Ivermectine
Uitgangsvraag
Wat is de plaats van ivermectine bij de behandeling van COVID-19 patiënten?
Aanbeveling
Ivermectine wordt niet aanbevolen als behandeling van patiënten met COVID-19
Overwegingen
Voor- en nadelen van de interventie en de kwaliteit van het bewijs
Er is literatuuronderzoek verricht naar de verschillen in klinische uitkomsten tussen behandeling met en zonder ivermectine bij patiënten opgenomen in het ziekenhuis met COVID-19 en patiënten niet opgenomen in het ziekenhuis. Tot 7 april 2022 werden er 17 gerandomiseerde gecontroleerde studies (RCT’s) gevonden. Tien studies onderzochten het effect van behandeling met ivermectine in patiënten met COVID-19 die waren opgenomen in het ziekenhuis en zeven studies werden uitgevoerd in patiënten die niet waren opgenomen in het ziekenhuis.
Er werden alleen RCT’s geïncludeerd in de analyse, waardoor de kwaliteit van bewijs initieel hoog was. De geïncludeerde studies hadden in wisselende mate methodologische beperkingen (risk of bias). Er was in sommige studies een risico op bias door onder andere ontoereikende documentatie, lost of follow-up en missende data, of de gebruikte statistische analyse (risk of bias). Daarnaast waren de studiebevindingen onderling inconsistent (inconsistency) en waren er meerdere studies met een relatief kleine populatie en mede hierdoor een grote spreiding van de puntschatter van de uitkomstmaat (imprecision). Hierdoor werd de kwaliteit van dit bewijs naar beneden werd bijgesteld. Ook werden er veel verschillende doseringen ivermectine gebruikt en verschilde de duur van de behandeling.
De bewijskracht van de literatuur bij patiënten die waren opgenomen in het ziekenhuis en ambulante patiënten werd voor zowel de cruciale als belangrijke uitkomstmaten, door bovenstaande bevindingen gegradeerd als ‘laag’ of ‘zeer laag’.
Ivermectine bij patiënten opgenomen in het ziekenhuis
Er werden 10 studies geïncludeerd die ivermectine onderzochten bij patiënten die opgenomen waren in het ziekenhuis. Acht van de negen studies randomiseerden minder dan 100 patiënten naar ivermectine. Alleen de studie van Lim (2022) was groter: deze onderzocht bij 490 patiënten met minder dan 7 dagen klachten van COVID-19, een relatief hoge dosering ivermectine (400 microg/kg gedurende 5 dagen). De gerandomiseerde open-label trial was daarnaast van relatief goede kwaliteit. Er werd geen statistisch significant verschil gezien in de kans op progressie naar ernstige ziekte en ook een numeriek voordeel van ivermectine op deze uitkomst maat werd niet gezien (21,6% progressie naar ernstige ziekte in de ivermectine groep versus 17,3% in de controle groep). Voor de uitkomstmaat mortaliteit werd ook geen significant verschil gevonden, al was er hier wel een numeriek voordeel van ivermectine (1,2% mortaliteit binnen 28 dagen in de ivermectine groep versus 4,0% in de controlegroep).
Ook de andere RCT’s die in deze richtlijn werden geïncludeerd lieten geen overtuigend bewijs zien in het voordeel van ivermectine bij opgenomen patiënten. Ook als de data gepoold weergegeven werden (zoals gedaan bij de mortaliteit binnen 28 dagen en bij start van uitgebreide respiratoire ondersteuning), werd er geen overtuigend bewijs gezien in het voordeel van ivermectine.
Ivermectine bij ambulante patiënten
Ook bij ambulante patiënten waren er een aantal kleine studies die minder dan 100 patiënten randomiseerden naar ivermectine. Twee grotere studies die het gebruik van ivermectine onderzochten in de ambulante setting, zijn de studie van López-Medina (2021) en Vallejos (2021). Verreweg het meeste bewijs naar ivermectine bij ambulante patiënten wordt verkregen uit de studie van Reis (2022) die 1358 patiënten includeerde.
López-Medina (2021) verrichtte een dubbelblinde, 1:1 gerandomiseerde, placebo-gecontroleerde, prospectieve studie bij 400 patiënten met milde ziekte in een vroege fase (minder dan 7 dagen klachten). De kwaliteit van deze studie is hoog met betrekking tot de opzet, uitvoering (inclusief blindering), analyse en documentatie. Ook de beperkingen zijn transparant benoemd. De gebruikte dosering en het doseringsschema van ivermectine is duidelijk hoger (300 microgram/kg gedurende 5 aaneengesloten dagen) dan de geregistreerde standaard dosis (200 microgram/kg eenmalig eventueel met een herhaling 1 week later). De mediane tijd tot verdwijnen van symptomen was 10 dagen (IQR 9 –13 d) met ivermectine versus 12 dagen (IQR 9 –13 d) met placebo, maar niet statistisch significant verschillend (HR: 1,07 [95% CI: 0,87 –1,32]; P = 0,53 met log-rank test). Op dag 21 waren 82% van de patiënten met ivermectine versus 79% met placebo symptoomvrij. Deze studie was niet gepowered om een effect op mortaliteit in de studiepopulatie aan te tonen, die bij patiënten in deze leeftijdsgroep (mediaan 37 jaar) met milde COVID-19 hoe dan ook zeer laag is. Ook is er geen data over (het beloop) van viral load en bereikte ivermectine spiegels. In de ivermectine-groep werden niet meer bijwerkingen gerapporteerd dan in de placebogroep.
De studie van Vallejos (2021) onderzocht ivermectine bij ruim 500 patiënten met COVID-19. Net zoals de voorgaande studie, was ook deze studie van relatief goede kwaliteit en was de gebruikte dosering van ivermectine hoger dan de geregistreerde standaarddosis. Wel was de studie ‘underpowered’ omdat deze relatief klein was voor de gekozen uitkomstmaat (opname in het ziekenhuis). Patiënten waren relatief jong (42 jaar) en zij hadden nog maar kort klachten (gemiddeld 4 dagen bij randomisatie). Opname in het ziekenhuis was minder vaak nodig bij patiënten die ivermectine gebruikte (5,6% versus 8,4%), echter, dit verschil was niet statistisch significant. Ook werden er geen statistisch significante verschillen gevonden in de virale klaring, de kans op mechanische ventilatie of mortaliteit.
Een grote Braziliaanse, placebogecontroleerde RCT onderzocht ivermectine bij 1358 ambulante patiënten met COVID-19 (Reis, 2022). Deze zeer grote, kwalitatief goede studie includeerde patiënten met COVID-19 als ze maximaal 7 dagen klachten hadden van COVID-19 en minimaal 1 risicofactor voor progressie van ziekte. De mediane leeftijd van de gerandomiseerde patiënten was 49 jaar. Randomisatie bestond uit 400 microgram/kg ivermectine gedurende 3 dagen of placebo (gedurende 1, 3, 10 of 14 dagen). Er werd geen verschil gezien in de kans op opname in het ziekenhuis of bezoek aan de spoedeisende hulp vanwege COVID-19, in de groep met ivermectine versus placebo (14,7% in de ivermectine groep versus 16,3% in de placebo groep; relatief risico 0,90; 95% Bayesian CI 0,70-1,16). Ook werd er geen verschil gezien in mortaliteit of virale klaring.
Concluderend zijn er nu een drietal relatief grote en kwalitatief (redelijk) goede studies beschikbaar die het effect van ivermectine bij ambulante patiënten onderzochten. Geen van deze studies laat aanwijzingen zien voor een positief effect van ivermectine op de kans op opname in het ziekenhuis of mortaliteit.
Overige overwegingen
Studies bij zowel opgenomen als ambulante patiënten laten geen overtuigend positief effect zien van ivermectine op belangrijke klinische eindpunten. Dit betreft de mortaliteit, voorkomen van (ernstige) ziekte, voorkomen van opname op de intensive care, duur van ziekenhuisopname, en behoefte aan respiratoire ondersteuning.
Meerdere studies laten wel een verschil zien in de resolutie van symptomen in de groep die behandeld werd met ivermectine (bij opgenomen patiënten: Ahmed, 2020; Lim, 2020; Mohan, 2021; Okumuş 2021; Ravikirti, 2021; Shahbaznejad, 2021; bij ambulante patiënten: Buonfrate, 2022; Chachar, 2020; López-Medina, 2021; Podder, 2020). Echter, deze klachten werden vaak alleen gedocumenteerd door middel van self reporting, hetgeen kans geeft op bias bij een niet geblindeerd studieontwerp. De relatief grote en kwalitatief betere studies van Lim (2022) en López-Medina (2021) lieten geen evident verschil zien in de resolutie van klachten.
Ook onderzochten meerdere studies het effect van ivermectine op de viral load, met een wisselend resultaat. De studie van Ahmed (2021) toonde een significante reductie in de viral load na 3 dagen bij patiënten die met ivermectine behandeld werden, terwijl de studie van Chaccour (2021) en Vallejos (2021) dit niet bevestigen.
Naast de bovengenoemde gepubliceerde artikelen zijn er diverse andere studies verschenen die niet gepeer-reviewed werden, of alleen verschenen in bronnen of tijdschriften die niet in de gebruikelijke online medische bibliografieën (bijvoorbeeld MEDLINE/Pubmed) zijn geïndexeerd. De richtlijncommissie heeft samen met het kennisinstituut van de FMS tevens een extra literatuuronderzoek gedaan naar de laatstgenoemde groep studies. Vele daarvan includeerden slechts kleine aantallen patiënten, lieten grote onduidelijkheid en/of gebreken zien wat betreft de gevolgde methodologie, of rapporteerden het resultaat op onduidelijke wijze.
Er zijn inmiddels wel- en niet gepeer-reviewde meta-analyses en reviews te vinden waarin onder andere de bovengenoemde studies ook werden opgenomen, en die dan op een positief advies uitkomen. De bron van deze meta-analyses is vaak onduidelijk, en deze meta-analyses bevatten aanzienlijke methodologische gebreken. Bijvoorbeeld: Bij het nalopen van deze meta-analyses bleek dat de waardering van het bewijsniveau van de afzonderlijke studies (volgens de GRADE-methodologie) niet goed was uitgevoerd, en dat ook studies en eindpunten werden meegenomen die (om diverse redenen) niet gepooled zouden mogen worden met de resultaten van andere studies (Hill, 2022) (heterogeniciteit).
Bijwerkingen
Behandeling met ivermectine lijkt relatief veilig, al worden centraal zenuwstelsel bijwerkingen, zoals hoofdpijn en duizeligheid, maar ook encephalopathie, beschreven (Guzzo, 2002). ‘Adverse events’ tijdens behandeling van COVID-19 werden onder andere bekeken in de studie van Lim (2022) en López-Medina (2021). Bij Lim (2022) werden ‘adverse events’ gezien bij 13,7% van de patiënten die met ivermectine behandeld werden versus 4,4% van de patiënten in de controle groep. Dit verschil werd met name bepaald door het optreden van diarree. In de studie van López-Medina (2021) werden ‘adverse events’ niet vaker gezien in de ivermectine groep vergeleken met de placebo groep, wel stopte iets meer mensen in de ivermectine groep met hun behandeling vanwege klachten (7,5% versus 2,5%).
Dosering
In de beschreven studies worden veel verschillende doseringen van ivermectine gebruikt, daarnaast is de frequentie van toediening erg wisselend. Op basis van de huidige literatuur is behandeling met ivermectine niet geadviseerd. Ook zal er dus geen advies over een dosering plaatsvinden.
Waarden en voorkeuren van patiënten (en evt. hun verzorgers)
Op grond van de bekende onderzoeksgegevens wordt ivermectine niet aanbevolen in de behandeling van patiënten met COVID-19. Behandeling met ivermectine is relatief veilig, alhoewel er wel (ernstige) bijwerkingen zijn beschreven. Ondanks dit advies om ivermectine niet te gebruiken in de behandeling van COVID-19, verwachten wij dat patiënten bij hun waardering van ivermectine ook hun persoonlijke voorkeur en maatschappelijke beeldvorming zullen laten meewegen.
Kosten (middelenbeslag)
Ivermectine wordt niet aanbevolen bij de behandeling van COVID-19, de kosten zullen hier daarom niet beschreven worden.
Aanvaardbaarheid, haalbaarheid en implementatie
Ivermectine wordt niet aanbevolen bij de behandeling van COVID-19, dus implementatie is niet van toepassing.
Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies
De huidige literatuur bevat inmiddels zowel in de ambulante setting als bij opgenomen patiënten enkele relatief grote en kwalitatief (redelijk) goede studies die het effect van ivermectine bij COVID-19 onderzochten. Op basis van deze literatuur wordt er geen voordeel verwacht van ivermectine bij de behandeling van COVID-19. Op basis van de beschikbare in vitro en in vivo data is het ook twijfelachtig of van ivermectine een (relevant) antiviraal effect bij patiënten te verwachten is. Het (off label) gebruik van ivermectine in de behandeling van COVID-19 wordt dan ook niet aanbevolen.
Ook de richtlijnen van de WHO, de Infectious Diseases Society of America (IDSA) en de National Institute of Health (NIH) hebben ivermectine niet opgenomen als standaardbehandeling. De fabrikant Merck heeft op 4-2-2021 bevestigd dat ivermectine als niet geschikt wordt beschouwd voor de behandeling van COVID-19 (zie: www.merck.com/news/merck-statement-on-ivermectin-use-during-the-covid-19-pandemic)
Onderbouwing
Achtergrond
Ivermectine is een semisynthetisch derivaat van avermectine en wordt gebruikt voor de behandeling van parasitaire infestaties of infecties met mijten of nematoden bij dieren en mensen. Over ivermectine werd in vitro activiteit tegen SARS-CoV-2 bij een derivaat van Vero cellen (niercellen afkomstig van groene meerapen) gerapporteerd (Caly, 2020). Het mechanisme voor de anti-parasitaire werking is gebaseerd op verslapping van gladde spiercellen door remming van Cl- channels, warentegen het mechanisme voor anti-virale werking zou kunnen berusten op de remming van nuclear import (Jans, 2020). Een latere studie met humane primaire bronchiaalepitheel cellen als model, dat beter overeenkomt met de situatie bij mensen, toonde echter geen remming van de virusreplicatie in vitro (Dinesh Kumar, 2021). Dit maakt de extrapolatie naar klinische effecten niet eenvoudiger.
Klinische behandeling van COVID-19 met ivermectine werd in het begin van de pandemie ontraden omdat met een 10 keer hogere dan de geregistreerde dosis de in vitro EC50 (die ook niet klinisch gevalideerd is), in de long niet bereikt zou kunnen worden. Alleen met een vele malen (>35-100x) hogere dosis dan de standaarddosis zouden theoretisch pas de benodigde concentraties ook in vivo bereikt kunnen worden (Schmith, 2020). Klinische dose-finding studies ontbreken.
Inmiddels hebben diverse gerandomiseerde gecontroleerde studies (RCT’s) de effectiviteit van ivermectine onderzocht om de plaats van dit middel bij de behandeling van COVID-19 patiënten te bepalen.
Conclusies
PICO 1: Hospitalized patients
Mortality (crucial)
Very low GRADE |
The evidence is very uncertain about the effect of treatment with ivermectin on mortality when compared with treatment without ivermectin in hospitalized patients with COVID-19.
Source: Abd-Elsalam, 2021; Gonzalez, 2022; Krolewiecki, 2020; Lim, 2022; Mohan, 2021; Okumuş 2021; Ravikirti, 2021 |
Extensive respiratory support (crucial)
Very low GRADE |
The evidence is very uncertain about the effect of treatment with ivermectin on extensive respiratory support when compared with treatment without ivermectin in hospitalized patients with COVID-19.
Source: Abd-Elsalam, 2021; Lim, 2022; Mohan, 2021; Ravikirti, 2021; Shahbaznejad, 2020 |
Duration of hospitalization (important)
Very low GRADE |
The evidence is very uncertain about the effect of treatment with ivermectin on the length of stay when compared with treatment without ivermectin in hospitalized patients with COVID-19.
Source: Abd-Elsalam, 2021; Ahmed, 2020; Gonzalez, 2022; Kishoria, 2020; Li, 2022; Mohan, 2021; Rivikirti, 2021; and Shahbaznejad, 2021 |
Time to clinical improvement (important)
Very low GRADE |
The evidence is very uncertain about the effect of treatment with ivermectin on time to clinical improvement when compared with treatment without ivermectin in hospitalized patients with COVID-19.
Source: Ahmed, 2020; Lim, 2020; Mohan, 2021; Okumuş 2021; Ravikirti, 2021; Shahbaznejad, 2021 |
PICO 2: Non-hospitalized patients
Mortality (crucial)
Low GRADE |
Treatment with ivermectin may result in little to no difference in mortality when compared with treatment without ivermectin in non-hospitalized patients with COVID-19.
Source: Chaccour, 2021; López-Medina, 2021; Reis, 2022; Vallejos, 2021 |
Respiratory support (crucial)
Very low GRADE |
The evidence is very uncertain about the effect of treatment with ivermectin on extensive respiratory support when compared with treatment without ivermectin in non-hospitalized patients with COVID-19.
Source: López-Medina, 2021; Reis, 2022; Vallejos, 2021 |
Hospitalization (important)
Low GRADE |
Treatment with ivermectin may result in little to no difference in hospitalization when compared with treatment without ivermectin in non-hospitalized patients with COVID-19.
Source: Buonfrate, 2022; Reis, 2022; Vallejos, 2021 |
Time to clinical improvement (important)
Low GRADE |
Treatment with ivermectin may result in little to no difference in time to clinical improvement when compared with treatment without ivermectin in non-hospitalized patients with COVID-19. Source: Buonfrate, 2022; Chaccour, 2021; Chachar, 2020; López-Medina, 2021; Podder, 2020; Reis, 2022 |
Samenvatting literatuur
Hospitalized patients
Abd-Elsalam (2021) described an open-label randomized controlled trial, which was conducted in 2 university hospitals in Egypt. They evaluated the efficacy and safety of ivermectin in patients hospitalized with mild to moderate COVID-19. Of 172 patients, 164 patients were included as they met the inclusion criteria and were willing to participate. These patients were randomized to receive ivermectin and standard care (n=82) or standard care alone (n=82). The mean (SD) age was 42.38 (16.02) years in the intervention group, compared with 39.38 (16.92) years in the control group. In the intervention group 37/82 (45.1%) were males, compared with 45/82 (54.9%) in the control group. Patients in the intervention group received a single dose of oral ivermectin tablets (12 mg) every day for 3 days. In addition, all patients continued to receive standard of care for 14 days, which included paracetamol, oxygen, fluids (according to the condition of the patient), empiric antibiotic, oseltamivir if needed (75 mg/12 h for 5 days), and invasive mechanical ventilation with hydrocortisone for severe cases. The length of the follow-up was 1 month. The following relevant outcome measures were included: mortality, duration of hospitalization and extensive respiratory support. The primary outcome was all-cause mortality within 1 month. This occurred in 3/82 (3.7%) patients in the intervention group, compared with 4/82 (4.9%) patients in the control group. This resulted in a rate difference of -0.01 (95% CI -0.07 to 0.05).
Ahmed (2020) described a randomized, double-blind, placebo-controlled trial, which was conducted in 1 hospital in Bangladesh. They evaluated the efficacy and safety of ivermectin in patients hospitalized with mild COVID-19. Patients were randomized to receive ivermectin alone (N=24), ivermectin and doxycycline (N=24) or placebo (N=24). For the current literature summary, the group receiving ivermectin alone was included as the intervention group. The standard care was not described. The mean age and sex were only reported for the three groups combined. Patients had a mean age of 42 years and 54% was female. Patients in the intervention groups received oral ivermectin alone (12 mg once daily, for 5 days). The control group received a placebo, which was not further specified. The length of the follow-up was 2 weeks. The following relevant outcome measures were included: non-invasive respiratory support, duration of hospitalization, time to clinical improvement, time to viral clearance. The primary outcomes were time to viral clearance and time to clinical improvement (remission of fever and cough). At day 14, viral clearance occurred in 17/22 (77.3%) patients in the intervention group and 9/23 (39.1%) patients in the control group. This resulted in a rate difference of -0.38 (95% CI 0.12 to 0.65). Remission of fever (≥37.5°C) within 7 days occurred in 17/17 (100%) patients in the intervention group and 16/19 (84.2%) patients in the control group (RD 0.16 (95% CI -0.03 to 0.34). Remission of cough within 7 days occurred in 7/18 (38.9%) patients in the intervention group and 9/15 (60%) patients in the control group (RD -0.21, 95% CI -0.55 to 0.12).
Gonzalez (2022) described a double-blind, placebo-controlled, randomized clinical trial, which was conducted in Mexico. They evaluated the efficacy and safety of ivermectin in hospitalized COVID-19 patients that did not have severe respiratory failure. Patients were randomized to receiving ivermectin and standard of care or a placebo and standard of care. Another study arm was included, in which patients received hydroxychloroquine. This information is not included in the current summary. The mean age of patients was 56 (SD 16.5) years in the intervention group and 53.8 (SD 16.9) years in the control group. Patients in the intervention and control group were 58.3% and 62.1% male, respectively. The intervention group received a single dose of 12 mg (weight < 80kg) or 18 mg (weight ≥ 80kg) of ivermectin. The control group received calcium citrate as a placebo, which was administered as 2 tablets every 12 h on the first day, followed by one tablet every 12 h for the following 4 days. As standard of care, all patients received pharmacological thromboprophylaxis with low molecular weight heparin or unfractionated heparin according to local and international guidelines. The length of the follow-up was 28 days. The following relevant outcome measures were included: mortality and duration of hospitalization. The primary outcomes were length of hospital stay (median, days) and the rate of respiratory deterioration or dead. The median length of stay was 6 (IQR 4-11) days in the intervention group and 5 (IQR 4-7) days in the control group. The rate of respiratory deterioration or death was 8/36 (22.2%) in the intervention group, compared with 9/37 (24.3%) in the control group (RD -0.02; 95% CI -0.21 to 0.17).
Kishoria (2020) described an open-label randomized controlled trial, which was conducted in one hospital in India. They evaluated the efficacy and safety of ivermectin in hospitalized patients. Patients were randomized to receiving ivermectin and standard of care or standard of care alone. The mean age of all patients was 38 years (SD not reported) and 23/32 (72%) patients were male. The intervention group received a single dose of 12 mg of ivermectin. Standard of care provided to both groups and included hydroxychloroquine, vitamin C, and paracetamol. The length of the follow-up was 6 days. The following relevant outcome measure was included: duration of hospitalization. The primary outcome was negative RT-PCR throat swab for SARS-CoV-2 after 48 hours. In the intervention group, 8/19 (42.2%) patients had a negative swab, compared to 6/13 (46%) patients in the control group (RD -0.04, 95% CI -0.39 to 0.31).
Krolewiecki (2020) described a proof-of-concept, pilot, multicenter, open-label, randomized, controlled trial, which was conducted in four hospitals in Argentina. They evaluated the efficacy and safety of ivermectin in hospitalized patients with COVID-19 not requiring intensive care. Patients were randomized to receiving ivermectin and standard of care or standard of care alone. The mean (±SD) age in the intervention group was 42.3 years (±12.8) and 38.1 years (±11.7) in the control group. In the intervention group, 15/30 (50%) of the patients were male, compared with 10/15 (67%) of the patients in the control group. The intervention group received oral treatment with ivermectin at a single dose of 600 μg/kg for 5 consecutive days. Standard of care was provided to both groups and included hospitalization, but was not further specified. The length of the follow-up was 30 days. The following relevant outcome measure was included: mortality. The primary outcome was the difference in SARS-CoV-2 viral load between baseline and day 5. At day 5, 6/20 (30%) patients in the intervention group and 1/12 (8.3%) patients in the control group had a viral load value below the limit of quantification of 10 copies/reaction (RD 0.22, 95% CI -0.04 to 0.47).
Lim (2022) described a multicenter, open-label randomized controlled trial, which was conducted at 20 public hospitals and a COVID-19 quarantine center in Malaysia. They evaluated the efficacy of ivermectin in preventing progression to severe disease among high-risk patients with COVID-19. Patients were randomized to receiving ivermectin and standard of care or standard of care alone. The mean (±SD) age in the intervention group was 63.0 years (±8.9) and 62.0 years (±8.4) in the control group. In the intervention group, 111/241 (46.1%) of the patients were male, compared with 112/249 (45.0%) of the patients in the control group. The intervention group received oral ivermectin 400 μg/kg body weight daily for 5 days. Standard of care was provided to both groups and consisted of symptomatic therapy and monitoring for signs of early deterioration based on clinical findings, laboratory test results, and chest imaging, but was not further specified. The length of the follow-up was 28 days. The following relevant outcome measures were included: mortality, duration of hospitalization, time to clinical improvement and extensive respiratory support. The primary outcome was proportion of patients who progressed to severe COVID-19. Of the intervention group, 52/ 241 patients (21.6%) progressed to severe COVID-19, compared to 43/249 (17.3%) patients in the control group (RD 0.04, 95% CI -0.03 to 0.11).
Mohan (2021) described a single-center, pilot, double-blind, randomized, placebo-controlled trial, which was conducted at a cancer institute in India. They evaluated the efficacy and safety of ivermectin in adult patients with non-severe COVID-19. Patients were randomized to receiving ivermectin 12 mg, ivermectin 24 mg or placebo. The mean (±SD) age in the ivermectin 12 mg group was 36.3 years (±10.54), 34.3 years (±10.45) in the ivermectin 24 mg group and 35.3 years (±10.52) in the control group. In the ivermectin 12 mg group, 35/40 (57.5%) of the patients were male, compared with 37/40 (92.5%) of the patients in the ivermectin 24 mg group and 39/52 (86.7%) of the patients in the control group. The intervention groups received oral treatment with ivermectin at a single dose of 12 mg (200 μg/kg) or 24 mg (400 μg/kg). The length of the follow-up was 28 days. The following relevant outcome measures were included: mortality, duration of hospitalization, time to clinical improvement and extensive respiratory support. The co-primary outcomes were the reduction of viral load (estimated from CT value) and conversion to negativity of nasopharyngeal/oropharyngeal RT-PCR on day 5 after the intervention. The decrease in viral load (mean log10 viral copies/mL; ±SD) from baseline up to day 5 was 3.05 (±2.29) in the first intervention group (ivermectin 24mg), 3.04 (±2.05) in the second intervention group (ivermectin 12mg) and 3.08 (±1.98) in the control group. At day 5, the RT-PCR was negative for 33/80 (41.3%) patients in the intervention group and 14/45 (31.1%) patients in the control group (RD 0.10, 95% CI -0.07 to 0.27).
Okumuş (2021) described a multicenter, single-blind, quasi-randomized, controlled phase 3 trial, which was conducted at 4 tertiary referral hospitals in Turkey. They evaluated the efficacy and safety of ivermectin in adult severely ill COVID-19 patients with pneumonia. Patients were randomized to receiving ivermectin and standard of care or standard care alone. The intervention group received treatment with ivermectin at a dose of 200 μg/kg for 5 days. Six patients (16.7%) in the intervention group were excluded after randomisation because a SNP mutation in MDR-1/ABCB1 gene and/or haplotypes and mutations of the CYP3A4 gene were detected (mutations involved in ivermectin metabolism). The mean (±SD) age in the intervention group was 58.17 years (±11.52) and 66.23 years (±13.31) in the control group. In the intervention group, 21/30 (70.0%) of the patients were male, compared with 19/30 (63.3%) of the patients in the control group. The length of the follow-up was 10 days. The following relevant outcome measures were included: mortality and time to clinical improvement. The primary outcomes were the clinical responses and drug side effects obtained in patients on the 5th day. At the end of the five-day treatment period, the rate of clinical improvement was 46.7% (14/30) in the intervention group, compared with 36.7% (11/30) in the control group.
(Ravi)kirti (2021) described a single-center, pilot, double-blind, randomized, placebo-controlled trial, which was conducted at the All India Institute of Medical Sciences, which served as a COVID-19 dedicated tertiary healthcare facility. They evaluated the efficacy and safety of ivermectin in adult patients with mild to moderate COVID-19. Patients were randomized to receiving ivermectin 12 mg or placebo. The mean (±SD) age in the intervention group was 50.7 years (±12.7) and 54.2 years (±16.3) in the control group. In the intervention group, 40/55 (72.7%) of the patients were male, compared with 41/57 (71.9%) of the patients in the control group. The intervention group received oral treatment with ivermectin at a single dose of 12 mg for two consecutive days. The length of the follow-up was 10 days. The following relevant outcome measures were included: mortality, duration of hospitalization, time to clinical improvement and extensive respiratory support. The primary outcome was the was a negative RT PCR report on day 6. Negative RT-PCR was reported for 13/55 (24%) patients in the intervention group and 18/57 (32%) patients in the control group (RD -0.08, 95% CI -0.24 to 0.09).
Shahbasznejad (2021) described a double-blind, placebo-controlled randomized controlled trial, which was conducted in two referral tertiary hospitals in Mazandaran, Iran. They evaluated the efficacy and safety of ivermectin in patients with COVID-19. Patients were randomized to receive ivermectin or a placebo in addition to standard care. The study included both children and adults (inclusion criterium: age > 5 years). The mean (±SD) age was 47.63 (22.20) years in the intervention group and 45.18 (23.11) years in the control group. In the intervention group, 18/35 (51.4%) of the patients were male, compared with 18/34 (52.9%) of the patients in the control group. The intervention group received a single weight-based dose of oral dose of 200 μg/kg. The length of follow-up was 7 days. The following relevant outcome measures were included: mortality, duration of hospitalization, time to clinical improvement and extensive respiratory support. The primary outcome was mean time (±SD) to clinical improvement, which was on average 4.2 (±0.3) days in the intervention group and 5.2 (±0.3) days in the control group (MD -1.00, 95% CI -1.14 to -0.86).
Non-hospitalized patients
Buonfrate (2022) described a phase 2, dose-finding, randomized, double-blind, placebo-controlled trial, which was conducted in 4 centres (not hospitals) in the United States. They evaluated the efficacy and safety of 2 dosages of ivermectin in outpatients. Patients were randomized to receive ivermectin (two dosages; N=29, N=32) or placebo (control group; N=32). The median (range) age was 47.0 (31.0-62.0) and 44.5 (31.0-55.5) years in the intervention groups and 50.0 (26.0-57.0) years in the control group. An imbalance in the sex ratio was observed; 14/29 (48.3%) and 8/32 (25.0%) of the patients in the intervention groups were female, compared with 17/32 (53.1%) of the patients in the control group. The intervention groups received either ivermectin 600 μg/kg plus placebo for 5 days or ivermectin 1200 μg/kg for 5 days. The control group received a placebo which was identical in number, appearance and taste to the ivermectin tablets. The length of follow-up was 30 days. The following relevant outcome measure was included: time to clinical improvement.
The primary outcomes were number of serious adverse drug reactions and change in viral load from baseline to day 7. In both groups, no serious adverse drug reactions occurred. The mean (±SD) change in viral load was 2.5 log10 (±2.2) in the first intervention group (ivermectin 600 μg/kg), 2.0 log10 (±2.1) in the second intervention group (1200 μg/kg) and 2.9 log10 (±1.6) in the control group.
Chaccour (2021) described a pilot, double-blind, placebo-controlled randomized controlled trial, which was conducted in a university hospital in Spain. They evaluated the efficacy and safety of ivermectin in outpatients. Patients were randomized to receive ivermectin or placebo. The median (IQR) age was 26 (19-36) years in the intervention group and 26 (21-44) years in the control group. In the intervention group, 7/12 (58%) of the patients were male, compared with 5/12 (43%) of the patients in the control group. The intervention group received a single oral, tailored dosage of ivermectin. According to their weight and using tablets of 3 mg, the individual dose ranged from 400 μg/kg to a maximum of 457 μg/kg. The control group received a placebo. No details were provided about the standard of care.
The length of the follow-up was 28 days. The following relevant outcome measure was included: mortality. The primary outcome was the proportion of patients with detectable SARS-CoV-2 RNA by PCR from nasopharyngeal swabs at day 7. At day 7 post treatment, 12/12 (100%) patients had a positive PCR for gene N in both groups. For gene E, 11/12 (91%) in the ivermectin and 12/12 (100%) in the placebo group had a positive PCR.
Chachar (2020) described an open-label randomized controlled trial, which was conducted in one hospital in Pakistan. They evaluated the efficacy and safety of ivermectin in outpatients. Patients were randomized to receiving ivermectin or not receiving ivermectin. The mean (±SD) age was 40.60 (±17) years in the intervention group and 43.08 (±14.8) years in the control group. In the intervention group, 7/25 (68%) of the patients were male, compared with 14/25 (56%) of the patients in the control group. The intervention group received 3 doses of 12 mg of ivermectin in the first 24 hours. The control group received symptomatic treatment only, which was not further specified. The length of the follow-up was 7 days. The following relevant outcome measure was included: time to clinical improvement. The primary outcome was not specified and the other outcomes of interest for the current summary were not described in the study.
López-Medina (2021) described a double-blind, randomized, placebo-controlled trial, which was conducted at a single site in Colombia. They evaluated the efficacy and safety of ivermectin in adult patients with mild COVID-19 and symptoms for 7 days or fewer (at home or hospitalized). The majority (99%) of patients was not hospitalized at recruitment. Therefore, this study is included in the analysis of non-hospitalized COVID-19 patients (PICO 2). Patients were randomized to receiving ivermectin or placebo. The median (IQR) age in the intervention group was 37 years (29-47.7) and 37 years (28.7-49.2) in the control group. In the intervention group, 78/200 (39%) of the patients were male, compared with 89/198 (45%) of the patients in the control group. The intervention group received oral treatment with ivermectin at a single dose of 300 μg/kg for 5 days. The length of the follow-up was 21 days. The following relevant outcome measures were included: mortality and time to clinical improvement. The primary outcome was the time from randomization to complete resolution of symptoms within the 21-day follow-up period. In intervention group, the time to complete resolution symptom was median (IQR) 10 days (9-13), compared with 12 days (9-13) in the control group (absolute difference -2, 95% CI -4 to 2; HR 1.07, 95% CI 0.87 to 1.32).
Podder (2020) described a single-center, open-label, quasi-randomized, controlled trial, which was conducted at health complex in Bangladesh. They evaluated the efficacy and safety of ivermectin in adult outpatients with COVID-19. Patients were recruited from the outpatient clinic and randomized to receiving ivermectin and standard of care or standard care alone. The mean (±SD) age in the intervention group was 38.41 years (±11.02) and 39.97 years (±13.24) in the control group. In the intervention group, 23/32 (71.9%) of the patients were male, compared with 21/30 (70.0%) of the patients in the control group. The intervention group received treatment with ivermectin at a single dose of 200 μg/kg. The length of follow-up was 10 days. The following relevant outcome measure was included: time to clinical improvement. The primary outcome was not defined.
Reis (2022) described a double-blind, randomized, placebo-controlled, adaptive platform trial (TOGETHER), which was conducted in 12 public health clinics in Brazil. They evaluated the efficacy and safety of ivermectin in non-hospitalized patients with COVID-19. Patients were randomized to receiving ivermectin and standard of care or a placebo and standard of care. The median age of patients was 49 (IQR 39-57) years in the intervention group and 49 (IQR 37-56) years in the control group. Patients in the intervention and control group were 43.6% and 39.9% male, respectively. The intervention group received ivermectin at a dose of 400 µg per kilogram of body weight for 3 days. The control group received a placebo for 1, 3, 10, or 14 days, comparable to the active-treatment groups in the trial. Standard of care was the care provided by health care professionals in Brazil at the time of the trial. The length of the follow-up was 28 days. The following relevant outcome measures were included: mortality, duration of hospitalization and time to symptom resolution.
The primary outcomes was a composite outcome, combining hospitalization due to COVID-19 or an emergency department visit due to clinical worsening of COVID-19 (defined as the participant remaining under observation for > 6 hours), both within 28 days after randomization. This outcome occurred in 100/679 (14.7%) of the patients in the intervention group and in 111/679 (16.3%) patients in the control group (reported RR 0.90, 95% CI 0.70 to 1.16; calculated RD -0.02, 95% CI -0.05 to 0.02).
Vallejos (2021) described a double-blind, placebo-controlled randomized controlled trial, which was conducted in the community in the province of Corrientes, Argentina. They evaluated the efficacy and safety of ivermectin in preventing hospitalizations in patients with COVID-19. Patients were randomized to receive ivermectin or a placebo in addition to standard of care. The mean (±SD) age was 42.58 (±15.29) years in the intervention group and 42.40 (±15.75) years in the control group. In the intervention group, 139/250 (55.6%) of the patients were male, compared with 125/251 (49.8%) of the patients in the control group. The intervention group received a weight-based dose of oral ivermectin for two consecutive days.
The length of the follow-up was 30 days. The following relevant outcome measures were included: mortality, extensive respiratory support and duration of hospitalization. The primary outcome was hospitalization, which was required for 14/250 (5.6%) patients in the intervention group and for 21/251 (8.4%) patients in the control group (RR 0.67, 95% CI 0.35 to 1.29; RD -0.03, 95% CI -0.07 to 0.02).
Table 1. Overview of RCTs comparing IL-1 inhibitors with standard care (or placebo) in hospitalized COVID-19 patients.
Author
Registration nr. |
Disease severity, based on need for respiratory support* |
Sample size |
Dosage |
Hospitalized patients |
|||
Abd-Elsalam 2021 NCT04403555 |
Unclear; included in mixed patient group as the authors described mild and moderate disease |
I: N=82 C: N=82 Total: 164 |
Single dose of oral ivermectin tablets (12 mg) every day for 3 days |
Ahmed 2020 Not registered |
Mild; disease severity was not specified but the results indicate that none of the patients required oxygen. |
I: N=23 II: N=23 C: N=23 Total: N=72 |
I: oral ivermectin alone (12 mg daily, for 5 days) II: oral ivermectin in combination with doxycycline (12 mg ivermectin single dose and 200 mg stat doxycycline day-1 followed by 100 mg 12 hourly for next 4 days) |
Gonzalez (2022)
|
Moderate; Patients were excluded if they required high oxygen volumes (face mask > 10 L/ min), if they had predictors of a poor response to high-flow oxygen nasal prong therapy, or if they required mechanical ventilation [9]. In the absence of these exclusion criteria, patients were included regardless of other risk factors for poor prognosis. |
I: N= 36 C: N=37 Total: N= 73 |
ivermectin, 12 mg or 18 mg, according to patient weight ( 12 mg in patients <80 kg, 18 mg ≥ 80 kg)
|
Kishoria 2020 Not registered |
Mild; described as mild/asymptomatic; hospitalized without oxygen supplementation |
I: N=19 C: N=16 Total: N=35 |
ivermectin 12 mg, single dose |
Krolewiecki 2020 NCT04381884 |
Mild; Only 1 patient (intervention group) had oxygen saturation < 94 % at baseline; none of the patients required intensive care |
I: N=30 C: N=15 Total: N=45 |
single oral dose of ivermectin 600 μg/kg for 5 consecutive days |
Lim 2022 NCT04920942 |
Mild; Patients that required oxygen were excluded |
I: 241 C: 249 Total: |
oral ivermectin, 400 μg/kg body weight daily for 5 consecutive days |
Mohan 2021 CTRI/2020/06/026001 |
Mild; inclusion criteria ‘nonsevere COVID-19, i.e., room air saturation (SpO2) >90%, and with no hypotension or requirement of mechanical ventilation’. Authors report that the baseline clinical severity by WHO ordinal scale was 3 (i.e., hospitalized, not requiring supplemental oxygen) in the majority (92%) of patients, and was 4 (i.e., hospitalized, requiring supplemental oxygen) in the remaining patients. |
I1: N=49 I2: N=51 C: N=52 Total: N=152 |
single oral dose of ivermectin 12 mg (200 μg/kg) or 24 mg (400 μg/kg) |
Okumuş 2021 NCT04646109 |
Severe; inclusion criteria: presence of tachypnea ≥ 30/min, peripheral capillary oxygen saturation (SpO2) level < 90% in room air, Partial pressure of oxygen (PaO2)/FiO2 < 300 in oxygen receiving patient b. Presence of specific radiological finding for COVID-19 in lung tomography (bilateral lobular, peripherally located, diffuse patchy ground glass opacities) c. Mechanical ventilation requirement d. Acute organ dysfunction findings; patients with SOFA (sepsis-related organ failure assessment) score > 2 |
I: N=36 (N=30 included in final analysis due to exclusion of patients with genetic mutations) C: N=30 Total: N=66 |
ivermectin 200 μg/kg for 5 days (36-50 kg: 9 mg; 51-65 kg: 12 mg; 66-79 kg: 15 mg; > 80 kg: 200 μg/kg) |
(Ravi)kirti 2021
CTRI/2020/08/027225) |
Mixed: mild (76.4%) and moderate (23.6%) disease; the majority of the patients was classified as ‘mild’ according since there was no evidence of breathlessness or hypoxia (normal saturation).
Moderate (23.6%) was classified as breathlessness and/or hypoxia (saturation 90-94% on room air), respiratory rate of 24 or more and no features of severe disease. |
I: N=55 C: N=57 Total: N=115 |
Single oral dose of ivermectin 12 mg for 2 consecutive days
|
Shahbasznejad 2021 IRCT20111224008507N3 |
Mixed: mild to severe; 13 patients (37.1%) in the intervention group and 18 patients (52.9%) in the control group presented with severe disease (tachypnea (respiratory rate of ≥24 breaths/min), need for mechanical ventilation, need for supplemental oxygen, and oxygen saturation of <94% in the ambient air) |
I: N=35 C: N=34 Total: N=69 |
Single oral dose of ivermectin 200 μg/kg |
Non-hospitalized patients |
|||
Buonfrate 2022 NCT04438850 |
Mild; outpatient setting, participants not required oxygen supplementation (COVID severity score <3 ) |
I: N=32 II: N=29 C: N=32 Total: N=93 |
I: single dose ivermectin 600 μg/kg plus placebo for 5 days II: single dose ivermectin 1200 μg/kg for 5 days |
Chaccour 2021 NCT04390022 |
Mild; outpatient setting
|
I: N=12 C: N=12 Total: N=24 |
400 mcg/kg single oral dose or placebo; individual dose ranged from 400 μg/kg to a maximum of 457 μg/kg. |
Chachar 2020 NCT04739410 |
Mild; outpatient setting |
I: N=25 C: N=25 Total: N=50 |
ivermectin 12 mg, 3 doses within the first 24 hours |
López-Medina 2021 NCT04405843 |
Mild; patients were at home or hospitalized but not receiving high-flow nasal oxygen or mechanical ventilation |
I: N=200 C: N=198 Total: N=398 |
single oral dose of ivermectin 300 μg/kg for 5 days |
Podder 2020 Not registered
|
Mild; outpatient setting, no report of supplemental oxygen |
I: N=32 C: N=30 Total: N=62 |
single oral dose of ivermectin 200 μg/kg |
Reis (2022)
|
Mild; outpatient setting, no report of supplemental oxygen |
I: N=679 C: N=679 Total: N= 1358 (total study including other arms N=2157)
|
Ivermectin at a dose of 400 µg per kilogram of body weight for 3 days
|
Vallejos 2021 NCT04529525. |
Mild; outpatient setting; participants were excluded if they were they required home oxygen or required hospitalization |
I: N=250 C: N=251 Total: N=501 |
2 oral doses of 6mg for body weight at inclusion and after 24 h for body weight of <80 kg (total 24 mg), 3 tablets of 6 mg for 80-110 kg (total 36 mg), 4 tablets >110 kg (total 48 mg) |
*Disease severity categories:
- mild disease (no supplemental oxygen);
- moderate disease (supplemental oxygen: low flow oxygen, non-rebreathing mask);
- severe disease (supplemental oxygen: high flow oxygen [high flow nasal cannula (HFNC)/Optiflow], continuous positive airway pressure [CPAP], non-invasive ventilation [NIV], mechanical ventilation, extracorporeal membrane oxygenation [ECMO or ECLS]).
N: Total sample size; I: Intervention; C: Control
Results
Ten studies included patients that were admitted to the hospital and seven RCTs studied ivermectine in an outpatient setting. One study (López-Medina, 2021) included both patients that were admitted to the hospital and outpatients. As the majority of included patients (99%) were outpatients, this study was included in the literature summary for outpatients (PICO 2). Outcomes were pooled, if possible.
PICO 1: Hospitalized patients
Mortality (crucial)
Five studies (Abd-Elsalam, 2021; Gonzalez, 2022; Krolewiecki, 2020; Lim, 2022; Mohan, 2021) reported the mortality at 28 to 30 days follow-up. Two studies (Okumuş 2021; Ravikirti, 2021) reported mortality at a different follow-up and three studies (Ahmed, 2020; Kishoria, 2020; Shahbaznejad, 2020) did not report mortality rates.
Mortality, 28-30 days
Both Krolewiecki (2020) and Mohan (2021) reported that none of the patients in both groups died and therefore no difference was found between the intervention and control group.
Abd-Elsalam (2021) reported mortality for 3/82 (3.7%) patients in the intervention group and 4/82 (4.9%) patients in the control group (RR 0.75, 95% CI 0.17 to 3.25; RD -0.01, 95% CI -0.07 to 0.05). This difference is not considered clinically relevant.
Gonzalez (2022) reported mortality for 5/36 (13.8%) patients in the intervention group and
6/37 (16.2%) patients in the control group (RR 0.86, 95% CI 0.29 to 2.56; RD -0.02, 95% CI -0.19 to 0.14). This difference is not considered clinically relevant.
Lim (2022) reported mortality for 3/241 (1.2%) patients in the intervention group and for 10/249 (4.0%) patients in the control group (RR 0.31, 95% CI 0.09 to 1.11; RD -0.03, 95% CI -0.06 to 0.00). This difference is considered clinically relevant.
The pooled incidence of mortality in hospitalized patients was 11/489 (2.2%) in the intervention group, compared to 20/435 (4.6%) in the control group. In two of the five studies, none of the patients died. The pooled relative risk (RR) was 0.60 (95% CI 0.29 to 1.23; Figure 1), and the risk difference (RD) was -0.01 (95%CI -0.03 to 0.00). This is not considered clinically relevant.
Figure 1: Mortality (28-30 days) in hospitalized patients
Z: p-value of overall effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval
Mortality, other follow-up
Ravikirti (2021) reported the mortality at a shorter follow-up of day 10. The incidence of mortality was 0/55 (0%) in the intervention group and 4/57 (7%) in the control group. This resulted in a RR of 0.12 (95% CI 0.01 to 2.09) and a RD of -0.07 (95% CI -0.14 to 0.00). This difference is considered clinically relevant.
Okumuş (2021) reported the mortality at a longer follow-up of 3 months. The incidence of mortality was 6/30 (20%) in the intervention group and 9/30 (30%) in the control group. This resulted in a RR of 0.67 (95% CI 0.27 to 1.64) and a RD of -0.10 (95% CI -0.32 to 0.12). This difference is considered clinically relevant.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 3 levels, because of study limitations (risk of bias, -1), few events and wide CIs (imprecision, -2). Therefore, level of evidence for the outcome ‘mortality’ is considered very low.
Extensive respiratory support (crucial)
Initiation of extensive respiratory support in hospitalized patients with COVID-19 was reported in five studies (Abd-Elsalam, 2021; Lim, 2022; Mohan, 2021; Ravikirti, 2021; Shahbaznejad, 2020). All five studies described the need or initiation of mechanical ventilation and did not further specify the ventilation method. Five studies did not report extensive respiratory support (Ahmed, 2020; Gonzalez, 2022; Kishoria, 2020; Krolewiecki, 2020; Okumuş, 2021).
Figure 2: Extensive respiratory support in hospitalized patients
Z: p-value of overall effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval
The pooled incidence of extensive respiratory support in hospitalized was 10/513 (1.9%) in the intervention group, compared to 19/474 (4.0%) in the control group. In one study (Mohan, 2021) none of the patients needed extensive respiratory support. The pooled RR was 0.56 (95% CI 0.25 to 1.25; Figure 1), and the RD was -0.01 (95% CI -0.03 to 0.01). This is not considered clinically relevant.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 3 levels, because of study limitations (risk of bias, -1), inconsistent findings (inconsistency, -1), few events, and wide CIs (imprecision, -1). Therefore, the level of evidence for the outcome ‘extensive respiratory support’ is considered very low.
Duration of hospitalization (important)
Eight studies (Abd-Elsalam, 2021; Ahmed, 2020; Gonzalez, 2022; Kishoria, 2020; Li, 2022; Mohan, 2021; Rivikirti, 2021; and Shahbaznejad, 2021) reported the duration of hospitalization or the percentage of patients that was discharged at a specific follow-up. Two studies (Krolewiecki, 2020; Okumuş, 2021) did not report the duration of hospitalization.
Abd-Elsalam (2021), Ahmed (2020) Gonzalez (2022) and Shahbaznejad (2021) reported the length of hospital stay, whereas Lim (2022) reported the ICU stay. Abd-Elsalam (2021) reported that the mean duration of hospitalization was 8.82 (SD 4.94) days in the intervention group and 10.97 (SD 5.28) days in the control group (MD -2.15, 95% CI -3.72 to -0.58). Ahmed (2020) reported a mean duration of hospitalization of 9.6 (SD 4.39) days in the intervention group and 9.7 (SD 3.7) in the control group (MD -0.10, 95% CI -2.45 to 2.25). Gonzalez (2022) reported that the median length of stay was 6 (IQR 4-11) days in the intervention group and 5 (IQR 4-7) days in the control group. Shahbaznejad (2021) reported that the mean duration of hospitalization was 7.1 (SD 0.5) days in the intervention group and 8.4 (SD 0.6) days in the control group (MD -1.30, 95% CI -1.56 to -1.04). These differences are not considered clinically relevant.
In addition, Lim (2022) reported the duration of ICU stay. Patients in the intervention group stayed at the ICU for on average 7.7 (SD 4.4) days, compared to 7.3 days (SD 4.3) days in the control group (MD 0.40; 95% CI -0.36 to 1.16). This difference is not considered clinically relevant.
Kishoria (2020) reported the incidence of patients being discharged from the hospital at day 6. Of the intervention group, 8/19 (42.2%) patients were discharged, compared to 6/13 (46%) patients of the control group (RR 0.91, 95% CI 0.41 to 2.01; RD -0.04, 95% CI -0.39 to 0.31). This difference is not considered clinically relevant.
Ravikirti (2021) reported the incidence of patients being discharged from the hospital at day 10. Of the intervention group, 44/55 (80%) patients were discharged, compared to 42/57 (74%) patients of the control group (RR 1.09, 95% CI 0.89 to 1.33; RD 0.06, 95% CI -0.09 to 0.22). Mohan (2021) reported the incidence of patients being discharged from the hospital at day 14. Of the intervention group, 75/80 (93.8%) patients were discharged, compared to 39/45 (86.7%) patients of the control group (RR 1.08, 95% CI 0.97 to 1.21; RD 0.07, 95% CI -0.02 to 0.16). These differences are considered clinically relevant.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 3 levels, because of study limitations (risk of bias, -1), inconsistent findings (inconsistency, -1) and low number of patients (imprecision, -1) Therefore, the level of evidence for the outcome ‘duration of hospitalization’ is considered very low.
Time to clinical improvement (important)
Six studies (Ahmed, 2020; Lim, 2020; Mohan, 2021; Okumuş 2021; Ravikirti, 2021; Shahbaznejad, 2021) reported the time to clinical improvement or the incidence of clinical improvement at a specific follow up. Four studies (Abd-Elsalam, 2021; Gonzalez, 2022; Kishoria, 2020; Krolewiecki, 2020) did not report time to clinical improvement.
Mohan (2021) reported an average time to symptom resolution of 4.42 (SD 2.8) days in the intervention group and 4.58 (SD 2.94) days in the control group (MD -0.16, 95% CI -1.21 to 0.89). This difference is not considered clinically relevant.
Shahbaznejad (2021) defined clinical improvement as resolving a patient’s baseline status on persistent and continuous cough (persistent cough for > 1 hour, or ≥3 coughing episodes in 24 hours, that interferes with activities of daily living and the ability to work) and tachypnea in addition to increasing oxygen saturation to > 94%. The mean time to clinical improvement was 4.2 (SD 0.3) days in the intervention group and 5.2 (SD 0.3) days in the control group (MD -1.00, 95% CI -1.14 to -0.86). This difference is not considered clinically relevant.
The other studies did not report the time to clinical improvement, but the incidence of resolution of symptoms within 5 to 7 days from the start of treatment.
Ahmed (2020) reported that remission of fever (≥37.5 °C) within 7 days occurred in 17/17 (100%) patients in the intervention group, compared to 16/19 (84.2%) patients in the control group (RD 0.16, 95% CI -0.03 to 0.34).
Lim (2022) reported that complete symptom resolution at day 5 occurred in 122/238 (51.3%) patients in the intervention group compared to 131/247 (53.0%) patients in the control group (RD -0.02, 95% CI -0.11 to 0.07).
Okumuş (2021) reported clinical improvement for clinical improvement at day 5 for 14/30 (46.7%) patients in the intervention group and 11/30 (36.7%) patients in the control group and for 22/30 (73.3%) and 16/30 (53.3%) patients at day 10 respectively (RD day 5: 0.10, 95% CI -0.15 to 0.35; RD day 10: 0.20, 95% CI -0.04 to 0.44).
Ravikirti (2021) reported that 46/55 (84%) patients in the intervention group and 51/57 (90%) patients in the control group were symptom free at day 6 (RD -0.06, 95% CI -0.18 to 0.07).
These differences are inconsistent, as they include both clinically relevant and irrelevant differences, in favour of the intervention group and control group.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 3 levels, because of study limitations (risk of bias, -1), and wide CIs (imprecision, -1) and inconsistent findings (inconsistency, -1). The level of evidence for the outcome ‘time to clinical improvement’ is considered very low.
PICO 2: Non-hospitalized patients
Mortality (crucial)
Three studies (Chaccour, 2021; Reis, 2022; Vallejos, 2021) reported the 28 to 30 days mortality, one study reported mortality at a different follow-up (López-Medina, 2021) and three studies (Buonfrate, 2022; Chachar, 2020; Podder, 2020) did not report mortality.
Chaccour (2021) reported that none of the patients progressed to severe disease or death during the 28-day trial (RD mortality 0.00, 95% CI -0.15 to 0.15).
Reis (2022) reported mortality for 21/679 (3.1%) patients in the intervention group and 24/679 (3.5%) patients in the control group (RR 0.88, 95% CI 0.49 to 1.55; RD -0.00, 95% CI -0.02 to 0.01).
Vallejos (2021) reported all-cause mortality for 4/250 (1.6%) patients in the intervention group and 3/251 (1.2%) patients in the control group (RR 1.34, 95% CI 0.30 to 5.92; RD 0.00, 95% CI -0.02 to 0.02). Taken together, these studies reported mortality for 25/941 (2.7%) patients in the intervention group and 27/942 (2.9%) patients in the control group (RR 0.92, 95% CI 0.54 to 1.58; RD -0.00, 95% CI -0.01, 0.01). This is not considered a clinically relevant difference.
López-Medina (2021) reported mortality on day 21. The incidence of mortality was 0/200 (0%) in the intervention group and 1/198 (0.5%) in the control group. This resulted in a RR of 0.33 (95% CI 0.01 to 8.05) and a RD of 0.01 (95%CI -0.02 to 0.01). This is not considered a clinically relevant difference.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 2 levels, because of study limitations (risk of bias, -1), few events and wide CIs (imprecision, -2). Therefore, level of evidence for the outcome ‘mortality’ is low.
Respiratory support (crucial)
Three studies (López-Medina, 2021; Reis, 2022; Vallejos, 2021) reported the need for respiratory support in non-hospitalized patients. The other four studies (Buonfrate 2022; Chaccour, 2021; Chachar 2020; Podder, 2020) did not reported the need for respiratory support in non-hospitalized patients.
López-Medina (2021) reported that 1 of the 200 (0.5%) patients in the intervention group needed respiratory support, compared to 1 of the 199 (0.5%) in the control group (RR 1.00; 95% CI 0.06 to 15.79). This is not considered a clinically relevant difference.
Reis (2022) reported that 19 of the 679 (2.8%) patients in the intervention group needed respiratory support, compared to 25 of the 679 (3.7%) patients in the control group (RR 0.77; 95% CI 0.43-1.36). This is not considered a clinically relevant difference.
Vallejos (2021) reported that 4 of the 250 (1.6%) patients in the intervention group needed respiratory support, compared to 3 of the 251 (1.2%) patients in the control group (OR 1.34; 95% CI 0.30 to 6.07). This is not considered a clinically relevant difference.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 3 levels, because of study limitations (risk of bias, -1), few events and wide CIs (imprecision, -2). Therefore, level of evidence for the outcome ‘respiratory support’ is very low.
Hospitalization (important)
Three studies (Buonfrate 2022; Reis, 2022; Vallejos, 2021) reported the incidence of hospitalization. The other four studies (Chaccour, 2021; Chachar 2020; López-Medina, 2021; Podder, 2020) did not report the incidence of hospitalization.
Buonfrate (2022) reported that hospitalization was required for 4/59 (6.8%) patients in the combined intervention group and for 0/32 (0%) patients in the control group (RR 4.95, 95% CI 0.27 to 89.13; RD 0.07, 95% CI -0.01 to 0.15). This difference is considered clinically relevant.
Reis (2022) reported that hospitalization was required for 21/679 (3.1%) patients in the intervention group and for 24/679 (3.5%) patients in the control group (RR 0.83, 95% CI 0.63 to 1.10; RD -0.02, 95% CI -0.06 to 0.01). This difference is not considered clinically relevant.
Vallejos (2021) reported that hospitalization was required for 14/250 (5.6%) patients in the intervention group and for 21/251 (8.4%) patients in the control group (RR 0.67, 95% CI 0.35 to 1.29; RD -0.03, 95% CI -0.07 to 0.02). This difference is not considered clinically relevant.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 2 levels, because of study limitations (risk of bias, -1), low number of events (imprecision, -1). The level of evidence for the outcome ‘hospitalization’ is considered low.
Time to clinical improvement (important)
Six studies (Buonfrate, 2022; Chaccour 2021; Chachar, 2020; López-Medina, 2021; Podder, 2020; Reis, 2022) reported the time to clinical improvement or the incidence of clinical improvement at a specific follow up. One study (Vallejos 2021) did not report time to clinical improvement.
Buonfrate (2022) reported the time to clinical improvement as the time from randomisation to clinical resolution, in which clinical resolution was not further specified. The median time to clinical resolution was 29 (IQR 13.5–32.0) days in the first intervention group (single dose ivermectin 600 μg/kg plus placebo for 5 days) and 14 (IQR 7–37) days in the second intervention group (single dose ivermectin 1200 μg/kg for 5 days) compared to 14 (IQR 13–30) days in the control group. The difference between the first intervention group receiving the low dose ivermectin and the control group is considered clinically relevant.
López-Medina (2021) reported that the median (IQR) time to resolution of symptoms was 10 (IQR 9-13) days for the intervention group and 12 (IQR 9-13) days for the control group. The reported absolute difference was -2 (95% CI -4 to 2) with an HR of 1.07 (95% CI 0.87 to 1.32). This difference is not considered clinically relevant.
Podder (2020) reported the time from the date of enrolment to symptom resolution. Time to symptom resolution was on average 5.31 (SD 2.48) days in the intervention group compared to 6.33 (SD 4.23) days in the control group. The MD was -1.02 (95% CI -2.76 to 0.72). This difference is not considered clinically relevant.
Reis (2022) reported the median (IQR) time to clinical recovery, which was assessed with the use of the World Health Organization clinical progression scale, but the threshold for ‘recovery’ was not further specified. Median recovery time was 14 (IQR 11-14) days in both the intervention and control group (HR 1.05 (0.88-1.24). This difference is not considered clinically relevant.
Chachar (2020) reported the incidence of patients being asymptomatic at day 7. In the intervention group, 16/25 (64%) patients were asymptomatic compared to 15/25 (60%) patients in the control group (RR 1.07, 95% CI 0.69 to 1.65; RD 0.04, 95% CI -0.23 to 0.31). This difference is not considered clinically relevant.
Chaccour (2021) reported the total number of patient-days that was self-reported by the treatment groups. Absolute data about the mean number of patient-days per patient, at which days these symptoms were reported or the hazard ratio were not available. Overall, the patients in the intervention group together reported fewer patient-days of any symptoms than those in the placebo group (symptoms reported for 171 vs 255 patient-days respectively). The authors report that this difference was mostly driven by the difference in anosmia/hyposmia (76 vs 158 patient-days) and cough (68 vs 97 patient-days). There were no major differences between the intervention and control group in the self-reported patient-days of fever (12 vs 12), general malaise (51 vs 61), headache (34 vs 38), or nasal congestion (91 vs 97). Only a small number of patient-days were reported for the experience of gastrointestinal symptoms (21 vs 6) and shortness of breath (3 vs 15).
Studies were not pooled, however, taken together the majority of studies did not find a clinically relevant difference between the intervention and control group.
Level of evidence of the literature
The level of evidence started as high, because the studies were RCTs. The level of evidence was downgraded by 2 levels, because of study limitations (risk of bias, -1) and wide CIs (imprecision, -1). The level of evidence for the outcome ‘time to clinical improvement’ is considered low.
Zoeken en selecteren
A systematic review of the literature was performed to answer the following question:
What is the effectivity of treatment with ivermectin compared to treatment without ivermectin in patients with COVID-19?
PICO 1
P: hospitalized with COVID-19 (subgroups mild, moderate, severe)
I: ivermectin + standard care
C: standard care only / placebo treatment + standard care
O: 28-30 day mortality (if not available, any other reports of mortality), extensive respiratory support, duration of hospitalization, time to clinical improvement
PICO 2
P: non-hospitalized with COVID-19 (subgroups mild, moderate, severe)
I: ivermectin + standard care
C: standard care only / placebo treatment + standard care
O: 28-30 day mortality (if not available, other follow-up), respiratory support, hospitalization, time to clinical improvement
Relevant outcome measures
PICO 1: For hospitalized COVID-19 patients, mortality and need for extensive respiratory support were considered as crucial outcome measures for decision making. Duration of hospitalization and time to clinical improvement were considered as important outcome measures for decision making.
PICO 2: For non-hospitalized COVID-19 patients, mortality was considered as a critical outcome measure for decision making. Hospitalization, respiratory support and time to clinical improvement were considered as important outcome measures for decision making.
Extensive respiratory support was defined as high flow nasal cannula (HFNC)/Optiflow, continuous positive airway pressure (CPAP), non-invasive ventilation (NIV), mechanical ventilation or extracorporeal membrane oxygenation (ECMO or ECLS).
The working group defined 3% points absolute difference as a minimal clinically important difference for mortality (resulting in a NNT of 33), 3 days for duration of hospitalization and time to clinical improvement, 5% points absolute difference need for respiratory support and hospital admission (resulting in a NNT of 20).
Studies of hospitalized patients were categorized based on the respiratory support that was needed at baseline (preferably based on patient inclusion/exclusion criteria; otherwise on baseline characteristics). The following categories were used:
- mild disease (no supplemental oxygen);
- moderate disease (supplemental oxygen: low flow oxygen, non-rebreathing mask);
- severe disease (supplemental oxygen: high flow oxygen [high flow nasal cannula (HFNC)/Optiflow], continuous positive airway pressure [CPAP], non-invasive ventilation [NIV], mechanical ventilation, extracorporeal membrane oxygenation [ECMO or ECLS]).
Search and select (Methods)
The databases Medline (via OVID) and Embase (via Embase.com) were searched with relevant search terms until April 7th, 2022. The detailed search strategy is outlined under the tab Methods. Studies were selected based on the following criteria: randomized controlled trial, peer reviewed and published in indexed journal, comparing treatment with ivermectin and standard care to standard care alone or treatment with ivermectin and standard care to placebo and standard care in patients with COVID-19. Studies with n < 10 were excluded.
The systematic literature search resulted in 82133hits. Studies were selected based on the following criteria: systematic review or randomized controlled trials. Eventually, 17 randomized controlled trials were included. Study inclusion was compared to studies included in a recent systematic review (Popp, 2021). In the current summary, two of these studies (Gonzalez, 2021; (Shah)Bukhari, 2021) were excluded because they were included as a preprint and not published in the meantime, and one study (Pott-Junior, 2021) was not included because of number of patients (<10 per arm). In addition, one individual study (Samaha, 2021) was first identified but was excluded as the publication was retracted by the journal.
Statistical methods
Statistical analyses were conducted using Review Manager (RevMan) software 5.4. For dichotomous outcomes, Mantel Haenszel random‐effects risk ratios (RRs) and risk differences (RDs) were calculated. For continuous outcomes, a random‐effects mean difference (MD) weighted by the inverse variance was calculated. The random-effects model estimates the mean of a distribution of effects.
Results
In total, 17 studies were included in the analysis of the literature. Important study characteristics and results are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.
Referenties
- Abd-Elsalam, S., Noor, R. A., Badawi, R., Khalaf, M., Esmail, E. S., Soliman, S., Abd El Ghafar, M. S., Elbahnasawy, M., Moustafa, E. F., Hassany, S. M., Medhat, M. A., Ramadan, H. K., Eldeen, M., Alboraie, M., Cordie, A., & Esmat, G. (2021). Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. Journal of medical virology, 93(10), 5833–5838. https://doi.org/10.1002/jmv.27122
- Ahmed, S., Karim, M. M., Ross, A. G., Hossain, M. S., Clemens, J. D., Sumiya, M. K., Phru, C. S., Rahman, M., Zaman, K., Somani, J., Yasmin, R., Hasnat, M. A., Kabir, A., Aziz, A. B., & Khan, W. A. (2021). A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 103, 214–216. https://doi.org/10.1016/j.ijid.2020.11.191
- Buonfrate, D., Chesini, F., Martini, D., Roncaglioni, M. C., Ojeda Fernandez, M. L., Alvisi, M. F., de Simone, I., Rulli, E., Nobili, A., Casalini, G., Antinori, S., Gobbi, M., Campoli, C., Deiana, M., Pomari, E., Lunardi, G., Tessari, R., & Bisoffi, Z. (2021). High Dose Ivermectin for the Early Treatment of COVID-19 (COVIER Study): A Randomised, Double-Blind, Multicentre, Phase II, Dose-Finding, Proof of Concept Clinical Trial. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3918289
- Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020 Jun;178:104787. doi: 10.1016/j.antiviral.2020.104787. Epub 2020 Apr 3. PMID: 32251768; PMCID: PMC7129059.
- Chaccour, C., Casellas, A., Blanco-Di Matteo, A., Pineda, I., Fernandez-Montero, A., Ruiz-Castillo, P., Richardson, M. A., Rodríguez-Mateos, M., Jordán-Iborra, C., Brew, J., Carmona-Torre, F., Giráldez, M., Laso, E., Gabaldón-Figueira, J. C., Dobaño, C., Moncunill, G., Yuste, J. R., Del Pozo, J. L., Rabinovich, N. R., Schöning, V., … Fernández-Alonso, M. (2021). The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine, 32, 100720. https://doi.org/10.1016/j.eclinm.2020.100720
- Dinesh Kumar N, Ter Ellen BM, Bouma EM, Troost B, van de Pol DPI, van der Ende-Metselaar HH, van Gosliga D, Apperloo L, Carpaij OA, van den Berge M, Nawijn MC, Stienstra Y, Rodenhuis-Zybert IA, Smit JM. Moxidectin and Ivermectin Inhibit SARS-CoV-2 Replication in Vero E6 Cells but Not in Human Primary Bronchial Epithelial Cells. Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0154321. doi: 10.1128/AAC.01543-21. Epub 2021 Oct 11. PMID: 34633839; PMCID: PMC8765325.
- (Zeeshan Khan) Chachar, A., Ahmad Khan, K., Asif, M., Tanveer, K., Khaqan, A., & Basri, R. (2020). Effectiveness of Ivermectin in SARS-CoV-2/COVID-19 Patients. International Journal of Sciences, 9(09), 31–35. https://doi.org/10.18483/ijsci.2378
- Beltran Gonzalez, J. L., González Gámez, M., Mendoza Enciso, E. A., Esparza Maldonado, R. J., Hernández Palacios, D., Dueñas Campos, S., Robles, I. O., Macías Guzmán, M. J., García Díaz, A. L., Gutiérrez Peña, C. M., Martinez Medina, L., Monroy Colin, V. A., & Arreola Guerra, J. M. (2022). Efficacy and Safety of Ivermectin and Hydroxychloroquine in Patients with Severe COVID-19: A Randomized Controlled Trial. Infectious disease reports, 14(2), 160–168. https://doi.org/10.3390/idr14020020
- Gonzalez, J. L. B., González Gámez, M., Enciso, E. A. M., Maldonado, R. J. E., Hernández Palacios, D., Dueñas Campos, S., Robles, I. O., Macías Guzmán, M. J., García Díaz, A. L., Gutiérrez Peña, C. M., Medina, L. M., Colin, V. A. M., & Manuel, A. G. J. (2021). Efficacy and safety of Ivermectin and Hydroxychloroquine in patients with severe COVID-19. A randomized controlled trial. MedRxiv. https://doi.org/10.1101/2021.02.18.21252037
- Guzzo CA, Furtek CI, Porras AG, Chen C, Tipping R, Clineschmidt CM, Sciberras DG, Hsieh JY, Lasseter KC. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J Clin Pharmacol. 2002 Oct;42(10):1122-33. doi: 10.1177/009127002401382731. PMID: 12362927.
- Hill A, Mirchandani M, Pilkington V. Ivermectin for COVID-19: Addressing Potential Bias and Medical Fraud. Open Forum Infect Dis. 2022;9(2):ofab645. Published 2022 Jan 17. doi:10.1093/ofid/ofab645
- Jans DA, Wagstaff KM. Ivermectin as a Broad-Spectrum Host-Directed Antiviral: The Real Deal? Cells. 2020 Sep 15;9(9):2100. doi: 10.3390/cells9092100. PMID: 32942671; PMCID: PMC7564151.
- Kishoria, N., Mathur, S., Parmar, V., Kaur, R. J., Agarwal, H., Parihar, B., & Verma, S. (2020). IVERMECTIN AS ADJUVANT TO HYDROXYCHOLOROQUINE IN PATIENTS RESISTANT TO STANDARD TREATMENT FOR SARS-CoV-2: RESULTS OF AN OPEN-LABEL RANDOMIZED CLINICAL STUDY. PARIPEX INDIAN JOURNAL OF RESEARCH, 1–4. https://doi.org/10.36106/paripex/4801859
- Krolewiecki, A., Lifschitz, A., Moragas, M., Travacio, M., Valentini, R., Alonso, D. F., Solari, R., Tinelli, M. A., Cimino, R. O., Álvarez, L., Fleitas, P. E., Ceballos, L., Golemba, M., Fernández, F., Fernández de Oliveira, D., Astudillo, G., Baeck, I., Farina, J., Cardama, G. A., Mangano, A., … Lanusse, C. (2021). Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-of-concept randomized trial. EClinicalMedicine, 37, 100959. https://doi.org/10.1016/j.eclinm.2021.100959
- Lim, S., Hor, C. P., Tay, K. H., Mat Jelani, A., Tan, W. H., Ker, H. B., Chow, T. S., Zaid, M., Cheah, W. K., Lim, H. H., Khalid, K. E., Cheng, J. T., Mohd Unit, H., An, N., Nasruddin, A. B., Low, L. L., Khoo, S., Loh, J. H., Zaidan, N. Z., Ab Wahab, S., … I-TECH Study Group (2022). Efficacy of Ivermectin Treatment on Disease Progression Among Adults With Mild to Moderate COVID-19 and Comorbidities: The I-TECH Randomized Clinical Trial. JAMA internal medicine, 10.1001/jamainternmed.2022.0189. Advance online publication. https://doi.org/10.1001/jamainternmed.2022.0189
- López-Medina, E., López, P., Hurtado, I. C., Dávalos, D. M., Ramirez, O., Martínez, E., Díazgranados, J. A., Oñate, J. M., Chavarriaga, H., Herrera, S., Parra, B., Libreros, G., Jaramillo, R., Avendaño, A. C., Toro, D. F., Torres, M., Lesmes, M. C., Rios, C. A., & Caicedo, I. (2021). Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: A Randomized Clinical Trial. JAMA, 325(14), 1426–1435. https://doi.org/10.1001/jama.2021.3071
- Mohan, A., Tiwari, P., Suri, T. M., Mittal, S., Patel, A., Jain, A., Velpandian, T., Das, U. S., Boppana, T. K., Pandey, R. M., Shelke, S. S., Singh, A. R., Bhatnagar, S., Masih, S., Mahajan, S., Dwivedi, T., Sahoo, B., Pandit, A., Bhopale, S., Vig, S., … Guleria, R. (2021). Single-dose oral ivermectin in mild and moderate COVID-19 (RIVET-COV): A single-centre randomized, placebo-controlled trial. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy, 27(12), 1743–1749. https://doi.org/10.1016/j.jiac.2021.08.021
- Okumuş, N., Demirtürk, N., Çetinkaya, R. A., Güner, R., Avcı, S. Y., Orhan, S., Konya, P., ŞAylan, B., Karalezli, A., Yamanel, L., Kayaaslan, B., Yılmaz, G., Savaşçı, M., Eser, F., & Taşkın, G. (2021). Evaluation of the effectiveness and safety of adding ivermectin to treatment in severe COVID-19 patients. BMC Infectious Diseases, 21(1). https://doi.org/10.1186/s12879-021-06104-9
- Podder, C. S., Chowdhury, N., Sina, M. I., & Haque, W. M. M. U. (2021). Outcome of ivermectin treated mild to moderate COVID-19 cases: a single-centre, open-label, randomised controlled study. IMC Journal of Medical Science, 14(2), 11–18. https://doi.org/10.3329/imcjms.v14i2.52826
- Popp, M., Stegemann, M., Metzendorf, M. I., Gould, S., Kranke, P., Meybohm, P., Skoetz, N., & Weibel, S. (2021). Ivermectin for preventing and treating COVID-19. The Cochrane database of systematic reviews, 7(7), CD015017. https://doi.org/10.1002/14651858.CD015017.pub2
- Ravikirti, Roy, R., Pattadar, C., Raj, R., Agarwal, N., Biswas, B., Manjhi, P. K., Rai, D. K., Shyama, Kumar, A., & Sarfaraz, A. (2021). Evaluation of Ivermectin as a Potential Treatment for Mild to Moderate COVID-19: A Double-Blind Randomized Placebo Controlled Trial in Eastern India. Journal of Pharmacy & Pharmaceutical Sciences, 24, 343–350. https://doi.org/10.18433/jpps32105
- Reis, G., Silva, E., Silva, D., Thabane, L., Milagres, A. C., Ferreira, T. S., Dos Santos, C., Campos, V., Nogueira, A., de Almeida, A., Callegari, E. D., Neto, A., Savassi, L., Simplicio, M., Ribeiro, L. B., Oliveira, R., Harari, O., Forrest, J. I., Ruton, H., Sprague, S., … TOGETHER Investigators (2022). Effect of Early Treatment with Ivermectin among Patients with Covid-19. The New England journal of medicine, 10.1056/NEJMoa2115869. Advance online publication. https://doi.org/10.1056/NEJMoa2115869
- (retracted publication) Samaha, A. A., Mouawia, H., Fawaz, M., Hassan, H., Salami, A., Bazzal, A. A., Saab, H. B., Al-Wakeel, M., Alsaabi, A., Chouman, M., Moussawi, M. A., Ayoub, H., Raad, A., Hajjeh, O., Eid, A. H., & Raad, H. (2021). Effects of a Single Dose of Ivermectin on Viral and Clinical Outcomes in Asymptomatic SARS-CoV-2 Infected Subjects: A Pilot Clinical Trial in Lebanon. Viruses, 13(6), 989. https://doi.org/10.3390/v13060989
- Schmith VD, Zhou JJ, Lohmer LRL. The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19. Clin Pharmacol Ther. 2020 Oct;108(4):762-765. doi: 10.1002/cpt.1889. Epub 2020 Jun 7. PMID: 32378737; PMCID: PMC7267287.
- Shah Bukhari, K. H., Asghar, A., Perveen, N., Hayat, A., Mangat, S. A., Butt, K. R., Abdullah, M., Fatima, T., Mustafa, A., & Iqbal, T. (2021). Efficacy of Ivermectin in COVID-19 Patients with Mild to Moderate Disease. MedRxiv. https://doi.org/10.1101/2021.02.02.21250840
- Shahbaznejad, L., Davoudi, A., Eslami, G., Markowitz, J. S., Navaeifar, M. R., Hosseinzadeh, F., Movahedi, F. S., & Rezai, M. S. (2021). Effects of Ivermectin in Patients With COVID-19: A Multicenter, Double-blind, Randomized, Controlled Clinical Trial. Clinical therapeutics, 43(6), 1007–1019. https://doi.org/10.1016/j.clinthera.2021.04.007
- Vallejos, J., Zoni, R., Bangher, M., Villamandos, S., Bobadilla, A., Plano, F., Campias, C., Chaparro Campias, E., Medina, M. F., Achinelli, F., Guglielmone, H. A., Ojeda, J., Farizano Salazar, D., Andino, G., Kawerin, P., Dellamea, S., Aquino, A. C., Flores, V., Martemucci, C. N., . . . Aguirre, M. G. (2021). Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19) a randomized, double-blind, placebo-controlled trial. BMC Infectious Diseases, 21(1). https://doi.org/10.1186/s12879-021-06348-5
Evidence tabellen
Study reference
(first author, publication year) |
Was the allocation sequence adequately generated? a
Definitely yes Probably yes Probably no Definitely no |
Was the allocation adequately concealed?b
Definitely yes Probably yes Probably no Definitely no |
Blinding: Was knowledge of the allocated interventions adequately prevented?c
Were patients blinded?
Were healthcare providers blinded?
Were data collectors blinded?
Were outcome assessors blinded?
Were data analysts blinded?
Definitely yes Probably yes Probably no Definitely no |
Was loss to follow-up (missing outcome data) infrequent?d
Definitely yes Probably yes Probably no Definitely no |
Are reports of the study free of selective outcome reporting?e
Definitely yes Probably yes Probably no Definitely no |
Was the study apparently free of other problems that could put it at a risk of bias?f
Definitely yes Probably yes Probably no Definitely no |
Overall risk of bias If applicable/necessary, per outcome measureg
LOW Some concerns HIGH
|
Abd-Elsalam, 2021 |
Probably yes
Reason: Computerized randomization; included patients were randomized using a computer random number generator to select random permuted blocks with a block size of eight and an equal allocation ratio. Three members of the study team (Soliman S, Mai Khalaf, and Eslam Saber Esmail) recruited, enrolled, and assigned participants to a computer‐generated randomization sequence, held by an independent observer |
Probably yes
Reason: Sequentially numbered, opaque, sealed envelopes were used to ensure concealment. |
Definitely no
Reason: open-label study |
Probably yes
Reason: All the patients continued the study medications to the end of the duration of treatment and follow‐up. |
Probably no
Reason: Outcomes mentioned in the Methods section were reported in the Results section as well and similar to register; study registered May 2020 while study started March 2020. |
Probably no
Reason: source of funding not reported; study registered May 2020 while study started March 2020. |
LOW (mortality) Some concerns (mechanical ventilation, duration of hospitalization)
Reason: open-label study |
Ahmed, 2020 |
Probably no
Reason: not reported |
Probably no
Reason: not reported |
Probably yes
Reason: double blind RCT, but not further described |
Probably yes
Reason: One patient from each of the ivermectin + doxycycline and placebo groups and two patients in the 5-day ivermectin group withdrew their consent during the study |
Definitely no
Reason: Not all outcome measures mentioned in the method section are reported; no study registration; analyses in sub groups reported but sub groups not specified |
Probably no
Reason: handling of missing data was not described |
HIGH |
Buonfrate, 2022 |
Probably yes
Reason: Participants were randomly assigned by a centralized computer system to one of the three arms with an allocation ratio 1:1:1. |
Definitely yes
Reason: “The treatment ID was obtained through RED-Cap, used as a web-based clinical data management system for the study. Following randomisation, the treatment ID and the patient’s weight were communicated to the hospital pharmacist who was in charge to prepare the study treatment according to the randomisation list.” |
Probably yes
Reason: The investigators, subjects, analysts and sponsor were blinded to the treatments received |
Probably yes
Reason: infrequent number of patients excluded from analysis due to withdrawn consent of missing sample of viral load |
Probably yes
Reason: All outcome measures described in the trial protocol are reported in the results |
Probably no
Reason: recruitment was stopped due to dramatic drop in cases; high proportion of patients that did not receive treatment in intervention group due to intolerability |
Some concerns |
Chaccour, 2021 |
Definitely yes
Reason: “Randomized in a 1:1 ratio to ivermectin (400 mcg/kg) single oral dose or placebo. The randomization sequence was computer-generated by the trial statistician using blocks of four.” |
Definitely yes
Reason: “Allocation was made by the attending investigator using opaque envelopes.” |
Probably yes
Reason: “double blind trial”; “in order for the clinical trial team to remain blinded, treatment was administered under direct supervision by a non-participant nurse that picked up the opaque bottles directly from the pharmacy and administered the content behind closed doors. The clinical trial team had no contact with the investigational products.”; nothing mentioned regarding analyses |
Definitely yes
Reason: All randomized participants completed follow-up. There was good compliance with the daily online questionnaire with 282 patient-days reports (84%) and 295 patient-days reports (88%) in the ivermectin and placebo group respectively. |
Probably yes
Reason: outcomes reported as announced |
Probably yes
Reason: not mentioned |
LOW |
Chachar, 2020 |
Definitely yes
Reason: “Patients were allocated randomly to the groups by computer generated number.” |
No information
Reason: “Patients were allocated randomly to the groups by computer generated number.” Concealment not described |
Definitely no:
Reason: ”open label RCT” |
Probably yes:
Reason: No loss to follow-up or missing data reported. |
Probably no
Reason: Outcome of symptoms was combined to one outcome parameter (symptomatic vs a-symptomatic); study not registered; primary and secondary outcomes not predefined |
Probably no
Reason: intention to treat analysis not mentioned; groups differed at baseline; conflicts of interest en funding not specified. |
Some concerns (time to symptom resolution) |
Gonzalez, 2022 |
No information
Method of randomisation not reported |
No information
Method of randomisation and concealment not reported |
Definitely yes
Reason: Patients and investigators remained blinded to randomization until the final analysis |
No information
Not reported |
Definitely yes
Reason: Outcome measures described in the method section are also reported |
Definitely no
Reason: Patient recruitment was stopped due to the therapeutic futility of hydroxychloroquine (one of the treatment arms in this RCT)
|
HIGH
|
Definitely yes
Reason: “The randomization list was generated by a computerized system by a unit independent of the study team” |
Probably yes
Reason: “The randomization codes was kept in sealed sequentially numbered opaque envelopes and was not be opened until the patient shows throat swab positive test after completion of study for SARS-CoV-2 confirmed by reverse transcriptase –polymerase- chain-reaction (RT-PCR) assay” |
Definitely no
Reason: open label study |
Probably no
Reason: missing outcome data not further explained |
Probably yes
Reason: outcomes mentioned in the method section are reported, but trial method is not reported previously. |
Probably no
Reason: intention to treat analysis is not mentioned, handling missing data is unclear; no trial registration or study protocol |
HIGH |
|
Krolewiecki, 2020 |
Definitely yes
Reason: “The randomization list was developed prior to study initiation and by means of a centralized eCRF/IWRS web system (Jazz Clinical, Buenos Aires, Argentina). For reproducibility, a random seed of 1701214029 was used.” |
Probably yes
Reason: “Once the availability of the informed consent and the verification of all eligibility criteria had been confirmed, the assignment was communicated to the investigators on the computer screen and by email.” |
Definitely no
Reason: “The patients and center personnel were not blinded to the allocated group. The outcome assessors (personnel in charge of viral load determinations) were blinded to the allocated group upon receiving the samples labeled with the randomization number and the visit number.” |
Probably yes
Reason: Lost to follow-up was almost equal in both groups. |
Definitely no
Reason: Not all outcomes mentioned in the trial protocol (clinicaltrials.gov) were reported in the article. |
Probably yes
Reason: not mentioned |
Some concerns |
Lim, 2022 |
Definitely yes
Reason: The randomization (1:1) was based on an investigator-blinded randomization list uploaded to REDCap, which allocated the patients via a central, computer-generated randomization scheme across all study sites during enrollment. The randomization list was generated independently using random permuted block sizes 2 to 6. The randomization was not stratified by site. |
Probably yes
Reason: The randomization was based on an investigator-blinded randomization list uploaded to REDCap, which allocated the patients via a central, computer-generated randomization scheme across all study sites during enrollment |
Definitely no
Reason: Open label |
Probably yes
Reason: 6 patients in the intervention arm withdrew consent before taking a dose of ivermectin. The modified intention-to- treat population for the primary analysis included 490 patients (98% of those enrolled), with 241 in the intervention group and 249 in the control group |
Probably yes
Reason: All outcomes mentioned in the methods section were reported in the article. The trial register only mentions the co-primary outcomes, which are described in the article. |
Probably no
Reason: trials was underpowered for all-cause mortality outcome; no other problems reported |
Some concerns
open label design, underpowered for secondary outcome mortality |
López-Medina, 2021 |
Definitely yes
Reason: “Patients were randomized in permuted blocks of 4 in a randomization sequence prepared by the unblinded pharmacist in Microsoft Excel version 19.0 who provided masked ivermectin or placebo to a field nurse for home or hospital patient visits..” |
Probably yes
Reason: “Allocation assignment was concealed from investigators and patients.” |
Probably yes
Reason: “The only person not blinded to the study procedures will be the pharmaceutical chemist who will randomize the study participants. […] Allocation assignment was concealed from investigatorsand patients.” |
Definitely no
Reason: In both groups, about 16% or the patients were excluded from analyses due to a labelling error causing patients to receive the wrong treatment. Additional patients were included in the study to meet the numbers derived from the sample size calculation. |
Definitely no
Reason: Not all outcome mentioned in the trial protocol were reported in the article. |
Probably yes
Reason: not mentioned |
Some concerns |
Mohan, 2021 |
Definitely yes
Reason: Eligible patients were randomized in a 1:1:1 ratio. A variable block randomization stratified based on disease severity was done using a centralized telephone-based system. |
Probably yes
Reason: not mentioned |
Definitely yes
Reason: patients, investigators, caregivers, and statisticians were blinded to the allocation. |
Definitely yes
Reason: Lost to follow-up was infrequent and similar in all three groups. |
Probably yes
Reason: All outcome mentioned in the methods section were reported in the article. The trial register only mentions the co-primary outcomes, which are described in the article. |
Probably no
Reason: pilot study with small study population |
Some concerns |
Okumuş, 2021 |
Definitely no
Reason: “The distinction between study and control groups was made by a single-blind randomized method. Starting from the first patient included in the study, patients with odd numbers were grouped as the study group, and patients with even numbers as the control group.” |
Definitely no
Reason: “The distinction between study and control groups was made by a single-blind randomized method. Starting from the first patient included in the study, patients with odd numbers were grouped as the study group, and patients with even numbers as the control group.” |
Definitely no
Reason: Single blind study. |
Definitely no
Reason: “Six (16.7%) patients in the study group were excluded from the study, continuing only the reference treatment after taking the first dose of ivermectin, as a mutation was detected in genetic tests affecting ivermectin metabolism.” |
Definitely yes
Reason: All outcome measures reported at clinicaltrials.gov were mentioned. |
Probably no
Reason: No adherence to intention-to-treat protocol described; no report of handling missing or incomplete data. |
HIGH |
Podder, 2020 |
Definitely no
Reason: “Randomisation was done using an odd-even methodology applied to registration numbers, in a consecutive fashion of 1:1 ratio” |
Probably no
Reason: “Randomisation was done using an odd-even methodology applied to registration numbers, in a consecutive fashion of 1:1 ratio” |
Definitely no
Reason: Open-label study |
Definitely no
Reason: “Twenty patients were excluded as 18 had symptoms for more than seven days at the time of enrolment and two other patients had insufficient data. “ It is unclear in which groups these patients were randomized. |
Probably yes
Reason: All outcomes in method section reported, but no trial protocol was published. |
Probably yes
Reason: not mentioned |
HIGH |
Ravikirti, 2021 |
Definitely yes
Reason: “A random allocation list of 120 patients was generated using the sealed envelope (an online block randomisation list generating software) (24) and kept with a third person (not a part of the investigation team) prior to the commencement of the trial.” |
Definitely yes
Reason: “A random allocation list of 120 patients was generated using the sealed envelope (an online block randomisation list generating software) (24) and kept with a third person (not a part of the investigation team) prior to the commencement of the trial.” |
Definitely yes
Reason: “Once an eligible study participant has provided consent for the trial, the investigation team doctor used to contact the concerned third person having the random allocation list over telephone to know the treatment group (A/B) for that particular patient. One of these two groups was the intervention group, and the other was the placebo group. However, up until the analysis of the data, this information was confined to the pharmacist dispensing the tablets.” |
Probably no
Reason: 23% in the intervention group and 13% in the control group had no or inconclusive report regarding viral clearance. A relatively large difference in patients discharged before 6th day (9 versus 3) was reported |
Probably yes
Reason: All outcomes mentioned in Methods were reported |
Probably no
Reason: 3 randomized patients were not included in the analysis due to low to follow-up or unblinded Ivermectin administering after randomization; no sample size calculation performed. |
LOW (other outcome measures) Some concerns (viral clearance) |
Reis, 2022 |
Definitely yes
Reason: An independent pharmacist conducted the randomization at a central trial facility, from which the trial sites requested randomization by means of text message. Patients underwent randomization by means of a block randomization procedure for each participating site, with stratification according to age (≤50 years or >50 years). |
Definitely yes
Reason: The trial team, site staff, and patients were unaware of the randomized assignments. Only the pharmacist who was responsible for randomization was aware of which letter referred to which assignment. |
Definitely yes
Reason: The trial team, site staff, and patients were unaware of the randomized assignments |
Definitely yes
Reason: Reasons for missing outcome data unlikely to be related to outcome |
Definitely yes
All outcomes reported in the study protocol were reported in the paper. |
Probably yes
Reason: The study appears to be free of other sources of bias.
|
LOW
|
Shahbaznejad, 2021 |
Definitely yes
Reason: The patients were randomly divided into 2 groups (ivermectin and control) by a simple randomization method using a table of random numbers. |
Probably yes
Reason: Neither the participants nor the evaluators were aware of the randomization process or group allocation. |
Probably no
Reason: Blinding of caregivers is unknown: “Neither the participants nor the evaluators were aware of the randomization process or group allocation.” |
Probably no |
Definitely yes
Reason: Description of outcome measures were not always consistent with reported outcome measures; duration of supplemental oxygen with non-invasive ventilation was not reported. |
Probably no
Reason: possibly selection bias (high % unwilling to participate); no sample size calculation performed; some differences in patient characteristics (including disease severity) at baseline noted; reporting results is inconsistent between text and tables. |
Some concerns (mortality) HIGH (other outcome measures) |
Vallejos, 2021 |
Definitely yes
Reason: “through the web-based system using randomly permuted blocks in a 1:1 ratio” |
Definitely yes
Reason: “The investigator who performed the randomization was not involved in the dispensing of the medication, inclusion, and follow-up of the patients.; Patients were consecutively assigned to the treatment kit in ascending order at inclusion.” |
Definitely yes
Reason: “The rest of the investigators were blinded to the treatment received, as were the patients.” |
Definitely yes follow-up after the final visit.” |
Definitely yes
Reason: All outcomes mentioned at clinicaltrials.gov were reported. |
Probably no
Reason: trials was underpowered for primary outcome; no other problems reported |
LOW (mortality)
Some concerns (hospitalization, mechanical ventilation, safety)
|
- Randomization: generation of allocation sequences have to be unpredictable, for example computer generated random-numbers or drawing lots or envelopes. Examples of inadequate procedures are generation of allocation sequences by alternation, according to case record number, date of birth or date of admission.
- Allocation concealment: refers to the protection (blinding) of the randomization process. Concealment of allocation sequences is adequate if patients and enrolling investigators cannot foresee assignment, for example central randomization (performed at a site remote from trial location). Inadequate procedures are all procedures based on inadequate randomization procedures or open allocation schedules..
- Blinding: neither the patient nor the care provider (attending physician) knows which patient is getting the special treatment. Blinding is sometimes impossible, for example when comparing surgical with non-surgical treatments, but this should not affect the risk of bias judgement. Blinding of those assessing and collecting outcomes prevents that the knowledge of patient assignment influences the process of outcome assessment or data collection (detection or information bias). If a study has hard (objective) outcome measures, like death, blinding of outcome assessment is usually not necessary. If a study has “soft” (subjective) outcome measures, like the assessment of an X-ray, blinding of outcome assessment is necessary. Finally, data analysts should be blinded to patient assignment to prevents that knowledge of patient assignment influences data analysis.
- If the percentage of patients lost to follow-up or the percentage of missing outcome data is large, or differs between treatment groups, or the reasons for loss to follow-up or missing outcome data differ between treatment groups, bias is likely unless the proportion of missing outcomes compared with observed event risk is not enough to have an important impact on the intervention effect estimate or appropriate imputation methods have been used.
- Results of all predefined outcome measures should be reported; if the protocol is available (in publication or trial registry), then outcomes in the protocol and published report can be compared; if not, outcomes listed in the methods section of an article can be compared with those whose results are reported.
- Problems may include: a potential source of bias related to the specific study design used (e.g. lead-time bias or survivor bias); trial stopped early due to some data-dependent process (including formal stopping rules); relevant baseline imbalance between intervention groups; claims of fraudulent behavior; deviations from intention-to-treat (ITT) analysis; (the role of the) funding body. Note: The principles of an ITT analysis implies that (a) participants are kept in the intervention groups to which they were randomized, regardless of the intervention they actually received, (b) outcome data are measured on all participants, and (c) all randomized participants are included in the analysis.
- Overall judgement of risk of bias per study and per outcome measure, including predicted direction of bias (e.g. favors experimental, or favors comparator). Note: the decision to downgrade the certainty of the evidence for a particular outcome measure is taken based on the body of evidence, i.e. considering potential bias and its impact on the certainty of the evidence in all included studies reporting on the outcome.
Evidence table for intervention studies
Notes:
- Prognostic balance between treatment groups is usually guaranteed in randomized studies, but non-randomized (observational) studies require matching of patients between treatment groups (case-control studies) or multivariate adjustment for prognostic factors (confounders) (cohort studies); the evidence table should contain sufficient details on these procedures
- Provide data per treatment group on the most important prognostic factors [(potential) confounders]
- For case-control studies, provide sufficient detail on the procedure used to match cases and controls
- For cohort studies, provide sufficient detail on the (multivariate) analyses used to adjust for (potential) confounders
Verantwoording
Autorisatiedatum en geldigheid
Laatst beoordeeld : 03-10-2022
Laatst geautoriseerd : 03-10-2022
Geplande herbeoordeling :
Algemene gegevens
De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut). Deze ondersteuning werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS). De werkgroep werd gefinancierd uit een VWS subsidie.
De financiers hebben geen enkele invloed gehad op de inhoud van de richtlijnmodule.
Samenstelling werkgroep
Voor het ontwikkelen van de richtlijnmodules is in 2020 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de behandeling van patiënten met COVID-19.
In 2020 is een multidisciplinair expertiseteam behandeling ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van het expertiseteam behandeling) die betrokken zijn bij de zorg voor patiënten met COVID-19. Dit expertiseteam fungeerde als stuurgroep, welke opdracht heeft gegeven tot het ontwikkelen van de module, alsmede fungeerde als klankbordgroep.
Werkgroep
- Dr. Marjolein Hensgens, internist-infectioloog, Afdeling Infectieziekten, UMC Utrecht en LUMC Leiden (Stichting Werkgroep Antibiotica Beleid)
- Drs. Emilie Gieling, apotheker, Afdeling Klinische Farmacie, UMC Utrecht.
- Prof. Dr. Dylan de Lange, intensivist, Afdeling Intensive Care, UMC Utrecht.
- Dr. Wim Boersma, longarts, Afdeling Longziekten, Noordwest Ziekenhuisgroep, Alkmaar.
- Dr. Paul van der Linden, apotheker, Afdeling Klinische Farmacie, Tergooi MC, Hilversum (Stichting Werkgroep Antibiotica Beleid).
- Prof. Dr. Bhanu Sinha, arts-microbioloog, Afdeling Medische Microbiologie & Infectiepreventie, UMCG, Groningen (Stichting Werkgroep Antibiotica Beleid).
- Dr. Mark de Boer, internist-infectioloog, Afdelingen Infectieziekten en Klinische Epidemiologie, LUMC, Leiden (Stichting Werkgroep Antibiotica Beleid).
- Tot 1-11-2021 tevens deel van de werkgroep: Dr. Albert Vollaard, internist-infectioloog, LCI, RIVM
Stuurgroep (expertiseteam Behandeling COVID-19)
- Dr. L.M. van den Toorn (voorzitter), longarts, Erasmus Medisch Centrum (Erasmus MC), NVALT
- Dr. M.G.J. de Boer, internist-infectioloog, Leids Universitair Medisch Centrum (LUMC), SWAB/NIV)
- Drs. A.J. Meinders, internist-intensivist, St. Antonius Ziekenhuis, NVIC
- Prof. dr. D.W. de Lange, intensivist-toxicoloog, Universitair Medisch Centrum Utrecht (UMC Utrecht), NVIC
- Dr. C.H.S.B. van den Berg, infectioloog-intensivist Universitair Medisch Centrum Groningen (UMCG), NVIC
- Dr. S.U.C. Sankatsing, internist-infectioloog, Diakonessenhuis, NIV
- Dr. E.J.G. Peters, internist-infectioloog, Amsterdam University Medical Centers (Amsterdam UMC), NIV
- Drs. M.S. Boddaert, arts palliatieve geneeskunde, Leids Universitair Medisch Centrum (LUMC), IKNL
- Dr. P.L.A. Fraaij, kinderarts-infectioloog, Erasmus Medisch Centrum (Erasmus MC), Sophia Kinderziekenhuis, NVK
- Dr. E. van Leeuwen, gynaecoloog, Amsterdam University Medical Centers (Amsterdam UMC), NVOG
- Dr. J.J. van Kampen, arts-microbioloog, Erasmus Medisch Centrum (Erasmus MC), NVMM
- Dr. M. Bulatović-Ćalasan, internist allergoloog-immunoloog en klinisch farmacoloog, Universitair Medisch Centrum Utrecht (UMC Utrecht), Amsterdam University Medical Centers (Amsterdam UMC), NIV
- Drs. A.F.J. de Bruin, anesthesioloog-intensivist, St. Antonius Ziekenhuis, NVA
- Drs. A. Jacobs, klinisch geriater, Catharina Ziekenhuis, NVKG
- Drs. B. Hendriks, ziekenhuisapotheker, Leids Universitair Medisch Centrum (LUMC), NVZA
- Drs. M. Nijs, huisarts, NHG
- Dr. S.N. Hofstede, senior adviseur, Kennisinstituut van Medisch Specialisten
Meelezer
- Drs. K. (Klaartje) Spijkers, senior adviseur patiëntenbelang, Patiëntenfederatie Nederland, Utrecht
Met ondersteuning van:
- dr. S.N. Hofstede, senior adviseur, Kennisinstituut van Medisch Specialisten
- dr. L.M.P. Wesselman, adviseur, Kennisinstituut van Medisch Specialisten
- dr. D. Nieboer, adviseur, Kennisinstituut van Medisch Specialisten
- drs. A.L.J. (Andrea) Kortlever - van der Spek, adviseur, Kennisinstituut van Medisch Specialisten
-
M. Griekspoor MSc., junior adviseur, Kennisinstituut van Medisch Specialisten
- drs. I. van Dusseldorp, senior literatuurspecialist, Kennisinstituut van Medisch Specialisten
Belangenverklaringen
De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.
Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.
Werkgroeplid |
Functie |
Nevenfuncties |
Gemelde belangen |
Ondernomen actie |
De Lange |
1. Afdelingshoofd Nationaal Vergiftigingen Informatie Centrum (NVIC) van het UMC Utrecht (0,6 fte) |
Secretaris Stichting Nationale Intensive Care Evaluatie (Stichting NICE), onbezoldigd. |
Geen |
Geen actie nodig |
De Boer |
Internist-Infectioloog, klinisch epidemioloog, senior medisch specialist, Leids Universitair Medisch Centrum, afdeling Infectieziekten |
- Voorzitter Stichting Werkgroep Antibioticabeleid (onkostenvergoeding) |
Geen |
Geen actie nodig |
Sinha |
Arts-microbioloog/hoogleraar, Universitair Medisch Centrum Groningen (voltijd) (zie ook https;//www.rug.nl/staff/b.sinha/) |
- SWAB-bestuur: secretaris [onbetaald; vacatiegeld voor instelling] |
- Projectsubsidie EU (Cofund): deelprojecten, cofinanciering
Mogelijk boedbeeldfunctie SWAB |
Geen actie nodig |
Van der Linden |
Ziekenhuisapotheker |
Penningmeester SWAB, vacatiegeld |
Geen |
Geen actie nodig |
Vollaard |
Internist-infectioloog, Landelijke Coordinatie Infectieziektebestrijding, RIVM |
Arts voor ongedocumenteerde migranten, Dokters van de Wereld, Amsterdam (onbetaald) |
Geen |
Geen actie nodig |
Gieling |
Ziekenhuisapotheker - Klinisch Farmacoloog, UMC Utrecht |
Lid OMT Nederlandse Vereniging voor Ziekenhuisapothekers (onbetaald) |
Geen |
Geen actie nodig |
Boersma |
Longarts Noordwest Ziekhuisgroep |
Lid sectie infectieziekten NVALT, onbetaald |
Eenmalige digitale deelname aan adviesraad MSD Pneumovax over Pneumococcal disease, betaald
|
Geen actie nodig |
Hensgens |
Internist-infectioloog, UMC Utrecht (0.8 aanstelling, waarvan nu 0.4 gedetacheerd naar LUMC) Internist-infectioloog, LUMC (via detachering, zie boven) |
Geen |
Geen |
Geen actie nodig |
Stuurgroep
Achternaam stuurgroeplid |
Functie |
Nevenfuncties |
Gemelde belangen |
Ondernomen actie |
Van den Toorn (voorzitter) |
Voorzitter NVALT |
Geen |
Geen |
Geen actie nodig |
De Boer |
Internist-Infectioloog, senior medisch specialist, LUMC, afdeling infectieziekten |
- Voorzitter Stichting Werkgroep Antibioticabeleid (onkostenvergoeding) |
Geen |
Geen actie nodig |
Meinders |
Internist-intensivist, St.-Antonius ziekenhuis, Nieuwegein |
commissie werk |
Geen |
Geen actie nodig |
De Lange |
Afdelingshoofd Nationaal Vergiftigingen Informatie Centrum (NVIC) van het UMC Utrecht |
secretaris Stichting Nationale Intensive Care Evaluatie (Stichting NICE) (onbetaald) |
Geen |
Geen actie nodig |
Van den Berg |
Infectioloog-intensivist, UMCG |
Geen |
Geen |
Geen actie nodig |
Sankatsing |
Internist-infectioloog/internist-acute geneeskunde, Diakonessenhuis, Utrecht |
- Bestuurslid Nederlandse Vereniging van Internist-Infectiologen (NVII) (onbetaald). |
Geen |
Geen actie nodig |
Peters |
Internist - aandachtsgebieden infectieziekten en Acute Geneeskunde Amsterdam UMC, locatie Vumc |
Wetenschappelijk Secretaris International Working Group on the Diabetic Foot (onbetaald) |
Geen |
Geen actie nodig |
Boddaert |
Medisch adviseur bij Integraal Kankercentrum Nederland (IKNL) en Palliatieve Zorg Nederland (PZNL) Arts palliatieve geneeskunde in LUMC |
Geen |
Geen |
Geen actie nodig |
Fraaij |
Kinderarts infectioloog- immunoloog, Erasmus MC-Sophia, Rotterdam |
Bestuur Stichting Infecties bij Kinderen (onbetaald) |
deelname aan RECOVER, European Union's Horizon 2020 research |
Geen actie nodig |
Van Leeuwen |
Gyaecoloog Amsterdam Universitair Medisch Centra |
Geen |
Geen |
Geen actie nodig |
Van Kampen |
Arts-microbioloog, afdeling Viroscience, Erasmus MC |
- associate editor antimicrobial resistance & infection control (onbetaald) - lid antibioticacommissie Erasmus MC (onbetaald) |
1. Mede uitvinder patent: 1519780601-1408/3023503 2. R01AI147330 (NIAID/NH) (HN onderzoek (1+2 niet gerelateerd aan COVID-19)
|
Geen actie nodig |
Bulatovic |
Internist allergoloog-immunoloog en klinische farmacoloog, UMC Utrecht en Diakonessenhuis Utrecht |
Functie 1: arts |
Geen |
Geen actie nodig |
De Bruin |
Anesthesioloog - Intensivist St. Antonius ziekenhuis Nieuwegein en Utrecht |
Geen |
Geen |
Geen actie nodig |
Jacobs |
Klinisch geriater en klinisch farmacoloog |
Geen |
Geen |
Geen actie nodig |
Hendriks |
Ziekenhuisapotheker farmaceutische patiëntenzorg, afd. Kiinische Farmacie en Toxicoiogie, Leids Universitair Medisch Centrum |
Lid SWAB werkgroep surveillance antibioticagebruik, onbetaald Lid SWAB richtlijncommissie antibiotica allergie, onbetaald |
Geen |
Geen actie nodig |
Nijs |
Huisarts |
Geen |
Geen |
Geen actie nodig |
Hofstede |
Senior adviseur Kennisinstituut van Medisch Specialisten |
Geen |
Geen |
Geen actie nodig |
Meelezer
Achternaam |
Functie |
Nevenfuncties |
Gemelde belangen |
Ondernomen actie |
Spijkers |
Senior adviseur patiëntenbelang |
Voorzitter Stichting Samen voor Duchenne |
Geen |
Geen actie nodig |
Inbreng patiëntenperspectief
Er werd aandacht besteed aan het patiëntenperspectief door een afgevaardigde patiëntenvereniging in de klankbordgroep. De verkregen input is meegenomen bij het opstellen van de module. De conceptrichtlijn is tevens voor commentaar voorgelegd aan de Patiëntenfederatie Nederland en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.
Werkwijze
Van leidraad naar richtlijnmodules
Bij aanvang van de pandemie in 2020 was het onduidelijk of bestaande of nieuwe medicijnen een relevante bijdrage konden leveren aan het herstel van patiënten geïnfecteerd met het SARS-CoV-2. Vandaar dat eind februari 2020 werd aangevangen met de eerste versie van de leidraad ‘Medicamenteuze behandeling voor patiënten met COVID-19 (infectie met SARS–CoV-2)’, welke begin maart 2020 online beschikbaar werd gesteld op de website van de SWAB (https://swab.nl/nl/covid-19). Sindsdien werd het adviesdocument op wekelijkse basis gereviseerd en indien nodig op basis van nieuwe publicaties van onderzoek aangepast. Het initiatief en de coördinatie hiertoe werden genomen door de SWAB Leidraadcommissie, ondersteund door het kennisinstituut van de Federatie Medisch Specialisten en een brede klankbordgroep waarbinnen de betrokken specialisten(verenigingen) zijn vertegenwoordigd. In september 2021 is gestart met het doorontwikkelen van de leidraad naar richtlijnmodules.
AGREE
Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).
Knelpuntenanalyse en uitgangsvragen
Tijdens de COVID-19 pandemie zijn knelpunten op verschillende manieren geïnventariseerd:
1. De expertiseteams benoemde de knelpunten in de zorg voor patiënten met COVID-19.
2. Er is een mailadres geopend (covid19@demedischspecialist.nl) waar verschillende partijen knelpunten konden aandragen, die vervolgens door de expertiseteams geprioriteerd werden.
3. Door de Federatie van Medisch Specialisten zijn webinars georganiseerd waarbij vragen konden worden ingestuurd. Deze vragen zijn na afloop van de webinars voorgelegd aan de expertiseteams en geprioriteerd.
Uitkomstmaten
Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.
Methode literatuursamenvatting
Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur en de beoordeling van de risk-of-bias van de individuele studies is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. Wanneer mogelijk werd de data uit verschillende studies gepoold in een random-effects model. Review Manager 5.4 werd gebruikt voor de statistische analyses. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.
Beoordelen van de kracht van het wetenschappelijke bewijs
De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).
GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).
Definitie |
|
Hoog |
|
Redelijk |
|
Laag |
|
Zeer laag |
|
Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).
Overwegingen (van bewijs naar aanbeveling)
Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek.
Formuleren van aanbevelingen
De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.
In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.
Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers |
||
|
Sterke aanbeveling |
Zwakke (conditionele) aanbeveling |
Voor patiënten |
De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet. |
Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet. |
Voor behandelaars |
De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen. |
Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren. |
Voor beleidsmakers |
De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid. |
Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen. |
Organisatie van zorg
Bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen.
Commentaar- en autorisatiefase
De conceptrichtlijnmodule werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.
Literatuur
Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.
Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.
Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.
Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.
Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.
Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html
Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.
Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.
Zoekverantwoording
Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.