disturbances, pulmonary edema/cyanosis, epigastric or right upper quadrant pain, impaired liver function and thrombocytopenia), as well as with diabetes mellitus, gestational diabetes requiring insulin treatment, kidney or

heart disease, HELLP syndrome or HIV. Pregnancies with

suspected or confirmed major structural or chromosomal

abnormality.

 

5 studies included, 4 studies in analysis

 

Important patient characteristics at baseline:

Number of patients; characteristics important to the research question and/or for statistical adjustment (confounding in cohort studies); for example, age, sex, bmi,...

 

N

A: 756 patients

B: 110 patients

C: 155 patients

D: 703 patients

E: NA

 

Age or other characteristics not reported:

 

Groups comparable at baseline? Not reported

Describe intervention:

A: immediate delivery in women presenting with gestational hypertension or

pre-eclampsia without severe features from 36+0 weeks of gestation

B: not reported

C: immediate delivery in women with pre-eclampsia between 34+0 and 36+6 weeks of gestation

D: immediate delivery in women with pre-eclampsia between 34+0 and 36+6 weeks of gestation

E: not reported

 

Expectant management

 

End-point of follow-up: not reported

 

For how many participants were no complete outcome data available? 1101/2825 (39%) (54 from GRIT study for which primary outcome was not collected)

 

 

 

1. Pre-eclampsia

Not reported

 

2. Eclampsia

Defined as HELLP or eclampsia

 

Effect measure: RR (95% CI):

A: 0.37 (0.12 to 1.14)

B: 0.15 (0.01 to 2.79)

C: 0.27 (0.01 to 6.48)

D: 0.37 (0.10 to 1.40)

 

Pooled effect (fixed effects model):

0.33 (95% CI 0.15 to 0.73) favoring immediate delivery

Heterogeneity (I2): 0%

 

Defined as eclampsia

 

Effect measure: RR (95% CI):

A: not estimable

B: 0.46 (0.02 to 11.07)

C: not estimable

D: 0.20 (0.01 to 4.14)

 

Pooled effect (fixed effects model):

0.29 (95% CI 0.03 to 2.48) favoring immediate delivery

Heterogeneity (I2): 0%

 

3. Pulmonary edema

Defined as pulmonary edema

 

Effect measure: RR (95% CI):

Pooled effect of 3 studies (fixed effects model):

0.20 (95% CI 0.01 to 4.17) favoring immediate delivery

Heterogeneity (I2): N/A

 

4. Hepatic haemorrhage

Defined as severe postpartum haemorrhage

 

Effect measure: RR (95% CI):

Pooled effect of 4 studies (fixed effects model):

0.77 (95% CI 0.57 to 1.04) favoring immediate delivery

Heterogeneity (I2): 2%

 

5. Renal insufficiency

Defined as liver failure

 

0 cases in all 4 studies.

 

6. Cerebral hemorrhage, Defined as intercerebral hemorrhage

 

0 cases in all 4 studies.

Brief description of author’s conclusion: In women with hypertension in pregnancy,

immediate delivery reduces the risk of maternal complications, whilst the effect on the neonate depends on gestational age. Specifically, women with a-priori higher risk of progression to HELLP, such as those already presenting

with pre-eclampsia instead of gestational hypertension, were shown to benefit from earlier delivery.

 

For secondary outcomes, only pooled results were reported.

 

Level of evidence:

2. Eclampsia: MODERATE

Due to imprecision (wide confidence interval crossing the line of no effect)

 

3. Pulmonary edema: MODERATE

Due to imprecision (wide confidence interval crossing the line of no effect)

 

4. Hepatic haemorrhage: HIGH

 

5. Renal insufficiency: N/A

 

6. Cerebral hemorrhage: N/A

 

 

Table of quality assessment for systematic reviews of RCTs and observational studies

Based on AMSTAR checklist (Shea, 2007; BMC Methodol 7: 10; doi:10.1186/1471-2288-7-10) and PRISMA checklist (Moher, 2009; PLoS Med 6: e1000097; doi:10.1371/journal.pmed1000097)

Study

 

 

 

 

 

 

First author, year

Appropriate and clearly focused question?1

 

 

 

 

 

Yes/no/unclear

Comprehensive and systematic literature search?2

 

 

 

 

 

Yes/no/unclear

Description of included and excluded studies?3

 

 

 

 

 

Yes/no/unclear

Description of relevant characteristics of included studies?4

 

 

 

 

Yes/no/unclear

Appropriate adjustment for potential confounders in observational studies?5

 

 

 

 

 

 

Yes/no/unclear/notapplicable

Assessment of scientific quality of included studies?6

 

 

 

 

Yes/no/unclear

Enough similarities between studies to make combining them reasonable?7

 

Yes/no/unclear

Potential risk of publication bias taken into account?8

 

 

 

 

 

Yes/no/unclear

Potential conflicts of interest reported?9

 

 

 

 

 

Yes/no/unclear

Bernardes, 2019

Yes

Yes

No

No

NA

Yes

Yes

No

No

  1. Research question (PICO) and inclusion criteria should be appropriate and predefined.
  2. Search period and strategy should be described; at least Medline searched; for pharmacological questions at least Medline + EMBASE searched.
  3. Potentially relevant studies that are excluded at final selection (after reading the full text) should be referenced with reasons.
  4. Characteristics of individual studies relevant to research question (PICO), including potential confounders, should be reported.
  5. Results should be adequately controlled for potential confounders by multivariate analysis (not applicable for RCTs).
  6. Quality of individual studies should be assessed using a quality scoring tool or checklist (Jadad score, Newcastle-Ottawa scale, risk of bias table et cetera).
  7. Clinical and statistical heterogeneity should be assessed; clinical: enough similarities in patient characteristics, intervention and definition of outcome measure to allow pooling? For pooled data: assessment of statistical heterogeneity using appropriate statistical tests (for exampleChi-square, I2)?
  8. An assessment of publication bias should include a combination of graphical aids (e.g., funnel plot, other available tests) and/or statistical tests (for example Egger regression test, Hedges-Olken). Note: If no test values or funnel plot included, score “no”. Score “yes” if mentions that publication bias could not be assessed because there were fewer than 10 included studies.
  9. Sources of support (including commercial co-authorship) should be reported in both the systematic review and the included studies. Note: To get a “yes,” source of funding or support must be indicated for the systematic review AND for each of the included studies.

 

Evidence table for intervention studies (randomized controlled trials and non-randomized observational studies (cohort studies, case-control studies, case series))1

This table is also suitable for diagnostic studies (screening studies) that compare the effectiveness of two or more tests. This only applies if the test is included as part of a test-and-treat strategy - otherwise the evidence table for studies of diagnostic test accuracy should be used.

Research question: Is induction of labour improving maternal and neonatal outcomes compared to expectant management in pregnant women with hypertensive disorders in pregnancy AD32+0?

Study reference

Study characteristics

Patient characteristics 2

Intervention (I)

Comparison / control (C) 3

 

Follow-up

Outcome measures and effect size 4

Comments

Chappell (2019)

Type of study: parallel-group, non-masked, multicentre, randomised controlled trial

 

Setting and country: 46 maternity units across England and Wale

 

Funding and conflicts of interest: Funding by National Institute for Health Research Health Technology Assessment Programme. LCC has been chair of the NIHR Health Technology Assessment Clinical Evaluation and Trials Committee since January, 2019. EJ has previously been a member of the NIHR Health Technology Assessment commissioning and general committees. NM reports personal fees from Shire and Novartis, outside of the submitted work. All remaining authors declare no competing interests.

Inclusion criteria: A pregnant woman was eligible if she was between 34 weeks and less than 37 weeks of gestation, had a diagnosis of pre-eclampsia or superimposed pre-eclampsia (as defined by the International Society for the Study of Hypertension in Pregnancy),7 with a singleton or dichorionic diamniotic twin pregnancy and at least one viable fetus, was aged 18 years or older, and was able to give written informed consent. Women with any other comorbidity (including pre-existing hypertension or diabetes) or with a previous caesarean section or any fetal position were eligible.

 

Exclusion criteria: if a decision had already been made to deliver within the next 48 h. Current practice by national guidelines in use during the trial was for immediate delivery of a woman with persistent severe features of pre-eclampsia (including haemolysis, elevated liver enzymes, and low platelets syndrome); these women would thus not be eligible for the trial.

 

N total at baseline:

Intervention: 448 women (471 infants)

Control: 451 women (475 infants)

 

Important prognostic factors2:

For example

age ± SD:

I: 30.6 (6.4)

C: 30.8 (6.3)

 

Sex: 100%F

 

Median gestational age, weeks:

I; 35.6 (34.7-36.3)

C: 35.6 (34.7 – 36.3)

 

Dichorionic diamniotic twins:

I: 23 (5%)

C: 24 (5%)

 

Groups comparable at baseline? Yes, except that women in the planned delivery group gave birth at 252 days of gestation versus. 257 days and were significantly more likely to achieve a spontaneous vaginal delivery (n=2 (<1%) versus n=19 (4%)).

 

Describe intervention (treatment/procedure/test):

 

Initiation of delivery (within 48 h of randomization, to allow for corticosteroid administration to accelerate fetal lung maturation and neonatal cot availability if necessary).

 

Planned delivery was usually by induction of labour, unless there was an additional specific indication for pre-labour caesarean section. Individual decisions around mode of induction and delivery and use of corticosteroids for fetal lung maturity were left to the discretion of the individual clinician, with the trial protocol advising that

all options should be discussed with the pregnant woman and her needs and preferences taken into account.

 

 

 

 

Describe control (treatment/procedure/test):

 

Expectant management

 

Expectant management involved delivery at 37 weeks’gestation or sooner as clinical needs dictated in accordance with the UK national guidelines,4 as assessed by the clinician responsible for the woman’s care, for maternal indications (eg, uncontrolled hypertension or abnormal blood results), fetal compromise, eclampsia, or

other clinical crises.

Length of follow-up: not defined.

 

 

Loss-to-follow-up:

Intervention: 448

N (%) 1 (0.2%)

Reasons (describe) not described: not described.

 

Control: 451

N (%) 2 (0.4%)

Reasons (describe): not described.

 

Incomplete outcome data:

Intervention: 0

N (%)

Reasons (describe)

 

Control: 0

N (%)

Reasons (describe)

 

Additional information:

Intention to treat analysis:

I: 448 women (471 infants)

C: 451 women (475 infants)

 

Per protocol analysis:

I: 327 women (342 infants)

C: 447 women (470 infants)

 

Difference between ITT en PPA:

I: 121 women (129 infants) excluded (1 lost to follow-up; 120 women received plannend delivery >48h after randomizations (n=95 women due to logistic delays; n=25 due to patient choice)

C: 4 women (5 infants) excluded (2 women lost to follow-up; 2 women received non indicated delivery <37 weeks of pregnancy).

 

 

 

Outcome measures and effect size (include 95%CI and p-value if available):

 

Where possible, all outcome measures were adjusted for centre, singleton/ twin pregnancy, severity of hypertension in 48 h before enrolment, parity, previous caesarean section and gestational age at randomisation.

 

1. Pre-eclampsia

Outcome was not reported (all included women had PE), but the outcome ‘progression to severe pre-eclampsia’ was reported and defined as systolic blood pressure of at least 160 mm Hg, platelet count less than 100 × 10⁹ per L, and abnormal liver function enzymes (alanine aminotransferase or aspartate aminotransferase >70 IU/L)

 

I: 287/448

C: 334/451

RR adjusted 0.86 (95%CI 0.79-0.94)

 

2. Eclampsia.

Outcome was not defined in text.

 

Data extracted from supplementary file

 

I: 3/448 (1%)

C: 4/451 (1%)

 

RR not calculated

 

HELLP syndrome was reported in

 

I: 7/448

C: 10/451

 

3. Pulmonary oedema

Outcome was not defined in text.

 

Data extracted from supplementary file

 

I: 1/448 (0%)

C: 2/451 (0%)

 

RR not calculated.

 

4. Hepatic haemorrhage

Outcome was defined as hepatic haematoma or rupture

 

Data extracted from supplementary file

 

I: 0

C: 0

 

RR not calculated.

 

5. Renal insufficiency

Outcome was defined as acute renal insufficiency (creatine >150 µmol/L; no pre-existing renal disease)

 

Data extracted from supplementary file

 

I: 3/448 (1%)

C: 4/451 (1%)

 

RR not calculated

 

There were no cases reported of acute renal failure (defined as creatine >200 µmol/L; pre-existing renal disease) or patients needing dialysis.

 

6. Cerebral haemorrhage

Outcome reported as stroke or reversible ischaemic neurologic deficit

 

I: 0

C: 0

 

Transient ischaemic attack

I: 0

C: 0

 

 

7. Placental abruption

Outcome not defined in text. Outcome was both reported in maternal morbidity composite score, and data reported separately.

 

I: 4/448

C: 4/451

Effect size: adjusted RR 1.00 (95%CI 0.38 – 2.67)))

 

8. Caesarean section

Outcome not defined in text.

 

Total number of c-sections:

I: 260/471

C: 289/475

RR adjusted 0.92 (95%CI 0.84-1.01)

 

Prelabour caesarean section:

I: 153/471 (33%)

C: 168/475 (35%)

 

Emergency caesarean section:

I: 107/471 (23%)

C: 121/475 (26%)

 

9. Postpartum haemorrhage

Outcome not reported.

 

10. Patient satisfaction

Outcome not reported.

 

11. PTSD

Outcome not reported.

 

12. bonding mother-child

Outcome was not reported

 

13. Intra-uterine death

Outcome defined as stillbirth

 

I: 0

C:0

 

 

Outcome defined as neonatal death

 

I:0

C:0

 

14. NICU admission

Outcome reported as:

 

Number of admissions to neonatal unit (NB is not NICU!)

I: 196/471

C: 159/475

Adjusted RR 1.26 (95%CI 1.08 – 1.47)

 

Category of care during neonatal unit stay (separation of baby from mother):

Time in intensive care:

I: 27/471

C: 19/475

(Adjusted) RR: not calculated

 

Time in high dependency care:

I: 51/471

C: 33/475

(Adjusted) RR: not calculated

 

Time in special care:

I: 168/471

C: 143/475

(Adjusted) RR: not calculated

 

15. Low birth weight

Defined as birth weight <10th centile

 

I: 74/471

C: 95/475

Adjusted RR 0.79 (95%CI 0.58 – 1.09)

 

16. Premature birth <37 weeks

Outcome defined as premature birth < 37 weeks

 

I: 387/471 (83%)

C: 261/475 (55%)

 

RR not calculated

 

17. Successful breastfeeding at 6 weeks

Outcome reported as method of infant feeding 24 hours prior to discharge

 

Exclusive breastfeeding:

I: 112/471 (24%)

C: 139/475 (30%)

 

Mixed feeding:

I: 174/471 (38%)

C: 161/475 (34%)

 

Exclusive formula feeding:

I: 176/471 (38%)

C: 168/475 (36%)

Authors’ conclusions: “There is strong evidence to suggest that planned delivery reduces maternal morbidity and severe hypertension compared with expectant management, with more neonatal unit admissions related to prematurity but no indicators of greater neonatal morbidity. This trade-off should be discussed with women with late preterm pre-eclampsia to allow shared decision making on timing of delivery.”

 

Chappell (2019) studied 2 primary outcome measures, composite maternal morbidity score adjusted RR 0·86, 95% CI 0·79–0·94; p=0·0005 and composite perinatal morbidity score adjusted RR 1·26, 1·08–1·47; p=0·0034.

 

Composite maternal morbidity outcome was defined as: A composite of maternal morbidity of fullPIERS9 outcomes, with the addition of recorded systolic blood pressure of at least 160 mm Hg post randomisation (on any occasion). fullPIERS outcomes were maternal death; central nervous system (eclampsia, Glasgow coma score <13, stroke or reversible ischaemic neurological deficit, transient ischaemic attack, cortical blindness or retinal detachment, or posterior reversible encephalopathy); cardiorespiratory (positive inotropic support, infusion of a third parenteral antihypertensive drug, myocardial ischaemia or infarction, peripheral oxygen saturation <90%, ≥50% fraction

of inspired oxygen for >1 h, intubation (other than for

caesarean section), or pulmonary oedema); haematological (transfusion of any blood product or platelet

count <50 × 10⁹ per L with no transfusion); hepatic (hepatic

dysfunction or hepatic haematoma or rupture); renal

(acute renal insufficiency (creatinine >150 μmol/L with no pre-existing renal disease), acute renal failure (creatinine

>200 μmol/L with pre-existing renal disease), or dialysis);

or placental abruption.

 

Composite perinatal morbidity score was defined as: neonatal deaths within 7 days of delivery and perinatal deaths or neonatal unit admissions (physical separation of an infant from their mother) before infant hospital discharge.

 

 

 

 

Notes:

  1. Prognostic balance between treatment groups is usually guaranteed in randomized studies, but non-randomized (observational) studies require matching of patients between treatment groups (case-control studies) or multivariate adjustment for prognostic factors (confounders) (cohort studies); the evidence table should contain sufficient details on these procedures.
  2. Provide data per treatment group on the most important prognostic factors ((potential) confounders)
  3. For case-control studies, provide sufficient detail on the procedure used to match cases and controls.
  4. For cohort studies, provide sufficient detail on the (multivariate) analyses used to adjust for (potential) confounders.

 

Risk of bias table for intervention studies (randomized controlled trials)

Research question: Is induction of labour improving maternal and neonatal outcomes compared to expectant management in pregnant women with hypertensive disorders in pregnancy AD32+0?

Study reference

 

 

 

(first author, publication year)

Describe method of randomisation1

Bias due to inadequate concealment of allocation?2

 

 

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of participants to treatment allocation?3

 

 

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of care providers to treatment allocation?3

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of outcome assessors to treatment allocation?3

 

(unlikely/likely/unclear)

Bias due to selective outcome reporting on basis of the results?4

 

 

 

(unlikely/likely/unclear)

Bias due to loss to follow-up?5

 

 

 

 

 

(unlikely/likely/unclear)

Bias due to violation of

intention to treat analysis?6

 

 

 

(unlikely/likely/unclear)

Chappell 2019

Current practice by national guidelines in use during the trial was for immediate delivery of a woman with persistent severe features of pre-eclampsia (including haemolysis, elevated liver enzymes, and low platelets syndrome); these women would thus not be eligible for the trial.

Unlikely

Unclear, women and clinicians (and data collectors) could not be blinded to the intervention.

Unclear, women and clinicians (and data collectors) could not be blinded to the intervention.

Unclear, trial statisticians were not blinded, unclear why this was not possible.

Unlikely, reported as prescribed in previously published protocol

Unlikely, in both groups lost to follow-up was low (1/448 in the intervention, 2/451 in the control group).

 

 

 

 

 

 

Intention to treat analysis:

I: 448 women (471 infants)

C: 451 women (475 infants)

 

Per protocol analysis:

I: 327 women (342 infants)

C: 447 women (470 infants)

 

Unlikely, all participants were analyzed as intention to treat. A second, per protocol analysis was conducted that only included patients where protocol was followed.

 

 

Difference between ITT and PPA:

I: 121 women (129 infants) excluded (1 lost to follow-up; 120 women received planned delivery >48h after randomizations (n=95 women due to logistic delays; n=25 due to patient choice)

C: 4 women (5 infants) excluded (2 women lost to follow-up; 2 women received non indicated delivery <37 weeks of pregnancy).

  1. Randomisation: generation of allocation sequences have to be unpredictable, for example computer generated random-numbers or drawing lots or envelopes. Examples of inadequate procedures are generation of allocation sequences by alternation, according to case record number, date of birth or date of admission.
  2. Allocation concealment: refers to the protection (blinding) of the randomisation process. Concealment of allocation sequences is adequate if patients and enrolling investigators cannot foresee assignment, for example central randomisation (performed at a site remote from trial location) or sequentially numbered, sealed, opaque envelopes. Inadequate procedures are all procedures based on inadequate randomisation procedures or open allocation schedules.
  3. Blinding: neither the patient nor the care provider (attending physician) knows which patient is getting the special treatment. Blinding is sometimes impossible, for example when comparing surgical with non-surgical treatments. The outcome assessor records the study results. Blinding of those assessing outcomes prevents that the knowledge of patient assignement influences the proces of outcome assessment (detection or information bias). If a study has hard (objective) outcome measures, like death, blinding of outcome assessment is not necessary. If a study has “soft” (subjective) outcome measures, like the assessment of an X-ray, blinding of outcome assessment is necessary.
  4. Results of all predefined outcome measures should be reported; if the protocol is available, then outcomes in the protocol and published report can be compared; if not, then outcomes listed in the methods section of an article can be compared with those whose results are reported.
  5. If the percentage of patients lost to follow-up is large, or differs between treatment groups, or the reasons for loss to follow-up differ between treatment groups, bias is likely. If the number of patients lost to follow-up, or the reasons why, are not reported, the risk of bias is unclear
  6. Participants included in the analysis are exactly those who were randomized into the trial. If the numbers randomized into each intervention group are not clearly reported, the risk of bias is unclear; an ITT analysis implies that (a) participants are kept in the intervention groups to which they were randomized, regardless of the intervention they actually received, (b) outcome data are measured on all participants, and (c) all randomized participants are included in the analysis.

 

Tabel Exclusie na het lezen van het volledige artikel

Auteur en jaartal

Redenen van exclusie

Amorim, 2015

geen RCT

Bernardes, 2016

voldoet niet aan PICO (secundaire analyse van hypitat trial/ digital trial, subgroep vrouwen onrijpe cervix)

Bernardes, 2019

inclusie

Bijlenga, 2011

Voldoet niet aan PICO (uitkomstmaten voldoen niet aan PICO).

Bracken, 2014

voldoet niet aan PICO (vergelijkt 2 inductie methoden, in plaats van vergeleken met expectant management)

Broekhuijsen, 2015

Reeds geïncludeerd in Bernardes (2019)

Broekhuijsen, 2015

geen RCT

Broekhuijsen, 2016

erratum

Caughey, 2009

voldoet niet aan PICO (electieve inductie, algemene populatie zwangeren)

Chappell, 2015

narrative review

Chappell, 2019

studie protocol PHOENIX trial

Churchill, 2002

oudere versie Cochrane review Churchill 2018

Churchill, 2013

oudere versie Cochrane review Churchill 2018

Churchill, 2018

voldoet niet aan PICO (analyses over 24-34 weken, zonder onderscheid tussen weken)

Cluver, 2017

Voorkeur voor systematische review en meta-analyse van Bernardes (2019) (analyse van individuele participant data). Cluver (2017) analyseert composiet scores, Bernardes (2019) analyseert uitkomsten los van elkaar.

Cruz, 2012

geen RCT

de Sonnaville, 2019

secundaire analyse van hyptitat 1 (effect op obstetrisch management)

Dekker, 2014

narrative review

Fiolna, 2019

voldoet niet aan PICO (geen hypertensieve zwangeren)

Garcia-Simon, 2016

voldoet niet aan PICO (economische analyse inleiding (algemeen))

Gilbert, 2010

geen origineel artikel (betreft zogenaamde "info poem" in journal)

Habli, 2007

voldoet niet aan PICO (vergelijkt normotensieven versus. hypertensieven)

Hermes, 2013

voldoet niet aan PICO (postpartum cardiovasculair risico)

Kawakita, 2018

voldoet niet aan PICO (caesarean versus. inductie)

Koopmans, 2007

protocol paper hypitat 1

Koopmans, 2009

Reeds geïncludeerd in Bernardes (2019)

Koopmans, 2009

Reeds geïncludeerd in Bernardes (2019)

Langenveld, 2011

protocol paper hypitat 2

Magee, 2009

geen RCT

Marrs, 2019

voldoet niet aan PICO ( betreft reflectie ARRIVE trial)

Martin, 2012

congresabstract

Moodley, 1998

geen vergelijkend onderzoek (observationele studie)

Nathan, 1994

narrative review

Owens, 2014

Reeds geïncludeerd in Bernardes (2019)

Shennan, 2010

voldoet niet aan PICO (economische analyse Hypitat)

Shepherd, 2017

voldoet niet aan PICO (algemene populatie zwangeren; interventies preventie cerebrale parese)

Shibata, 2016

geen vergelijkend onderzoek (observationele studie)

Sibai, 1994

niet full tekst beschikbaar

Sibai, 2007

narrative review

Sibai, 2011

narrative review

Snydal, 2014

narrative review

Souter, 2019

geen RCT

Suzuki, 2014

voldoet niet aan PICO (kijkt tot 32 weken en is geen RCT)

Tajik, 2012

post-hoc analyse Hypititat over invloed cervical favourability

Tajik, 2012

dubbele Tjaik, 2012

Tajik, 2014

voldoet niet aan PICO (kijkt naar predictie IUGR fetuses in DIGITAT trial)

van Baaren, 2017

Voldoet niet aan PICO (kijkt naar effect op kosten)

van der Tuuk, 2011

secundaire analyse van hyptitat 1 (effect op obstetrisch handelen/gedrag gynaecologen)

van der Tuuk, 2011

voldoet niet aan PICO (wordt gekeken naar risico op hoog risico situatie)

Van Der Tuuk, 2015

voldoet niet aan PICO (wordt gekeken naar risico op keizersnede bij PE of GH vrouwen)

Vijgen, 2010

Voldoet niet aan PICO (kijkt naar effect op kosten)

Wood, 2014

voldoet niet aan PICO (algemenere populatie (vrouwen met intact membraan))

Zwertbroek, 2019

voldoet niet aan PICO (kijkt naar lange termijn neonatale uitkomsten >2 jaar)

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 22-07-2021

Laatst geautoriseerd  : 22-07-2021

Geplande herbeoordeling  : 01-01-2027

Module[1]

Regiehouder(s)[2]

Jaar van autorisatie

Eerstvolgende beoordeling actualiteit richtlijn[3]

Frequentie van beoordeling op actualiteit[4]

Wie houdt er toezicht op actualiteit[5]

Relevante factoren voor wijzigingen in aanbeveling[6]

Inleiding versus afwachtend beleid

NVOG

2020

2025

5 jaar

NVOG

Nieuwe evidence


[1] Naam van de module

[2] Regiehouder van de module (deze kan verschillen per module en kan ook verdeeld zijn over meerdere regiehouders)

[3] Maximaal na vijf jaar

[4] (half)Jaarlijks, eens in twee jaar, eens in vijf jaar

[5] regievoerende vereniging, gedeelde regievoerende verenigingen, of (multidisciplinaire) werkgroep die in stand blijft

[6] Lopend onderzoek, wijzigingen in vergoeding/organisatie, beschikbaarheid nieuwe middelen

Initiatief en autorisatie

Initiatief:
  • Nederlandse Vereniging voor Obstetrie en Gynaecologie
Geautoriseerd door:
  • Nederlandse Vereniging voor Kindergeneeskunde
  • Nederlandse Vereniging voor Obstetrie en Gynaecologie
  • Koninklijke Nederlandse Organisatie van Verloskundigen
  • Hellp Stichting

Algemene gegevens

De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten en werd gefinancierd uit de Stichting Kwaliteitsgelden Medisch Specialisten (SKMS). De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.

 

Deze richtlijn is ontwikkeld in samenwerking met:

  • Patiëntenfederatie Nederland

Doel en doelgroep

Doel

Deze richtlijn beoogt een leidraad te geven voor de dagelijkse praktijk van de zorg van zwangere vrouwen met een hypertensieve aandoening. De richtlijn bespreekt niet de indicaties voor het beëindigen van de zwangerschap op maternale indicatie, maar beperkt zich bij de behandeling tot de medicamenteuze behandeling.

 

Doelgroep

Deze richtlijn is geschreven voor alle leden van de beroepsgroepen die aan de ontwikkeling van de richtlijn hebben bijgedragen. Deze staan vermeld bij de samenstelling van de werkgroep. Tot de beroepsgroepen die geen zitting hadden in de werkgroep, maar wel beoogd gebruikers zijn van deze richtlijn behoren o.a. klinisch verloskundigen.

Samenstelling werkgroep

Voor het ontwikkelen van de richtlijnmodule is in 2019 een werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen die betrokken zijn bij de zorg voor vrouwen met hypertensieve aandoeningen in de zwangerschap.

 

Werkgroep

  • Dr. C.J. (Caroline) Bax, gynaecoloog-perinatoloog, werkzaam in het Amsterdam UMC locatie AMC, NVOG, voorzitter stuurgroep.
  • Dr. S.V. (Steven) Koenen, gynaecoloog, werkzaam in het ETZ, locatie Elisabeth Ziekenhuis, NVOG, lid stuurgroep.
  • Dr. Duvekot, gynaecoloog, werkzaam in het Erasmus MC, NVOG, lid stuurgroep.
  • Dr. M.A. (Marjon) de Boer, gynaecoloog-perinatoloog, werkzaam in het Amsterdam UMC, locatie VUmc, NVOG.
  • Dr. A.T. (Titia) Lely, gynaecoloog, werkzaam in het UMC Utrecht, NVOG.
  • Dr. P.J. (Petra) Hajenius, gynaecoloog-perinatoloog, werkzaam in het Amsterdam UMC locatie AMC, NVOG.
  • Dr. J.W.(Wessel) Ganzevoort, gynaecoloog-perinatoloog, werkzaam in het Amsterdam UMC locatie AMC, NVOG.
  • Dr. O.W.H. (Olivier) van der Heijden, gynaecoloog-perinatoloog, werkzaam in het Radboud UMC Nijmegen, NVOG.
  • MSc F.M. (Fenna) van der Molen, verloskundige, werkzaam in praktijk Veilige Geboorte, KNOV.
  • Dr. M.C. (Mignon) van der Horst, klinisch verloskundige, werkzaam in de Gelderse Vallei Ede, KNOV.
  • Mw. A.M.M. (Annemijn) Doppenberg, MSc, adviseur, Patiëntenfederatie Nederland.
  • Mw. J.C. (Anne) Mooij, MSc, adviseur, Patiëntenfederatie Nederland.
  • Mw. K.L.H.E. (Kim) VandenAuweele, beleidsmedewerker HELLP Stichting.

 

Meelezers

  • Leden van de Otterlo - werkgroep (2020)

 

Met ondersteuning van

  • Dr. A. (Anne) Bijlsma-Rutte, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
  • Dr. L. (Laura) Viester, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
  • Dr. M.A.C. (Marleen) van Son, adviseur, Kennisinstituut van de Federatie Medisch Specialisten
  • MSc Y. (Yvonne) Labeur, junior adviseur, Kennisinstituut van de Federatie Medisch Specialisten.

Belangenverklaringen

De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.

 

Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

Bax

(voorzitter stuurgroep)

Gynaecoloog-perinatoloog Amsterdam UMC, locatie AMC, 0,8 fte

Gastvrouw Hospice Xenia Leiden (onbetaald)

 

geen

Duvekot

(lid stuurgroep)

Gynaecoloog, Erasmus MC (full time)

Directeur 'medisch advies en expertise bureau Duvekot', Ridderkerk, ZZP'er

 

geen

Koenen

 (lid stuurgroep)

gynaecoloog, ETZ , Tilburg

incidenteel juridische expertise (betaald)

 

geen

de Boer

gynaecoloog-perinatoloog AUMC, locatie Vumc

geen

 

geen

Hajenius

Gynaecoloog (1.0 fte), afdeling Obstetrie Amsterdam Universitair Medische Centra (AUMC), locatie Meibergdreef (AMC).

geen nevenwerkzaamheden

De module Geboortezorg - Hypertensieve aandoeningen zal in de praktijk worden vertaald naar een lokaal protocol voor de afdeling Obstetrie van het AUMC waar ik werkzaam ben en de lokale protocollen beheer. In die zin zullen naaste collega's (artsen, klinisch verloskundigen en arts assistenten) "baat" hebben bij de uitkomsten van de module.

geen

Lely

Gynaecoloog WKZ

off-road commissie lid ZonMw (onkostenvergoeding, onbetaald)

 

geen

Van der Heijden

Gynaecoloog, perinatoloog
Radboudumc Nijmegen

Lid multidisciplinaire richtlijn commissie (NVOG):
- hypertensieve crisis
- nierziekten en zwangerschap
- hypertensie (NVOG-KNOV)

Deelredacteur Nederlands Tijdschrift Obstetrie Gynaecologie, sectie perinatologie

 

geen

Ganzevoort

Gynaecoloog , Amsterdam UMC

Redacteur NTOG, onbetaald

Ik ben PI van enkele ZonMW gefinancierde studies bij foetale groeirestrictie en centrum-contactpersoon voor enkele andere pre-eclampsie studies. Binnen die studies wordt ook door Roche Diagnostics materiaal in-kind ter beschikking gesteld. Er zijn door het bedrijf hieraan geen inhoudelijke voorwaarden gesteld, op geen enkel vlak.

geen actie, de richtlijnmodules doen geen uitspraak over welke testapparatuur/-methode gehanteerd moet worden voor het bepalen van proteïnurie, alleen dat men dit middels het eiwit-kreatinine ratio doet.

van der Horst

Klinisch verloskundige, ziekenhuis Gelderse Vallei, Ede

PKV, KNOV vacatievergoeding

 

geen

van der Molen

eerstelijns verloskundige, KNOV

Ledenraad Eerstelijns Verloskundigen Amsterdam Amstelland (EVAA) - afwisselend voorzitter, notulist en algemeen lid - onbetaald

Commissie Kwaliteit en onderzoek EVAA - afwisselend voorzitter, notulist en algemeen lid - onbetaald

 

geen

van Son

Beleidsmedewerker KNOV

Niet van toepassing

 

geen

Van den Auweele

Beleidsmedewerker Hellp Stichting

 

 

geen

Ensink

Medior adviseur patiëntbelang Patiëntenfederatie

Niet van toepassing

 

geen

Mooij

adviseur Patientenbelang, Patientenfederatie Nederland

Niet van toepassing

 

geen

Doppenberg

adviseur Patientenbelang, Patientenfederatie Nederland

Niet van toepassing

 

geen

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief door uitnodigen van patiëntvertegenwoordigers van verschillende patiëntverenigingen voor de Invitational conference en afvaardigen van patiëntenverenigingen in de clusterwerkgroep. Het verslag hiervan is besproken in de werkgroep. De verkregen input is meegenomen bij het opstellen van de uitgangsvragen, de keuze voor de uitkomstmaten en bij het opstellen van de overwegingen (zie per module ook ‘Waarden en voorkeuren van patiënten (en eventueel hun verzorgers)’. De conceptrichtlijn wordt tevens ter commentaar voorgelegd aan de betrokken patiëntenverenigingen.

Methode ontwikkeling

Evidence based

Werkwijze

AGREE

Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).

 

Knelpuntenanalyse en uitgangsvragen

Tijdens de voorbereidende fase inventariseerden de werkgroep de knelpunten in de zorg voor vrouwen met hypertensieve aandoeningen in de zwangerschap. Tevens zijn er knelpunten aangedragen door patiëntenverenigingen tijdens de Invitational conference. Een verslag hiervan is opgenomen in de bijlagen.

Op basis van de uitkomsten van de knelpuntenanalyse zijn door de werkgroep concept-uitgangsvragen opgesteld en definitief vastgesteld.

 

Uitkomstmaten

Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Methode literatuursamenvatting

Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur en de beoordeling van de risk-of-bias van de individuele studies is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).

 

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • het is mogelijk dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • er is een reële kans dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dicht bij het geschatte effect van behandeling ligt;
  • de literatuurconclusie is zeer onzeker.

 

Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello, 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE-methodiek.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.

 

In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE-gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.

 

Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers

 

Sterke aanbeveling

Zwakke (conditionele) aanbeveling

Voor patiënten

De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet.

Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet.

Voor behandelaars

De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen.

Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren.

Voor beleidsmakers

De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid.

Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen.

 

Organisatie van zorg

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module Organisatie van zorg.

 

Commentaar- en autorisatiefase

De conceptrichtlijnmodule wordt aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren worden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren wordt de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule wordt aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Literatuur

Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.

Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. https://richtlijnendatabase.nl/over_deze_site/richtlijnontwikkeling.html.

Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, Williams JW Jr, Kunz R, Craig J, Montori VM, Bossuyt P, Guyatt GH; GRADE Working Group. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008 May 17;336(7653):1106-10. doi: 10.1136/bmj.39500.677199.AE. Erratum in: BMJ. 2008 May 24;336(7654). doi: 10.1136/bmj.a139.

Schünemann, A Holger J (corrected to Schünemann, Holger J). PubMed PMID: 18483053; PubMed Central PMCID: PMC2386626.

Wessels M, Hielkema L, van der Weijden T. How to identify existing literature on patients' knowledge, views, and values: the development of a validated search filter. J Med Libr Assoc. 2016 Oct;104(4):320-324. PubMed PMID: 27822157; PubMed Central PMCID: PMC5079497.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Antihypertensiva postpartum