COVID-19

Initiatief: FMS / SWAB Aantal modules: 72

Corticosteroïden

Uitgangsvraag

Wat is de plaats van corticosteroïden bij de behandeling van COVID-19 patiënten?

Aanbeveling

Behandel patiënten met COVID-19 bij wie zuurstoftoediening geïndiceerd is en met name bij patiënten waarbij de zuurstoftherapie geëscaleerd moet worden naar invasieve respiratoire ondersteuning met dexamethason 6 mg per dag gedurende maximaal 10 dagen.

 

Bij patiënten zonder extra zuurstofbehoefte wordt behandeling met corticosteroïden niet aangeraden.

Overwegingen

Voor- en nadelen van de interventie en de kwaliteit van het bewijs

Er is literatuuronderzoek verricht naar de verschillen in klinische uitkomsten tussen behandeling met en zonder corticosteroïden. Corticosteroïden die moesten worden geïnhaleerd werden in dit literatuuronderzoek niet opgenomen. Tot en met 2 september 2021 werden er 11 gerandomiseerde gecontroleerde studies (RCTs) gevonden in patiënten die waren opgenomen in het ziekenhuis (n=2989 in de interventiegroep en n=5018 in de controlegroep). De grootste studie die werd meegenomen was de RECOVERY trial (Horby, 2021), met meer dan 6000 geïncludeerde patiënten. Er werden geen studies gevonden die aan de selectiecriteria voldeden met ambulante patiënten.

 

De geïncludeerde studies onderzochten de volgende corticosteroïden: dexamethason (Tomazini, 2020; Jamaati, 2021; Horby, 2021), hydrocortison (Angus, 2020; Dequin, 2020; Munch, 2021), of methylprednisolon (Jeronimo, 2020; Edalatifard, 2020; Corral-Gudino, 2021; Solanich, 2021; Tang, 2021). De cruciale uitkomstmaten voor de besluitvorming waren mortaliteit en de noodzaak voor invasieve respiratoire ondersteuning. Daar waar mogelijk werd data van verschillende typen corticosteroïden gecombineerd om tot overkoepelende literatuurconclusies te komen over de effecten van corticosteroïden. Wanneer er enkel data aanwezig was over één type corticosteroïd werd het middel in de literatuurconclusies specifiek benoemd. Ook werden de effecten van corticosteroïden op de mortaliteit, in een subgroep analyse, opgesplitst naar ernst van ziekte: patiënten met milde, matige en ernstige COVID-19 symptomen op basis van respiratoire ondersteuning op moment van inclusie.

Er werden alleen randomiseerde trials geïncludeerd in de analyse, waardoor de kwaliteit van bewijs initieel hoog was. Omdat dat er een aantal open-label trials waren (waaronder de RECOVERY trial), met een mogelijk risico op vertekening van de studieresultaten (risk of bias) bij subjectieve uitkomstmaten, werd de kwaliteit van dit bewijs waar nodig naar beneden bijgesteld. Daarnaast waren er meerdere studies met een relatief kleine populatie en mede hierdoor een grote spreiding van het betrouwbaarheidsinterval rondom de puntschatter van de uitkomstmaat (imprecision), waardoor de kwaliteit van dit bewijs ook naar beneden werd bijgesteld.

 

Systemische corticosteroïden bij patiënten die waren opgenomen in het ziekenhuis

Met een redelijke zekerheid kan worden geconcludeerd dat er een reductie in de mortaliteit optreedt bij het gebruik van corticosteroïden (risicoverschil: -4,33%, 95% CI: -8,58% tot -0,07%; relatief risico: 0,89, 95% CI: 0,79 tot 1,02). Dit verschil werd door de werkgroep gedefinieerd als klinisch relevant. De data betroffen grotendeels patiënten met redelijke tot ernstige COVID-19; alleen de RECOVERY trial (Horby, 2021) includeerde ook patiënten met milde COVID-19.

 

De RECOVERY trial van Horby (2021) splitste de data van de mortaliteit ook op naar ernst van ziekte. De subgroep met ernstige ziekte kon worden gepoold in een meta-analyse samen met data van andere studies die enkel patiënten met ernstige ziekte includeerden (Tomazini, 2020; Angus, 2020). Bij het gebruik van corticosteroïden in de groep patiënten die als ernstig ziek kon worden aangemerkt, werd met een hoge zekerheid geconcludeerd dat er een klinisch relevante reductie in de mortaliteit optreedt (risicoverschil: -9,18%, 95% CI: -14,13% tot -4,23%; relatief risico: 0,82, 95%CI: 0,68 tot 0,98). Dit effect was minder groot, maar nog steeds statistisch significant, bij de patiënten met een matig-ernstige COVID (risicoverschil: -2,9%). Omdat dit verschil minder was dan de vooraf gedefinieerde grens van klinische relevantie (3% punten verschil), wordt in de conclusie beschreven dat dexamethason nauwelijks verschil maakt in de mortaliteit na 28 dagen. Echter, vanwege de grootte en de kwaliteit van de studie van Horby (2021), en de relatief beperkte bijwerkingen van dexamethason, wordt de risicoreductie van 2,9% nog steeds als relevant en betrouwbaar beschouwd. In de groep patiënten met milde COVID-19 (waarbij geen zuurstof suppletie nodig was) was er mogelijk een kleine, maar klinisch relevante, toename in de mortaliteit bij het gebruik van corticosteroïden (in dit geval dexamethason).

 

Het is nog niet duidelijk waarom er geen mortaliteitswinst is in de ‘milde groep’ zonder zuurstofbehoefte of bij personen die minder dan 7 dagen ziek waren. Het is daarbij niet helder wat daarbij het meest bepalend was: de ernst van infectie (dus de daling van de zuurstofsaturatie bij een aantal patiënten in die totale groep met een duur van symptomen van 7 dagen of minder) of alleen de duur van de symptomen. Deze bevindingen geven richting aan gebruik van dexamethason: vooral in de latere fase bij matig of ernstig zieke patiënten met extra zuurstofbehoefte waar (hyper)inflammatie op de voorgrond staat. Die zuurstofbehoefte is leidend vanwege de subgroep analyse in de studie van Horby (2021), maar mogelijk is gebruik van dexamethason ook bij slechts een korte duur (< 7 dagen) van symptomen niet effectief. Preventief gebruik in een vroege fase van infectie moet worden afgeraden, behalve als dat vanwege een andere indicatie (bijv. exacerbatie COPD) moet worden voorgeschreven. Een retrospectieve studie pleit voor gebruik van corticosteroïden alleen bij ernstige infecties, hier gedefinieerd door CRP >200 mg/L (vs. CRP <100 mg/L) (Keller, 2020). De RCTs in deze richtlijn gebruiken deze criteria niet en in het advies wordt een dergelijk afkappunt dan ook niet geadviseerd.

 

Uitkomsten betreffende invasieve respiratoire ondersteuning werden heterogeen gerapporteerd in de studies. Zo werd bijvoorbeeld de noodzaak voor invasieve ventilatie gerapporteerd, maar ook het aantal dagen aan mechanische ventilatie, het aantal dagen zonder respiratoire ondersteuning, de noodzaak voor high flow zuurstof of ventilatoire ondersteuning en de noodzaak voor respiratoire ondersteuning. Hierdoor zijn voor deze specifieke uitkomsten veelal weinig data beschikbaar. Met een lage tot zeer lage zekerheid werd geconcludeerd dat er bij verschillende typen corticosteroïden een klein tot geen effect zou kunnen optreden voor de verschillende uitkomsten die voor invasieve respiratoire ondersteuning werden gerapporteerd of dat het bewijs onzeker was over het effect. De studie van Horby (2021) liet wel een puntschatter zien in het voordeel van corticosteroïden.

 

Belangrijke uitkomstmaten waren de duur van hospitalisatie en de tijd tot klinische verbetering. Met een lage zekerheid werd geconcludeerd dat er een klein tot geen effect zou kunnen optreden op de duur van hospitalisatie. Het bewijs over het effect van corticosteroïden (in dit geval alleen methylprednisolon) op de tijd tot symptoomresolutie was erg onzeker, waarbij data over andere middelen ontbrak.

 

Soort corticosteroïden bij patiënten die waren opgenomen in het ziekenhuis

Omdat de geïncludeerde studies verschillende middelen onderzochten werden ze ook geclusterd geanalyseerd op basis van het middel dat verstrekt werd in de studie: dexamethason (Tomazini, 2020; Jamaati, 2021; Horby, 2021), hydrocortison (Angus, 2020; Dequin, 2020; Munch, 2021), of methylprednisolon (Jeronimo, 2020; Edalatifard, 2020; Corral-Gudino, 2021; Solanich, 2021; Tang, 2021). Zie de bijlage voor de literatuurbeoordelingen en -conclusies per middel. Een head-to-head vergelijking van de verschillende corticosteroïden is op dit moment niet beschikbaar.

 

Voor alle verschillende corticosteroïden was de gepoolde puntschatter van de risk ratio in het voordeel van het betreffende middel. Op basis van deze risk ratio’s is er geen voordeel uit te spreken voor een bepaald type corticosteroïden. Wel is er veruit het meeste bewijs beschikbaar voor dexamethason, omdat de grootste geïncludeerde studie (Horby, 2021) hier onderzoek naar deed. In het advies wordt er om deze reden een voorkeur voor dexamethason uitgesproken.

 

Duur van de behandeling met corticosteroïden

In de geïncludeerde studies worden niet alleen verschillende middelen onderzocht, ook de duur en de dosis van de behandeling is verschillend. De behandelduur varieert van enkele dagen tot 28 dagen. Het meeste bewijs komt uit de studie van Horby (2021), waar patiënten gedurende 10 dagen met 6 mg dexamethason werden behandeld of tot en met de dag dat ze uit het ziekenhuis werden ontslagen. In het advies zullen wij deze behandelduur aanhouden.

 

Overige overwegingen

 

Dosering
Klinische dose-finding studies voor corticosteroïden zijn niet gedaan. Er is op dit moment onvoldoende data over het gebruik van hogere doses corticosteroïden dan de dosis gebruikt in de RECOVERY-studie. Een recente RCT uit Iran met 86 patiënten laat zien dat 2 mg/kg/dag methylprednisolon geassocieerd is met een sneller klinisch herstel, kortere opname duur en kleinere kans op progressie naar invasieve beademing, vergeleken met 6 mg dexamethason per dag (Ranibar, 2021). Echter, deze studie is relatief klein en van matige kwaliteit en vergelijkt bovendien twee verschillende doseringen van twee verschillende middelen. Een grote RCT in Europa en India met 982 deelnemers met tenminste 10 liter zuurstofbehoefte (COVID STEROID 2 Trial group, 2021), randomiseerde naar 12 mg of 6 mg dexamethason. Er werd geen statistisch significant verschil gezien qua dagen vrij van orgaanondersteuning (22,0 dagen bij 12 mg versus 20,5 dagen bij 6 mg dexamethason) of mortaliteit na 28 dagen (27,1% bij 12 mg versus 32,3% bij 6 mg dexamethason). Wel rapporteren de auteurs dat de uitkomsten allebei neigen naar een voordeel van een hogere dosering dexamethason zonder dat er een verschil was in de hoeveelheid bijwerkingen. Een Italiaanse RCT randomiseerde 301 patiënten naar methylprednisolon boven op de standaard behandeling met dexamethason 6 mg (Salvarani, 2022). In deze studie werd geen voordeel gezien van aanvullende behandeling met methylprednisolon.

 

Al met al is er op dit moment geen positief bewijs voor behandeling met een hogere dosering corticosteroïden dan 6 mg dexamethason. Daarnaast is het nog onduidelijk of een hogere dosering corticosteroïden de toevoeging van een IL-6 remmer (zoals tocilizumab) onnodig maakt bij ernstig zieke patiënten, zoals dat op dit moment gebruikelijk is. Ook is het onduidelijk of een hogere dosering corticosteroïden in combinatie met een IL-6 remmer tot meer complicaties zou leiden in deze populatie. In de COVID STEROID 2 studie werd IL-6 therapie toegepast in een minderheid van de patiënten (11% van de 12 mg dexamethason groep en 10% van de 6 mg dexamethason groep). Eerdere onderzoeken bij andere virale luchtweginfecties lieten zien dat de mortaliteit toenam bij het gebruik van hogere doseringen corticosteroïden. Vandaar dat er op dit moment wordt afgeraden om hogere doseringen corticosteroïden toe te passen buiten studieverband. 

 

Bijwerkingen
Omdat er zeer heterogene definities werden gebruikt bij het rapporteren van bijwerkingen en er een hoog risico op bias was, werden deze gegevens niet systematisch weergegeven in de module. Een Cochrane review zet de bijwerkingen van diverse studies op een rij (Wagner, 2021). Er wordt geen meta-analyse verricht, maar een analyse van de descriptieve statistiek van de studies resulteert wel in de conclusie dat er geen grote verschillen in (ernstige) bijwerkingen werden gezien in de groep met en zonder corticosteroïden. Ook als er specifiek naar in het ziekenhuis opgelopen infecties werd gekeken, werden er geen grote verschillen gezien.

Ondanks dat de verschillen in bijwerkingen en ongewenste effecten van corticosteroïden niet in deze studies naar voren komen, is het wel bekend dat corticosteroïden geassocieerd zijn met onder andere een ontregeling van diabetes mellitus, het optreden van neuropsychiatrische symptomen en predisponeren voor infecties. Bij hoge doseringen corticosteroiden werd er ook een associate met ernstige schimmelinfecties beschreven zoals aspergillose en mucormycose (Hoenigl, 2022).

 

Speciale patiëntengroepen

Het is logisch om het advies over corticosteroïden voor volwassenen naar zeer ernstig zieke kinderen te extrapoleren. Helaas kan dit niet goed worden onderbouwd met gerandomiseerd onderzoek. Bij kinderen is er nu nog weinig bewijs dat COVID-19 met meer complicaties gepaard gaat, de ziekte lijkt bij kinderen juist met minder complicaties gepaard te gaan. Dat zou pleiten voor terughoudendheid voor het voorschrijven van corticosteroïden bij minder zieke pediatrische patiënten (niet op IC opgenomen).

 

In de bovengenoemde trials werden ook oudere patiënten geïncludeerd. In een subgroep analyse van de RECOVERY trial, bij ruim 900 patiënten die ouder waren dan 70 jaar, werd een mogelijk minder sterk voordeel van dexamethason zien op de 28-dagen mortaliteit (Horby, 2021). Bij de kwetsbare oudere patiënt kan dexamethason een hoger risico geven op een delier, waardoor een afweging van de baten en te verwachte bijwerkingen extra belangrijk is. 

 

Inhalatiecorticosteroïden
Therapie met inhalatiecorticosteroïden (ICS) is tot nu toe vooral overwogen bij ambulante patiënten. Het gebruik van ICS is relatief eenvoudig en kent, zeker als de behandeling kortdurend is, weinig bijwerkingen. Er zijn tot nu toe vier gerandomiseerde studies gepubliceerd die rapporteren over het effect van ICS bij patiënten met COVID-19.

 

In een open-label fase 2-gerandomiseerd onderzoek (de STOIC-trial) werd het effect van de inhalatie van budesonide (2dd 800 ug) onderzocht bij patiënten die waren gediagnosticeerd met covid-19 en nog geen opname-indicatie hadden (Ramakrishnan, 2021). Deze studie werd voortijdig gestopt na inclusie en 1:1-randomisatie van 146 patiënten. Het primaire eindpunt was de behoefte aan ‘urgente medische zorg’. Dit kwam frequenter voor in de groep met standaardzorg dan in de groep die budesonide gebruikte (11 versus 2 maal, dit was statistisch significant). Patiënten die ICS gebruikte waren gemiddeld 1 dag eerder klachtenvrij. De hoeveelheid virus die op verschillende momenten was gemeten middels nasofarynxuitstrijk verschilde niet tussen beide groepen. Een andere open-label fase 2-gerandomiseerde studie onderzocht het effect van ciclesonide inhalatie (2dd 320 ug) gedurende 14 dagen (Song, 2021). Patiënten waren ambulant en hadden een recente diagnose COVID-19 (binnen 7 dagen na start symptomen of binnen 3 dagen na diagnose). Er werden 61 patiënten geïncludeerd. In de groep met ICS werd een snellere daling van de viral load gezien en een kleinere kans op klinisch falen. Echter, het aantal patiënten in de studie was klein en deze positieve effecten werden niet in alle secundaire uitkomstmaten terug gezien. 

 

In de grootste trial, de open-label PRINCIPLE trial (Yu, 2021), werden ambulante patiënten geïncludeerd met verhoogd risico op een ernstig beloop. Inclusiecriteria waren o.a. een leeftijd ≥ 50 jaar met minimaal 1 comorbiditeit, of een leeftijd ≥ 65 jaar, met of zonder comorbiditeit. Eindpunten waren de door de patiënt zelf gerapporteerde tijd tot herstel, en noodzaak tot ziekenhuisopname in de eerste 28 dagen. Na randomisatie en exclusie vanwege het ontbreken van een positieve test voor SARS-CoV-2, werden er 787 personen in de budesonide behandelgroep en 1069 in de controlegroep geanalyseerd. Patiënten die budesonide turbuhaler gebruikten rapporteerden gemiddeld 3 dagen eerder hersteld te zijn. In de standaardzorg groep werden iets meer patiënten binnen 28 dagen na randomisatie in het ziekenhuis opgenomen (8,8% vs. 6,8%; OR 0,75 in het voordeel van budesonide; CI 95% 0,55-1,03). Superioriteit van budesonide voor deze uitkomstmaat werd statistisch niet aangetoond.

 

De RCT van Clemency (2022) randomiseerde 400 ambulante patiënten naar 2 maal per dag ciclesonide 320 ug of placebo gedurende 30 dagen. Inclusie in de studie was onafhankelijk van de duur van de klachten of onderliggend lijden. Gemiddeld waren de patiënten 43 jaar, 55% was vrouw. Het primaire eindpunt van de studie was de tijd tot alle symptomen van COVID-19 verdwenen waren. In beide groepen was dit 19 dagen. Er werd ook geen verschil gezien in het percentage mensen dat op dag 30 nog symptomen had: 70,6% was klachtenvrij in de ciclesonide groep versus 63,5% in de placebo groep (OR 1,28; 95% CI 0,84-1,97). Wel werden er minder bezoeken aan de spoedeisende hulp of opnames gezien in de groep met ciclesonide: 1% versus 5,4% (OR 0,18; 95% CI 0,04-0,85). Niemand overleed tijdens de studie.

 

De vier gerapporteerde RCT’s beschrijven allen in meer of mindere mate een positief effect van ICS. Twee studies waren relatief klein; de PRINCIPLE studie had methodologische beperkingen, onder meer omdat de behandeling niet geblindeerd was en de tijd tot herstel door patiënten self-reportedwas. De RCT van Clemency (2022) heeft door de blindering beduidend minder beperkingen. In zowel de studie van Clemency (2022) als de PRINCIPLE trial (Yu, 2021) was het aantal patiënten dat zou zijn behandeld zijn om 1 ziekenhuisopname te voorkomen echter hoog, 50 (number needed to treat). De STOIC trial bevatte te weinig inclusies om de werkzaamheid betrouwbaar vast te stellen. Data over het voorkomen van harde eindpunten als IC opname, noodzaak tot mechanische ventilatie en overlijden, ontbreken. Er zijn geen gegevens uit deze of andere studies die wijzen op een schadelijk effect van ICS, ook een Cochrane review die 3 RCT’s includeerde, vond geen verhoogd aantal ‘adverse events’ bij het gebruik van ICS (Griesel, 2022).

Op basis van bovengenoemde data heeft de NHG een behandeladvies opgesteld voor ambulante patiënten (zie NHG standaard COVID-19, corona.nhg.org. Bij opgenomen patiënten is er geen plaats voor behandeling met inhalatiecorticosteroïden.

In maart 2022 adviseerde de Amerikaanse NIH (National Institutes of Health) niet voor of tegen het gebruikt van ICS, de Amerikaanse IDSA (Infectious Diseases Society of America) adviseerde tegen het gebruik van ICS. De IDSA nam in haar advies ook de studie van Ezer (2021) mee, die geen positief effect van ciclesonide liet zien. Deze studie was echter vroegtijdig gestopt en was mogelijk ‘underpowered’.

 

Virusvarianten

Sinds de opkomst van de omikron variant van SARS-CoV-2 in Nederland eind 2021, is de kans op een ernstig beloop van COVID-19 op populatieniveau zeer sterk gedaald. Het is van belang om op te merken dat de besproken gerandomiseerde studies werden verricht voor de opkomst van de omikron variant. Het is onduidelijk wat de invloed is van deze variant op het effect van anti-inflammatoire therapie, al wordt aangenomen dat patiënten die door de omikron variant een ernstige COVID-19 infectie ontwikkelen nog steeds baat hebben bij anti-inflammatoire therapie. De ‘number needed to treat’ zou wel anders (vermoedelijk hoger) kunnen zijn.

 

Waarden en voorkeuren van patiënten (en evt. hun verzorgers)

Er werd een klinisch relevant voordeel gevonden bij opgenomen patiënten met een ernstige COVID-19 infectie die behandeld werden met dexamethason, vergeleken met de groep die dit niet kreeg. In patiënten met een matig ernstige COVID-19 infectie werd er ook voordeel vastgesteld, al was dit minder groot dan bij patiënten met een ernstige ziekte.

Het is voor patiënten belangrijk om te weten wat de voor en nadelen van dexamethason zijn, zoals bijvoorbeeld de ontregeling van de glucose waarden bij patiënten met pre-existente diabetes mellitus (zie ook het kopje ‘bijwerkingen’). Deze nadelen zullen in de groep patiënten met een matig ernstige COVID-19 infectie zwaarder wegen dan bij patiënten met een ernstige COVID-19, waar deze mogelijke bijwerkingen veelal opwegen tegen de sterke voordelen.

 

Kosten (middelenbeslag)

Een behandeling met dexamethason gedurende 10 dagen kost ongeveer 50 euro indien dit intraveneus gegeven wordt en 10 euro indien dit oraal gegeven wordt. Dit is relatief weinig vergeleken met de kosten die gemaakt worden bij de opname van patiënten met COVID-19.

 

Aanvaardbaarheid, haalbaarheid en implementatie

Dexamethason lijkt effectief om een ernstig beloop van de ziekte te voorkomen en de kosten zijn beperkt. De bijwerkingen, zoals bij de overwegingen beschreven, kunnen echter de aanvaardbaarheid beperken.

 

Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies

Bij patiënten met COVID-19 bij wie zuurstoftoediening geïndiceerd is vanwege saturatiedaling, en met name bij patiënten waarbij de zuurstoftherapie geëscaleerd moet worden naar invasieve respiratoire ondersteuning, is behandeling met dexamethason 6 mg per dag (of een equivalente dosis hydrocortison/prednison) gedurende 10 dagen of tot ontslag uit het ziekenhuis, aangewezen. Bij patiënten zonder extra zuurstofbehoefte wordt behandeling met corticosteroïden niet aangeraden. Voor de behandeling van kinderen kunnen de doseringen beschreven in het Kinderformularium worden gebruikt.

Onderbouwing

Een dysregulatie van de immuunrespons lijkt bij COVID-19 een belangrijke rol in de pathofysiologie te spelen (Veerdonk, 2021). Er worden verschillende middelen ingezet en onderzocht met anti-inflammatoire werking. Corticosteroïden zijn goed beschikbaar en werden bij infecties met SARS-CoV-1 en MERS-CoV virussen frequent voorgeschreven in de hoop dat daarmee immuun-gemedieerde schade voorkomen kon worden. Omdat corticosteroïden ook kunnen zorgen voor een toename of langere duur van virale replicatie was er veel twijfel over gebruik ervan als behandeling (Lee, 2004; Arabi, 2018). In algemene zin wijzen de verschillende meta-analyses naar de toepassing van corticosteroïden bij ARDS in de richting van verbeterde uitkomsten met corticosteroïden (Meduri, 2016; Peter, 2008; Yang, 2017). Bij influenza geassocieerde ARDS is er echter een aanwijzing voor verhoogde mortaliteit (Tsai, 2020).

 

Een eerste retrospectieve analyse van opgenomen SARS-CoV-2 patiënten in Wuhan, China, toonde dat de sterfte van patiënten die een ARDS ontwikkelden lager was in de groep die behandeld werd met methylprednisolon dan in de groep zonder (Wu, 2020). De gebruikte dosis werd niet vermeld. Klinische dose-finding studies zijn niet gedaan. Inmiddels is in diverse gerandomiseerde studies (RCTs) de effectiviteit van corticosteroïden onderzocht om de plaats van corticosteroïden bij de behandeling van COVID-19 patiënten te bepalen.

Systemic corticosteroids in hospitalized COVID-19 patients

Mortality (crucial)

Moderate

GRADE

Treatment with corticosteroids (all combined) probably reduces mortality (overall) when compared with treatment without corticosteroids in hospitalized COVID-19 patients.

 

Source: Angus, 2020; Corral-Gudino, 2021; Dequin,2020; Edalatifard, 2020; Horby, 2021; Jamaati, 2021; Jeronimo, 2020; Much, 2021; Solanich, 2021; Tang, 2021; Tomazini, 2020

High

GRADE

Treatment with corticosteroids (all combined) reduces mortality when compared with treatment without corticosteroids in hospitalized patients with severe COVID-19.

 

Source: Angus, 2020; Horby, 2021; Tomazini, 2020

Moderate

GRADE

Treatment with dexamethasone probably results in limited difference of mortality when compared with treatment without dexamethasone in hospitalized patients with moderate COVID-19.

 

Source: Horby, 2021

Low

GRADE

Treatment with dexamethasone may increase mortality when compared with treatment without dexamethasone in hospitalized patients with mild COVID-19.

 

Source: Horby, 2021

 

Extensive respiratory support (crucial)

Low

GRADE

Treatment with corticosteroids may result in little to no difference in the need for extensive respiratory support when compared with treatment without corticosteroids in hospitalized COVID-19 patients.

 

Source: Angus, 2020; Corral-Gudino, 2021; Dequin, 2020; Edalatifard, 2021; Horby, 2021; Jamaati, 2021; Jeronimo, 2020; Solanich 2021; Tang, 2021; Tomazini, 2020

 

Duration of hospitalization

Low

GRADE

Treatment with corticosteroids may result in little to no difference in the length of stay when compared with treatment without corticosteroids in hospitalized COVID-19 patients.

 

Source: Horby, 2021; Angus, 2020; Jamaati, 2021; Jeronimo, 2020; Tang, 2021

 

Time to clinical improvement

Very low

GRADE

The evidence is very uncertain about the effects of methylprednisolone on the time to clinical improvement when compared with treatment without methylprednisolone in hospitalized COVID-19 patients.

 

Source: Solanich, 2021; Tang, 2021

 

Corticosteroids in non-hospitalized COVID-19 patients

 

No

GRADE

No studies were found investigating the effect of corticosteroids on mortality, respiratory support, duration of hospitalization, or time to clinical improvement compared to standard care in non-hospitalized COVID-19 patients.

 

Sources: -

 

Systemic corticosteroids in hospitalized COVID-19 patients

DEXAMETHASONE

Tomazini (2020) (CoDEX trial) described a multicenter, open-label randomized clinical trial in Brazil comparing intravenous dexamethasone and standard care with standard care only in patients admitted to an ICU with suspected or confirmed COVID-19. The trial was terminated early. Patients were included when intubated and mechanically ventilated within 48 hours of meeting the criteria for moderate or severe ARDS. Patients were excluded when they e.g. used corticosteroids in the past 15 days (when non-hospitalized) or were immunosuppressed. A total of 299 patients were randomized to receive standard care and dexamethasone or to receive standard care only. The dexamethasone-group received 20 mg dexamethasone once daily intravenously for the first five days, followed by 10 mg intravenously for the following 5 days or until ICU discharge. In the standard care only-group 35.1% of the patients had deviations from the assigned control intervention and received corticosteroids as well. Follow-up in both the intervention and control group was 28 days. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, and serious adverse events. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the sample in Tomazini (2020) contained patients with severe disease at baseline. The primary outcome was mechanical ventilatory-free days during the first 28 days. The corticosteroid group had a mean ventilatory-free days of 6.6 (95% CI: 5.0 to 8.2), compared to 4.0 days (95% CI: 2.9 to 5.4) in the group not receiving corticosteroids (difference: 2.26 days, 95% CI: 0.2 to 4.38).

 

Jamaati (2021) reported the preliminary results of a randomized controlled trial in a hospital in Iran comparing intravenous dexamethasone and standard care to standard care only. The trial was terminated after no significant clinical response was observed in 50 patients. Patients were included when e.g. they had a PaO2/FiO2 ratio between 100-300mmHg. Exclusion criteria were e.g. chronic kidney or liver disease, or hyperglycemia. The 50 included patients were randomized to dexamethasone with standard care (n=25) or to standard care only (n=25). Standard care consisted of oxygen support, fluid support, and lopinavir/ritonavir (200/50 mg, two tablets twice daily) according to Iranian guidelines. Dexamethasone at a dose of 20mg per day was administered intravenously up to day 5, whereafter 10mg per day was administered intravenously up to day 10. At baseline, the standard care only-group had more patients with pulmonary disease (36%) compared to the dexamethasone-group (4%). Follow-up in both groups was 28 days. The following outcomes relevant to this guideline module were reported: mortality, need for non-invasive ventilation, and duration of hospitalization. The disease status in Jamaati (2020) was mild to moderate disease, patients were included when the PaO2/FiO2 ratio was between 100 and 300 mmHg. The primary outcomes were both the need for extensive mechanical ventilation and the death rate. In the corticosteroids group 52.0% required invasive mechanical ventilation compared to 44.0% in the control group (RR=1.18, 95% CI: 0.66 to 2.11; RD=8%. 95% CI: -19.6% to 35.6%). Sixteen deaths (16/25, 64.0%) were observed in the corticosteroids group, compared to 15 deaths (15/25, 60.0%) in the group not receiving corticosteroids (RR=1.07, 95% CI: 0.69 to 1.65; RD=4%, 95% CI: -22.9% to 30.9%).

 

Horby (202) (RECOVERY trial) described an open-label randomized clinical trial in the United Kingdom assessing the effect of dexamethasone and standard care compared to standard care only. Patients were included when hospitalized, and had no medical history that would put the patient substantially at risk when participating in the study. Exclusion criteria were not specified. A total of 6.425 patients were included and randomized to dexamethasone and standard care or to standard care only. Standard care was provided as the usual standard of care in the participating hospital but was not further defined in the trial report. Patients in the dexamethasone-group received 6mg oral or intravenous dexamethasone daily for up to 10 days or until discharge, whichever came first. Here, 95% of the patients received at least one dose of a glucocorticoid. The standard care group received the usual care, however 8% of these patients also received a glucocorticoid. Follow-up in both groups was 28 days. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, and serious adverse events. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the sample in Horby (2020) contained patients with mild to severe disease at baseline. The primary outcome was the 28-day all-cause mortality. Here, 482 deaths (482/2104, 22.9%) were observed in the dexamethasone group, compared to 1.110 deaths (1110/4321, 25.7%) in the usual care group (RR=0.89, 95% CI: 0.81 to 0.98; RD=-2.8%, 95% CI: -5% to -0.6%).

 

HYDROCORTISONE

Angus (2020) (REMAP-CAP) examined the effects of hydrocortisone compared to usual care as part of a multicenter open-label adaptive platform randomized controlled trial. Centers were located in Australia, Canada, France, Ireland, the Netherlands, New Zealand, the United Kingdom, and the United States of America. The domain examining corticosteroids was terminated early due to a loss of equipoise, while no study data were reviewed prior to the decision to stop enrollment of patients. Patients were included when admitted to the intensive care unit for respiratory or cardiovascular organ support. Patients were excluded when e.g. death was deemed imminent and inevitable, or soon discharge was expected, or when more than 36 hours elapsed since admission to the intensive care unit, or when the treating clinician believed that participating would not be in the best interest of the patient. Patients were randomly allocated to one of the three study-arms: fixed dose hydrocortisone, shock-dependent hydrocortisone, and a standard of care without hydrocortisone. Standard care was provided as per each center’s standard. Systemic corticosteroids were permitted in all groups when new indications developed for which corticosteroids would be an established treatment. In the group who were randomized to standard care without hydrocortisone, 15% (n=15) received a systemic corticosteroid (of which n=6 received hydrocortisone). Patients in the fixed dose-group received 50 mg hydrocortisone intravenously every 6 hours for 7 days (n=2 received 100 mg fixed dose). Patients in the shock-dependent-group received 50 mg hydrocortisone intravenously every 6 hours while in shock and up to 28 days. Shock was defined as the requirement for treatment for shock due to COVID-19 by intravenous vasopressor infusion. Hydrocortisone was discontinued when the shock was considered to be resolved or when vasopressors were discontinued for 24 hours. Follow-up of the primary outcome was 21 days. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, duration of hospitalization and serious adverse events. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the sample in Angus (2020) contained patients with severe disease at baseline (with the exception of one patient in the shock-dependent-group who did not receive any acute respiratory support or received supplemental oxygen only). The primary outcome was alive and free of respiratory or cardiovascular organ support- up to 21 days. Median organ support-free days were reported for the fixed-dose group (0 days, IQR: -1 to 15), the shock-dependent group (0 days, IQR: -1 to 13), and the no hydrocortisone group (0 days, IQR: -1 to 11).

 

Dequin (2020) (CAPECOVID trial) described a multicenter randomized controlled trial examining the effects of hydrocortisone compared to a placebo on intensive care units in France. The trial was terminated early pending the results of the RECOVERY trial and changes in treatment recommendations. Patients were included when admitted to a participating intensive care unit for acute respiratory distress syndrome, and when the experimental treatment was administered within 24 hours of the onset of one of the severity criteria (or within 48 hours when patients were referred from another hospital). Patients were excluded when in septic shock or when there were do-not-intubate orders. Included patients were randomized to hydrocortisone (n=76) or to placebo (n=73). The hydrocortisone dose was 200 mg/day until day 7, 100 mg/day for the next 4 days, and 50 mg/day for the last 3 days of a 14-day treatment regime. When the patient’s respiratory status had sufficiently improved by day 4 a short treatment regime of 8 days was initiated instead (200 mg/day until day 4, 100 mg/day for the next 2 days, and 50 mg/day for the last 2 days). Patients in the placebo-group received saline. Adjunctive therapy was allowed in both groups at the discretion of the treating primary physicians. In the hydrocortisone group, n=44 (57.9%) received one or more adjunctive therapies, compared to n=47 (64.4%) in the placebo-group. Adjunctive therapies provided consisted of hydroxycholoquine (whether or not in combination with azithromycin), ritonavir-lopinavir, eculizumab, remdesivir, and/or tocilizumab. The follow-up was 21 days for the post-hoc outcomes. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, and serious adverse events. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the sample in Dequin (2020) contained patients with moderate (n=9 had a non-rebreathing mask) to severe disease at baseline. The primary outcome was treatment failure on day 21, a composite of death or the persistent dependency on mechanical ventilation or high-flow oxygen therapy. Treatment failure was observed in 32 patients (32/76, 42.1%) receiving hydrocortisone, compared to 37 patients (37/73, 50.7%) in the placebo group (difference: -8.6%, 95% CI: -24.9% to 7.7%, p=0.29).

 

Munch (2021) (COVID STEROID trial) described a multicenter randomized controlled trial examining the effects of hydrocortisone compared to a placebo in Denmark. The trial was terminated early due to an unexpected inability to enroll patients. Patients were included when they had severe hypoxia (i.e. use of mechanical or non-mechanical ventilation, or continuous use of CPAP for hypoxia, or oxygen supplementation of at least 10 L/minute independent of delivery system). Patients were excluded when e.g. they used systemic corticosteroids, had invasive mechanical ventilation more than 48 hours before screening. Participating patients were randomized to hydrocortisone (n=16) or placebo (n=14), both with standard care. The hydrocortisone-group received 200 mg per day using continuous infusion over the course of 24 hours or per bolus injection of 50mg each 6 hours. Treatment continued up to 7 days or until hospital discharge. The placebo-group received 0.9% saline continuously infused over the course of 24 hours or as bolus injections every 6 hours. Additional antiviral treatment provided were remdesivir (n=4) or convalescent plasma (n=2). Antibacterial agents were provided in 12 participants (86%). In the hydrocortisone group, n=8 had major protocol deviations, compared to n=3 in the placebo group. The follow-up was 90 days. The following outcomes relevant to this guideline module were reported: mortality and serious adverse events. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the sample in Munch (2020) contained patients with moderate to severe disease at baseline. The primary outcome was days alive without the use of life support up to day 28. No difference was observed between groups (adjusted mean difference: -1.1 days, 95% CI: -9.5 to 7.3).

 

METHYLPREDNISOLONE

Jeronimo (2020) (Metcovid trial) reported a randomized controlled trial examining the effects of sodium succinate methylprednisolone compared to a placebo in Brazil. Patients were included when they had a clinical suspicion of COVID-19 (fever and any respiratory symptom), were 18 years or older, had an SpO2 ≤ 94% with room air, and required supplemental oxygen or invasive mechanical ventilation. Patients were excluded when they had e.g. chronic use of corticosteroid or immunosuppressive agents, had decompensated cirrhosis, or had chronic renal failure. Participating patients were randomized to sodium succinate methylprednisolone (n=209) or placebo (n=207). The methylprednisolone group received 0.5 mg/kg intravenously twice daily over the course of five days. Patients in the placebo group received a saline solution intravenously twice daily for five days. All participating patients meeting criteria for acute respiratory distress syndrome received preemptive ceftriaxone (1g twice daily, 7 days) plus azithromycin (500 mg/day, 5 days) or clarithromycin (500 mg twice daily, 7 days) intravenously. The follow-up was 28 days. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, duration of hospitalization, and viral clearance. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the cohort contained patients with moderate to severe disease or had an unclear respiratory status (33.8% received invasive mechanical ventilation, 47.8% received non-invasive oxygen therapy, 18.4% unreported). The primary outcome was the 28-day mortality. There were 72 observed deaths (72/194, 37.1%) in the methylprednisolone group compared to 76 (76/199, 38.2%) observed deaths in the placebo group (RR=0.97, 95% CI 0.75 to 1.25; RD=-1.1%, 95% CI -10.7% to 8.5%).

 

Edalatifard (2020) reported a randomized controlled trial examining the effects of methylprednisolone compared to no methylprednisolone in Iran. Patients were included when 18 years or older, had confirmed COVID-19 (positive RT-PCR and abnormal CT-scan findings) with an SpO2 <90% at rest, had C-reactive protein > 10 mg/L and interleukin-6 >6 pg/ml before connecting to the ventilator and intubation, and when agreed to give informed consent. Patients were excluded when they had e.g. an SpO2 < 70%, had a positive pro-calcitonin and troponin test, had acute respiratory distress syndrome, uncontrolled diabetes mellitus, gastrointestinal problems or bleeding history, heart failure, or active malignancies, or received any immunosuppressive agents. Participating patients were randomized to receive standard care with methylprednisolone pulse (n=34) or standard care without methylprednisolone or other glucocorticoids (n=34). The standard care consisted of hydroxychloroquine sulfate, lopinavir, and naproxen. Patients allocated to methylprednisolone pulse received 250 mg per day from an intravenous injection for three days. Six persons in the group receiving standard care without methylprednisolone had received corticosteroids and were excluded. The follow-up was 3 days. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, and serious adverse events. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the sample in Edalatifard (2020) contained patients with moderate to severe disease at baseline. The primary outcomes were the time to clinical improvement, and a composite of the time to hospital discharge or death (whichever came first). Median time to improvement was 11.84 days in the methylprednisolone group compared to 16.44 days in the standard care group (p=0.011). Median time to discharge or death was 11.62 days versus 17.61 days for the methylprednisolone group and the standard care group, respectively.

 

Corral-Gudino (2021) (GLUCOCOVID trial) described a multicenter open-label randomized controlled trial assessing the effect of methylprednisolone with standard care compared to standard care only in Spain. The trial was terminated before the intended sample size was achieved. Patients were included when they e.g. had symptoms for at least 7 days, had moderate to severe disease with abnormal gas exchange (PaO2/FiO2 or PaFi < 300, SaO2/FiO2 or SaFi <400, or at least two criteria of the BRESCIA-COVID Respiratory Severity Scale), and had evidence of a systemic inflammatory response (any criterium: CRP >150 mg/L, D-dimer >800 ng/ml, ferritin >100 mg/dl, IL-6 >20 pg/ml). Exclusions were made when patients were mechanically ventilated, hospitalized in the intensive care unit, were treated with corticosteroids or immunosuppressive agents at the time of enrollment, had chronic kidney disease on dialysis, or were pregnant. Sixty-four participants were randomized to receive methylprednisolone with standard care (n=35) or to receive standard care only (n=29). Standard care was provided according to the local hospital protocols based on the recommendations of the Spanish Ministry of Health and the World Health Organization. The authors stated that the local standard of care protocols among the participating hospitals were similar. The trial also set up a preference arm which allocated the treatment based on preferences rather than randomization. Patients receiving methylprednisolone were administered 40 mg intravenously twice per day for the first three days, whereafter the dose reduced to 20 mg twice per day for the next three days. Additional therapies provided in both groups were azithromycin, hydroxychloroquine, lopinavir/ritonavir, and low molecular weight heparin. The follow-up was 28 days. The following outcomes relevant to this guideline module were reported: mortality and respiratory support. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the sample in Corral-Gudino (2021) contained patients with unclear disease severity at baseline. The respiratory status at inclusion or randomization was not reported, although patients receiving mechanical ventilation or when admitted to the intensive care unit were excluded. The primary outcome was a composite consisting of in-hospital all-cause mortality, escalation to ICU admission, and progression of respiratory insufficiency which would require non-invasive ventilatory support. Although events occurred less frequently in the methylprednisolone group, no statistical differences between groups were found (RR=0.68, 95% CI: 0.37 to 1.26).

 

Solanich (2021) reported a single-center open-label randomized controlled trial assessing the effects of methylprednisolone and tacrolimus with standard care compared to standard care only in Spain. The trial was terminated early. Patients were included when they had respiratory failure (PaO2/FiO2 <300, or SpO2/FiO2 < 220), and had high inflammatory parameters (CRP >100 mg/L, or D-dimer >1000 µg/L, or ferritin >1000µg/L). Patients were excluded when they had e.g. a glomerular infiltration of 30 ml/min/1.73m2 or less, had leukopenia of 4000 cells/µl or less, had other conditions that cause immunosuppression, had a concomitant potentially serious infection, had contraindications for corticosteroid or tacrolimus use. The intervention-arm (n=27) received 120 mg/day methylprednisolone pulses on three consecutive days. Longer duration or a higher dose was allowed when considered appropriate by the treating physician. Besides methylprednisolone, tacrolimus was administered twice daily at 0.05 mg/kg as a starting dose. Tacrolimus dose was thereafter adjusted to achieve 8-10 ng/ml levels in the patient’s blood. Standard care could consist of supplemental oxygen and respiratory support, fluid therapy, anti-pyretic treatment, postural interventions, low molecular weight heparin, antiviral drugs (e.g. lopinavir/ritonavir, hydroxychloroquine), and/or immunosuppressive drugs (e.g. corticosteroids, tocilizumab, anakinra) at the discretion of the treating physician. The standard care-only group (n=28) could not receive cyclosporine or tacrolimus. All patients in the standard care-only group received corticosteroids during hospitalization (median duration of corticosteroid therapy: 18.5 days, IQR: 3.00-53.2 days). The follow-up was 58 days. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, duration of hospitalization, time to clinical improvement. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the cohort contained patients with moderate to severe disease severity at baseline. The primary outcome was days to reach clinical stability up to 56 days. No statistical differences between groups were found (HR=0.73, 95%CI: 0.39 to 1.37), where the methylprednisolone group had a median of 10.0 days (IQR: 7.0 to 13.0) compared to 11.0 days (IQR: 8.0 to 18.0).

 

Tang (2021) described a multicenter single-blind randomized controlled trial assessing the effects of methylprednisolone and standard care compared to a placebo and standard care in China. The trial was terminated before the intended sample size was reached. Patients were included when they had a laboratory confirmed SARS-CoV-2 infection, had pneumonia as confirmed by CT, were 18 years or older, were admitted to the general ward for less than 72 hours, and when they were able to sign the informed consent. Patients were excluded when there was e.g. severe immunosuppression, when corticosteroids were needed for other disease, had refractory hypertension or hypokalemia, epilepsy, delirium, glaucoma, active gastrointestinal bleeding (within the last 3 months), or secondary bacterial or fungal infections. Patients allocated to receive methylprednisolone and standard care (n=43) or placebo and standard care (n=43). Standard care was provided according to version 6 of the Chinese Diagnosis and Treatment Plan for COVID-19. The methylprednisolone-group received 1 mg/kg methylprednisolone per day for 7 days. Patients in the placebo-group received 100 ml 0.9% saline intravenously per day for 7 days. The majority (>70%) of patients received additional therapies: such as antiviral and/or antibacterial drugs. The follow-up was 14 days. The following outcomes relevant to this guideline module were reported: mortality, respiratory support, duration of hospitalization, time to clinical improvement. Following the predefined criteria by the working group for mild, moderate, and severe disease status at randomization, the cohort contained patients with moderate to severe or unclear disease severity at baseline as 70.9% received oxygen therapy via nasal cannula and 47.7% had hypoxic respiratory failure. It was not found whether there were patients without any oxygen supplementation. The primary outcome was the occurrence of clinical deterioration within 14 days. Both groups had a clinical deterioration rate of 4.8% (OR=1.00, 95% CI: 0.13 to 7.44).

 

Table 1. Overview of RCTs comparing corticosteroids with standard care in hospitalized COVID-19 patients.

Author (year, trial name)

Disease severity*

Sample size

Dosage/regime

Dexamethasone

Tomazini (2020, CoDEX trial)

Severe

N = 299

I: 151

C: 148

 

I: 20 mg intravenously once daily for 5 days, followed by 10 mg intravenously once daily for additional 5 days or until ICU discharge, whichever occurred first, plus standard care.

 

C: Standard care only

Jamaati (2021)

Mild to moderate

N = 50

I: 25

C: 25

I: Intravenous dexamethasone at a dose of 20 mg/day from day 1–5 and then at 10 mg/day from day 6–10, plus standard care

 

C: Standard care only

Horby (2021, RECOVERY trial)

Mild to severe (sub-group analyses for mild, moderate, and severe disease)

N = 6425

I: 2104

C: 4321

I: 6 mg given once daily for up to 10 days, plus standard care

 

C: Standard care only

Hydrocortisone

Angus (2020, REMAP-CAP)

Severe

N = 614

I: 137

II: 146

Control: 101

 

I: fixed-dose hydrocortisone:

Patients received a fixed dose of intravenous hydrocortisone, 50 mg or 100 mg, every 6 hours for 7 days.

 

II: shock-dependent hydrocortisone:

intravenous hydrocortisone, 50 mg, every 6 hours while in shock for up to 28 days.

 

C: Standard care only

Dequin (2020, CAPECOVID trial)

Moderate to severe

N = 149

I: 76

C: 73

 

I: Continuous intravenous infusion of hydrocortisone 200mg/day. Treatment was continued at 200mg/d until day 7 and then decreased to 100 mg/d for 4 days and 50 mg/d for 3 days, for a total of 14 days. If the patient’s respiratory and general status had sufficiently improved by day 4, a short treatment regimen was used (200mg/d for 4 days, followed by 100mg/d for 2 days and then 50 mg/d for the next 2 days, for a total of 8 days).

 

C: Continuous intravenous infusion of saline, plus standard care

Munch (2021, COVID STEROID trial)

Moderate to severe

N = 30

I: 16

C: 14

 

I: Intravenous hydrocortisone (200 mg/day) for 7 days or until hospital discharge in addition to standard care; continuous infusion over 24 hrs or as bolus injections every 6 hrs (50 mg per bolus).

 

C: Intravenous saline solution, plus standard care

Methylprednisolone

Jeronimo (2020, Metcovid trial)

Moderate to severe

N = 397

I: 195

C 202

 

I: Intravenous sodium succinate MP (0.5 mg/kg), twice daily for 5 days

 

C: Intravenous saline solution, plus standard care

Edalatifard (2020)

Moderate to severe

N = 68

I: 34

C: 34

 

I: Intravenous methylprednisolone (MP)

Injection (250 mg/day for 3 days), plus standard care

 

C: Standard care and no methylprednisolone or other glucocorticoids

Corral-Gudino (2021, GLUCOCOVID trial)

Unclear

N = 64

I: 35

C: 29

 

I: Intravenous methylprednisolone (MP) 40 mg, twice a day, for 3 days and then 20 mg, twice a day, for 3 more days.

 

C: Standard care

Solanich (2021)

Moderate to severe

N = 55

I: 27

C: 28

I: Methylprednisolone pulses (120 mg/day) and tacrolimus, plus standard of care

 

C: Standard care

Tang (2021)

Moderate to severe, partially unclear

N = 86

I: 43

C: 43

 

I: 1 mg/kg per day of methylprednisolone

administered intravenously for 7 days, plus standard care

 

C: intravenous saline solution, plus standard care

*Disease severity categories:

  • mild disease (no supplemental oxygen);
  • moderate disease (supplemental oxygen: low flow oxygen, non-rebreathing mask);
  • severe disease (supplemental oxygen: high flow oxygen [high flow nasal cannula (HFNC)/Optiflow], continuous positive airway pressure [CPAP], non-invasive ventilation [NIV], mechanical ventilation, extracorporeal membrane oxygenation [ECMO or ECLS]).

N: Total sample size; I: Intervention; C: Control

 

Results – Systemic corticosteroids in hospitalized COVID-19 patients

 

Mortality (crucial)

All of the included RCTs investigated the effect of corticosteroids on mortality. Figure 1 shows the overall pooled estimate and sub-group analysis by overall disease severity. Overall, there were 763 observed deaths in the corticosteroids group (763/2983, 25.6%) and 1371 observed deaths in the group not receiving corticosteroids (1371/5009, 27.4%). The pooled relative risk was 0.89 (95% CI 0.79 to 1.02), with the summary point estimate favoring the use of corticosteroids. Relative risks for mortality in all individual studies are shown in Figure 1 as well. The pooled risk difference was -4.33% (95% CI -8.58% to -0.07%), with the summary point estimate favoring the use of corticosteroids. When using a risk difference of 3% as a minimally clinically important difference, the pooled point estimate shows a clinically relevant difference.

 

When studies administering dexamethasone were pooled, 583 deaths were observed (583/2280, 25.6%) in the dexamethasone group compared to 1216 (1216/4494, 27.1%) in the control group. The relative risk was 0.90 (95%CI: 0.83 to 0.98) and the risk difference was -2.83% (95%CI: -5.00% to -0.66%), with the point estimates favoring the use of dexamethasone. The pooled risk difference point estimate was not larger than the -3% minimally clinically important difference, indicating that the point estimate is not clinically relevant. For hydrocortisone, 95 deaths were observed (95/370, 25.7%) compared to 55 (55/188, 29.3%) in the control group. This resulted in a relative risk of 0.84 (95%CI: 0.47 to 1.49) and a risk difference of -3.49 (95%CI: -17.40% to 10.42%). The pooled point estimates favored the use of methylprednisolone. In studies administering methylprednisolone a total of 85 deaths were observed (85/333, 25.5%) in the methylprednisolone group, compared to 100 (100/327, 30.6%) in the control group. This resulted in a pooled relative risk of 0.68 (95%CI: 0.35 to 1.32) and a risk difference of -6.86% (95%CI: -16.88% to 3.17%), where both point estimates favored the use of methylprednisolone. When using a risk difference of 3% as a minimally clinically important difference, the pooled point estimates for hydrocortisone and methylprednisolone show a clinically relevant difference albeit there are wide confidence intervals around these estimates.

 

Figure 1: Mortality (28-30days) in hospitalized patients.

Z: p-value of overall effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval

 

Tomazini (2020) observed 85 death (85/151, 56.3% in the dexamethasone group, compared to 91 death (91/148, 61.5%) in the usual care group. This resulted in a risk difference of -5.2% (95% CI -1.6% to 5.9%). The point estimate favors dexamethasone.

 

Jamaati (2021) observed 16 deaths (16/25, 64.0%) in the dexamethasone group, while 15 deaths (15/25, 60.0%) were observed in the usual care group. The corresponding risk difference was 4% (95% CI: -22.9% to 30.9%).

 

Jeronimo (2020) included suspected cases and reported the 7-day mortality (16.5% vs. 23.6%) and 14-day mortality (27.3% vs. 31.7%) in the methylprednisolone vs. placebo groups. On day 28 the mortality increased to 72 observed deaths (72/194, 37.1%) in the methylprednisolone group compared to 76 (76/199, 38.2%) observed deaths in the placebo group. This resulted in a risk difference of -1.1% (95% CI -10.7% to 8.5%), with the point estimates favoring methylprednisolone.

 

Horby (2021) observed 482 deaths (482/2104, 22.9%) in the dexamethasone group, compared to 1110 deaths (1110/4321, 25.7%) in the usual care group. The corresponding risk difference was -2.8% (95% CI: -5% to -0.6%). Horby (2021) also presented sub-group analyses based on respiratory support status at randomization (see Figure 2). In this figure the risk ratio is depicted, in line with the other studies. The original article displays the rate ratio.

 

Figure 2: Mortality (day 28) by respiration support status at randomization in hospitalized COVID-19 patients (Horby, 2021) in hospitalized patients. 

CI: confidence interval

 

Angus (2020) observed 41 in-hospital deaths in the fixed-dose hydrocortisone-group (41/137, 30%; RD = -2.8% [95% CI -14.7% to 9.2%]), while in the shock-dependent hydrocortisone-group 37 (37/141, 26%; RD = -6.4% [95% CI -18.1% to 5.3%]) in-hospital deaths were observed compared to 33 deaths (33/101, 32.7%) in the no-hydrocortisone group. Together, 78 deaths occurred (78/278, 28%) in both hydrocortisone groups. In the control group 33 (33/101, 33%) in-hospital deaths occurred (RD = -4.6% [95% CI -15.2% to 6.0%]; favoring hydrocortisone).

 

Dequin (2020) included both suspected and confirmed cases. Over the course of 21 days, 11 deaths (11/76, 14.5%) were observed in the hydrocortisone-group, compared to 20 deaths (20/73, 27.4%) in the placebo-group. This resulted in a risk difference of -12.9% (95% CI -25.9% to 0.0%), with the point estimate favoring hydrocortisone.

 

Munch (2021) solely included confirmed cases and reported the all-cause mortality on both day 28 and day 90. Over the course of 28 days, 6 deaths (6/16, 37.5%) were observed in the hydrocortisone-group, compared to 2 deaths (2/14, 14.3%) in the placebo-group. The risk difference was 23.2% (95% CI -6.8% to 53.2%), favoring placebo. On day 90, the observed deaths increased to 7 (7/16, 44%) and 3 (3/14, 21%), respectively.

 

Jeronimo (2020) included suspected cases and reported the 7-day mortality (16.5% vs. 23.6%) and 14-day mortality (27.3% vs. 31.7%) in the methylprednisolone vs. placebo groups. On day 28 the mortality increased to 72 observed deaths (72/194, 37.1%) in the methylprednisolone group compared to 76 (76/199, 38.2%) observed deaths in the placebo group. This resulted in a risk difference of -1.1% (95% CI -10.7% to 8.5%), with the point estimates favoring methylprednisolone.

 

Edalatifard (2020) recruited confirmed cases only and reported the mortality for circa up to 28 days in both groups (approximated from a figure). Two deaths (2/34, 5.9%) were observed in the methylprednisolone group, compared to twelve deaths (12/28, 42.9%) in the standard care-only group. This resulted in a risk difference of -37% (95% CI -56.9% to -17%), with the point estimates favoring methylprednisolone.

 

Corral-Gudino (2021) recruited confirmed cases only. There were 7 deaths (7/35, 20%) observed in the methylprednisolone group on day 28, compared to 5 (5/29, 17.2%) in the standard care-only group. This resulted in a risk difference of 2.8% (95% CI -16.3% to 21.9%), with the point estimates favoring no methylprednisolone.

 

Solanich (2021) recruited confirmed cases only. Both COVID-related mortality and all-cause mortality were reported. For COVID-related mortality was reported for day 28 (11.1% vs. 14.3%) and for day 56 (14.8% vs. 14.3%) in the methylprednisolone group vs. standard care-only group, respectively. For the 28-day all-cause mortality, 4 deaths were observed (4/27, 14.8%) in the methylprednisolone group, compared to 6 deaths (6/28, 21.4%) in the standard care-only group. This resulted in a risk difference of -6.6% (95% CI -26.9% to 13.7%), with the point estimates favoring methylprednisolone. At day 56 there were 5 observed deaths (18.5%, methylprednisolone) compared to 6 deaths (21.4%, standard care-only) for mortality.

 

Tang (2021) recruited confirmed cases only and reported the in-hospital mortality up to 14 days. No deaths were observed in the methylprednisolone group, compared to one death (1/43, 2.3%) in the placebo and standard care group. This resulted in a risk difference of -2.3% (95% CI -16.9% to 3.2%), with the point estimates favoring methylprednisolone.

 

Systemic corticosteroid use in patients with severe disease

The RECOVERY trial (Horby, 2021), included a subgroup analysis reporting the mortality in patient receiving invasive mechanical ventilation at baseline (IMV, n=1007), see Figure 2. The working group considered this sub-group as having severe disease. The risk difference calculated from the reported events was -12.1% (95% CI -18.3% to -5.9%). This sub-group was furthermore used in the meta-analysis to pool the effect of corticosteroids on mortality in the severe disease group along with the data from Angus (2020) and Tomazini (2020). Figure 3 shows the pooled relative risk in the severe disease group regardless of the type of corticosteroid provided (Angus, 2020; Horby, 2021; Tomazini, 2020). The corresponding pooled risk difference was -9.18% (95% CI: -14.13% to -4.23%), favoring the use of corticosteroids. The pooled point estimate shows a clinically relevant difference.

 

Figure 3: Mortality in hospitalized patients with severe disease.

Z: p-value of overall effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval

 

Systemic corticosteroid use in patients with moderate disease

The only RCT including only moderate disease or specifically reporting the moderate disease subgroup seemed to be the RECOVERY trial (Horby, 2021). Here, the mortality was reported in a sub-group of patients receiving oxygen therapy only at randomization while receiving dexamethasone (n=1279) or usual care only (n=2604) during the study period. See Figure 2 for the relative risk in this sub-group. The risk difference was -2.9% (95% CI: -5.8% to -0.0%), indicating with the point estimate that there is no clinically relevant difference.

 

Systemic corticosteroid use in patients with mild disease

Horby (2021) also presented the results of the sub-group not receiving any oxygen support at randomization in the RECOVERY trial. The working group considered this subgroup as having mild disease. In this sub-group (n=1535) the risk difference calculated from the reported events was 3.7% (95% CI -0.2% to 7.7%), with the point estimate favoring standard care. The point estimate shows a clinically relevant difference. The relative risks of this subgroup receiving no oxygen at randomization is reported in Figure 2. Horby (2021) was the only study that included patients with mild disease.

 

Level of evidence of the literature

The certainty of evidence started as high since the body of evidence consisted solely of RCTs. The level of evidence regarding the outcome measure mortality (overall) was downgraded by 1 level due to imprecision (reason: the confidence interval of the pooled risk difference crossed the predefined border of clinical relevance [RD 3% points difference]). We did not downgrade for study limitations (not downgraded for risk of bias: lack of blinding probably does not affect a hard outcome such as mortality). Publication bias was not assessed. The level of evidence for the outcome mortality in hospitalized patients is moderate.

 

The certainty of evidence started as high since the body of evidence consisted solely of RCTs. The level of evidence regarding the outcome measure mortality (severe disease only) was not downgraded. We did not downgrade for study limitations (not downgraded for risk of bias: lack of blinding probably does not affect a hard outcome such as mortality) and imprecision (reason: using the risks in both groups [34.3% vs 43.7%] and the observed proportion in both groups [q1=0.447, q2=0.553], the calculated needed sample size is n=897 [using: alpha=0.05, beta=0.2]). Publication bias was not assessed. The level of evidence for the outcome mortality (severe disease) in hospitalized patients is high.

 

The certainty of evidence started as high since the body of evidence consisted solely of RCTs. The level of evidence regarding the outcome measure mortality (moderate disease only) was downgraded 1 level due to imprecision (reason: confidence interval of the risk difference crosses the clinical border of 3%). We did not downgrade for study limitations (not downgraded for risk of bias: lack of blinding probably does not affect a hard outcome such as mortality) and publication bias was not assessed. The level of evidence for the outcome mortality (moderate disease) in hospitalized patients is moderate.

 

The certainty of evidence started as high since the body of evidence consisted solely of RCTs. The level of evidence regarding the outcome measure mortality (mild disease only) was downgraded by 2 levels due to imprecision (reason: using the risks in both groups [17.8% vs 14.0%] and the 1:2 allocation scheme [q1=0.33, q2=0.67], the calculated needed sample size in the intervention group is n=1137 and for the control group n= 2308 [using: alpha=0.05, beta=0.2]). We did not downgrade for study limitations (not downgraded for risk of bias: lack of blinding probably does not affect a hard outcome such as mortality). Publication bias was not assessed. The level of evidence for the outcome mortality (mild disease) in hospitalized patients is low.

 

Extensive respiratory support

Five RCTs reported the need for extensive respiratory support (Corral-Gudino, 2021; Dequin, 2020; Horby, 2021; Jamaati, 2020; Jeronimo, 2020). Figure 4 shows an overview of the relative risks.

 

Figure 4: Need for extensive respiratory support in hospitalized patients.

Z: p-value of overall effect; df: degrees of freedom; I2: statistical heterogeneity; CI: confidence interval; IV: Invasive (mechanical) ventilation; NIV: Non-invasive ventilation

 

Tomazini (2020), including confirmed or suspected cases, reported the number of days on mechanical ventilation. The dexamethasone group had a mean duration of 12.5 days (95% CI 11.2 to 13.8) compared to 13.9 days (95% CI 12.7 to 15.1). The adjusted mean difference was -1.54 days (95%CI -3.24 to 0.12, adjusted for age and baseline PaO2/FiO2 ratio).

 

The relative risk from the data reported in Jamaati (2021) was 1.18 (95% CI 0.66 to 2.11) and the risk difference was 8% (95% CI -19.6% to 35.6%) with the point estimate favoring standard care, which is considered a clinically relevant difference. Jamaati (2021) also reported the need for non-invasive mechanical ventilation and observed that 23 patients (23/25, 92%) in the dexamethasone-group and 24 patients (24/25, 96%) in the standard care only-group needed non-invasive ventilation (RR = 0.96, 95% CI 0.83 to 1.10). The risk difference was -4% (95% CI -17.1% to 9.1%), where the point estimate does not indicate a clinically relevant difference.

 

Horby (2021) included both suspected and confirmed cases resulting in a relative risk of 0.75 (95% CI 0.61 to 0.93) and a risk difference of -2% (95% CI -3.4% to -0.6), with the point estimates favoring dexamethasone while not being considered a clinically relevant difference.

 

Angus (2020) reported the respiratory support-free days in the sample of both suspected and confirmed cases. The mean adjusted odds ratio in the fixed dose hydrocortisone group compared to the no-hydrocortisone group was 1.45, with the point estimate favoring hydrocortisone. For the shock dependent hydrocortisone group the mean adjusted odds ratio was 1.31 compared to the no-hydrocortisone group, with the point estimate favoring hydrocortisone.

 

Dequin (2020) included both suspected and confirmed cases. Respiratory support status on day 21 was reported. In the hydrocortisone group 17 patients (17/76, 22.3%) had mechanical ventilation on day 21, compared to 17 patients (17/73, 23.3%) in the placebo group (RR = 0.96 [95% CI 0.53 to 1.73]; RD = 0.9% [95% CI -14.4% to 12.6%]; favoring hydrocortisone, no clinically relevant difference). High-flow oxygen therapy on day 21 was provided for 3 patients (3/76, 4%) in the hydrocortisone group, while none of the patients received this type of support in the placebo group (RD = 4% [95% CI -1.1% to 9.0%]; favoring placebo, no clinically relevant difference).

 

Jeronimo (2020) only recruited suspected cases and reported the need for invasive mechanical ventilation until day 7. In the methylprednisolone group, 18 patients (18/93, 19.4%) needed invasive mechanical ventilation, compared to 16 patients (16/95, 16.8%) in the placebo group. The calculated relative risk from this data was 1.15 (95% CI 0.62 to 2.11) and the risk difference was 2.6% (95% CI -7.5% to 14.7%), with the point estimates favoring the placebo group while not indicating a clinically relevant difference.

 

Edalatifard (2020) recruited confirmed cases only and reported the need for oxygen therapy on day 3. Oxygen therapy was needed in 28 patients (28/34, 82.4%) in the methylprednisolone group versus 26 patients (26/28, 92.8%) in the standard care-only group. The need for oxygen therapy was a composite of the need for nasal cannula, mask oxygen, reservoir mask, non-invasive ventilation, and invasive ventilation. The calculated relative risk from this data was 0.89 (95% CI 0.74 to 1.07) and the risk difference was -10.5% (95% CI -26.5% to 5.5%), with the point estimates favoring the methylprednisolone group and indicating a clinically relevant difference.

 

Corral-Gudino (2021) reported the progression of respiratory insufficiency which required non-invasive ventilation. Requirement of non-invasive ventilation due to progression was observed in 10 patients (10/35, 28.6%) in the methylprednisolone group compared to 7 patients (7/29, 24.1%) in the standard care-only group. The calculated relative risk from this data was 1.18 (95% CI 0.52 to 2.72) and the risk difference was 4.4% (95% CI -17.2% to 26.0%), with the point estimate favoring the standard-care only group while not indicating a clinical relevant difference.

 

Solanich (2021) included confirmed cases only and reported the duration of oxygen support, the need for high-flow oxygen or ventilatory support, and the duration of high-flow or ventilatory support. The methylprednisolone group had a median of 11.0 days (IQR: 8.0-19.5) of oxygen support compared to 13 days (IQR: 7.75-23.0) in the standard care-only group. High-flow or ventilatory support was provided to 14 patients in the methylprednisolone group (14/27, 51.9%) versus 18 patients (18/28, 64.3%) in the standard care-only group. The calculated relative risk from this data was 0.81 (95% CI 0.51 to 1.27) and the risk difference was -12.4% (95% CI -38.3% to 13.5%), with the point estimates favoring the methylprednisolone group. The risk difference point estimate indicates a clinically relevant difference. Median duration of high-flow or ventilatory support was 8 days (IQR: 5.0-27.2) in the methylprednisolone group versus a median of 6.5 days (IQR: 4.25-14.20) in the standard care only-group.

 

Tang (2021) recruited confirmed cases only and reported the need for respiratory support therapies. Patients received high-flow oxygen (4.6% vs. 2.3%), non-invasive positive pressure ventilation (0% vs. 2.3%), invasive mechanical ventilation (4.6% vs. 2.3%), and/or extracorporeal membrane oxygenation (4.6% vs. 0%) in the methylprednisolone group versus the placebo group, respectively.

 

Level of evidence of the literature

The certainty of evidence started as high since the body of evidence consisted solely of RCTs. The level of evidence regarding the outcome measure extensive respiratory support was downgraded by 2 levels because of study limitations (1 level for risk of bias, several (potential) flaws in the included studies: lack of blinding of several roles (e.g. open label, or health care providers not blinded), ITT analyses were not followed); number of included patients (1 level for imprecision: relatively small number of patients in the study); publication bias was not assessed. The level of evidence for the outcome respiratory support in hospitalized patients is low.

 

Duration of hospitalization (important)

Horby (2021) found that patients receiving dexamethasone had a shorter length of stay (median of 12 days) compared to patients receiving the usual care only (median of 13 days), however this is not considered to be a clinically relevant difference.

 

Jamaati (2021) included confirmed SARS-CoV2 cases and found a median duration of hospitalization of 11 days (IQR: 6 to 16) in the dexamethasone-group (n=25) compared to 6 days (IQR: 4 to 9) in the standard care only-group (n=25). In the subgroup that survived, the median duration of hospitalization for the dexamethasone-group (n=9) was 11 days (IQR: 9 to 21) compared to 8.5 days (IQR: 5 to 13) in the standard care only-group (n=10). This was not considered to be a clinically relevant difference.

 

Angus (2020) reported the hazard ratio of duration of hospitalization in the sample of both suspected and confirmed cases. The median adjusted hazard ratio in the fixed dose hydrocortisone group compared to the control group was 0.97 (95% credible interval: 0.72 to 1.32), with the point estimate favoring hydrocortisone. For the shock dependent hydrocortisone group the median adjusted hazard ratio was 0.93 (95% credible interval: 0.69 to 1.26) compared to the hydrocortisone group, with the point estimate favoring no-hydrocortisone.

 

Jeronimo (2020) included suspected cases only. The median days of hospitalization was 10 days (IQR 7-13) in the methylprednisolone group. In the placebo group, the median duration of hospitalization was 9 days (IQR: 7-11). No significant (p=0.296) and clinically relevant differences between groups were found.

 

Solanich (2021) included confirmed cases only and observed a median duration of hospitalization of 13 days (IQR: 8.5-21) in the methylprednisolone group, compared to a median of 14 days (IQR: 9-22.5) in the standard care group. No significant (p=0.933, Wilcoxon test) and clinically relevant differences between groups were found.

 

Tang (2021) included confirmed cases only. The median duration of hospitalization was 17 days (IQR: 13-22) and 13 days (IQR: 10-20) in the methylprednisolone and placebo groups, respectively. No significant differences between groups were found (p=0.314, HR = 1.3 [95% CI 0.84-2.00]), however the difference in median duration (i.e. 4 days) is considered to be clinically relevant.

 

Level of evidence of the literature

The certainty of evidence started as high since the body of evidence consisted solely of RCTs. The level of evidence regarding the outcome measure duration of hospitalization was downgraded by 2 levels because of study limitations (2 levels for risk of bias: potential risk of bias since four trials had no or unclear blinding of health care providers). Publication bias was not assessed. The level of evidence for the outcome respiratory support (need for respiratory support therapies) in hospitalized patients is low.

 

Time to clinical improvement (important)  

Solanich (2021) included confirmed cases only and reported the number of patients reaching clinical stability. Here, clinical stability was defined as meeting all 4 criteria for 48 hours: body temperature of 37.5°C or less; PaO2/FiO2 ratio over400 and/or SpO2/FiO2 ratio over 300; and a respiratory rate of 24 rpm or less. In the methylprednisolone group 21 patients (21/27, 77.8%) achieved clinical stability at day 56 compared to 22 patients (22/28, 78.6%) in the standard care-only group (RR = 1.04, 95% CI 0.38 to 2.82; RD = 0.8%, 95% CI -21.0% to 22.6%; point estimates favour methylprednisolone). Median time to reach clinical stability in the methylprednisolone group was 10 days (IQR: 7-13) versus 11 days (IQR: 8-18.8) in the standard care-only group (HR = 0.73, 95% CI 0.39-1.37), which indicates no clinically relevant difference.

 

Tang (2021) included confirmed cases and reported the number of patients reaching clinical cure. Clinical cure was defined as meeting all of the following criteria: the clinical signs and symptoms of COVID-19 are improved or alleviated (i.e. body temperature for 3 consecutive days, respiratory symptoms improved significantly, CT images showed absorption and/or consolidation of bilateral ground-glass opacification), and no additional treatment was necessary. At day 14 after randomization there were 22 patients (22/43, 51.2%) in the methylprednisolone group achieving clinical cure compared to 25 patients (25/43, 58.1%) in the placebo group (RR = 1.17, 95% CI 0.73-1.86; RD = 7.0%, 95% CI -14.0% to 28.0%; point estimates favor placebo). The median time to achieve clinical cure was 14 days (IQR: 10-19) versus 12 days (IQR: 9-17) in the methylprednisolone and placebo groups, respectively (HR = 1.04, 95% CI 0.67-1.62), which indicates no clinically relevant difference.

 

Level of evidence of the literature

The certainty of evidence started as high since the body of evidence consisted solely of RCTs. The level of evidence regarding the outcome measure time to clinical improvement was downgraded by 3 levels because of study limitations (1 level for risk of bias: open-label study, lack of blinding of care providers) and number of included patients (2 levels for imprecision: very low number of included patients); Publication bias was not assessed. The level of evidence for the outcome time to clinical improvement in hospitalized patients is very low.

 

Corticosteroids in non-hospitalized COVID-19 patients

No studies were found investigating the effect of corticosteroids in non-hospitalized COVID-19 patients.

 

Results

No studies were found investigating the effect of corticosteroids on mortality, respiratory support, duration of hospitalization, or time to clinical improvement in non-hospitalized COVID-19 patients.

 

Level of evidence of the literature

GRADE assessment could not be performed. No studies were found investigating the effect of corticosteroids on mortality, respiratory support, duration of hospitalization, or time to clinical improvement in non-hospitalized COVID-19 patients.

A systematic review of the literature was performed to answer the following question:

What is the effectivity of treatment with corticosteroids compared to treatment without corticosteroids in patients with COVID-19?

 

PICO 1

P:           hospitalized with COVID-19 (subgroups mild, moderate, severe)

I:            systemic corticosteroid use + standard care

C:           standard care only or placebo treatment + standard care

O:           28-30 day mortality (if not available, any other reports of mortality), extensive respiratory support, duration of hospitalization, time to clinical improvement

 

PICO 2

P:           non-hospitalized patients with COVID-19

I:            systemic corticosteroid use + standard care

C:           standard care only or placebo treatment + standard care

O:           28-30 day mortality (if not available, any other reports of mortality), respiratory support, hospitalization, time to clinical improvement

 

Relevant outcome measures

PICO 1: For hospitalized COVID-19 patients, mortality and need for extensive respiratory support were considered as crucial outcome measures for decision making; and duration of hospitalization, and time to clinical improvement as important outcome measures for decision making.

 

PICO 2: For non-hospitalized COVID-19 patients, mortality was considered as a critical outcome measure for decision making. Hospitalization, respiratory support, and time to clinical improvement were considered as important outcome measures for decision making.

 

Extensive respiratory support was defined as high flow nasal cannula (HFNC)/Optiflow, continuous positive airway pressure (CPAP), non-invasive ventilation (NIV), mechanical ventilation or extracorporeal membrane oxygenation (ECMO or ECLS).

 

The working group defined 3% points absolute difference as a minimal clinically important difference for mortality (resulting in a NNT of 33), 3 days difference for duration of hospitalization and time to clinical improvement, and a 5% points absolute difference need for respiratory support and ICU admission (resulting in a NNT of 20).

 

The results of studies in non-hospitalized and hospitalized patients are summarized separately. Studies of hospitalized patients were, when possible, categorized based on respiratory support that was needed at baseline (preferably based on patient inclusion/exclusion criteria; otherwise on baseline characteristics). The following categories were used:

  • mild disease (no supplemental oxygen);
  • moderate disease (supplemental oxygen: low flow oxygen, non-rebreathing mask);
  • severe disease (supplemental oxygen: high flow oxygen [high flow nasal cannula (HFNC)/Optiflow], continuous positive airway pressure [CPAP], non-invasive ventilation [NIV], mechanical ventilation, extracorporeal membrane oxygenation [ECMO or ECLS]).

 

Search and select (Methods)

The databases Medline (via OVID) and Embase (via Embase.com) were searched with relevant search terms up to and including 2 September 2021. The detailed search strategy is outlined under the tab Methods. The systematic literature search resulted in 75.172 hits. Studies were selected based on the following criteria: peer-reviewed randomized controlled trials published in an indexed journal, comparing the addition of any non-inhaled corticosteroid to standard care with standard care (whether or not with the addition of a placebo) in patients with COVID-19. Studies investigating inhaled corticosteroids were excluded. Eventually, eleven studies were included.

 

Statistical methods

Statistical analyses were conducted using Review Manager (RevMan) software 5.4. For dichotomous outcomes, Mantel Haenszel random‐effects risk ratios (RRs) and risk differences (RDs) were calculated. For continuous outcomes, a random‐effects mean difference (MD) weighted by the inverse variance was calculated. The random-effects model estimates the mean of a distribution of effects.

 

Results

In total, eleven RCTs were included in the analysis of the literature concerning hospitalized patients. These studies investigated dexamethasone (n=3), hydrocortisone (n=3), or methylprednisolone (n=5). Important study characteristics and results are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.

  1. Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, Beane A, van Bentum-Puijk W, Berry L, Bhimani Z, Bonten M, Bradbury C, Brunkhorst F, Buxton M, Buzgau A, Cheng AC, de Jong M, Detry M, Estcourt L, Fitzgerald M, Goossens H, Green C, Haniffa R, Higgins AM, Horvat C, Hullegie SJ, Kruger P, Lamontagne F, Lawler PR, Linstrum K, Litton E, Lorenzi E, Marshall J, McAuley D, McGlothin A, McGuinness S, McVerry B, Montgomery S, Mouncey P, Murthy S, Nichol A, Parke R, Parker J, Rowan K, Sanil A, Santos M, Saunders C, Seymour C, Turner A, van de Veerdonk F, Venkatesh B, Zarychanski R, Berry S, Lewis RJ, McArthur C, Webb SA, Gordon AC; Writing Committee for the REMAP-CAP Investigators, Al-Beidh F, Angus D, Annane D, Arabi Y, van Bentum-Puijk W, Berry S, Beane A, Bhimani Z, Bonten M, Bradbury C, Brunkhorst F, Buxton M, Cheng A, De Jong M, Derde L, Estcourt L, Goossens H, Gordon A, Green C, Haniffa R, Lamontagne F, Lawler P, Litton E, Marshall J, McArthur C, McAuley D, McGuinness S, McVerry B, Montgomery S, Mouncey P, Murthy S, Nichol A, Parke R, Rowan K, Seymour C, Turner A, van de Veerdonk F, Webb S, Zarychanski R, Campbell L, Forbes A, Gattas D, Heritier S, Higgins L, Kruger P, Peake S, Presneill J, Seppelt I, Trapani T, Young P, Bagshaw S, Daneman N, Ferguson N, Misak C, Santos M, Hullegie S, Pletz M, Rohde G, Rowan K, Alexander B, Basile K, Girard T, Horvat C, Huang D, Linstrum K, Vates J, Beasley R, Fowler R, McGloughlin S, Morpeth S, Paterson D, Venkatesh B, Uyeki T, Baillie K, Duffy E, Fowler R, Hills T, Orr K, Patanwala A, Tong S, Netea M, Bihari S, Carrier M, Fergusson D, Goligher E, Haidar G, Hunt B, Kumar A, Laffan M, Lawless P, Lother S, McCallum P, Middeldopr S, McQuilten Z, Neal M, Pasi J, Schutgens R, Stanworth S, Turgeon A, Weissman A, Adhikari N, Anstey M, Brant E, de Man A, Lamonagne F, Masse MH, Udy A, Arnold D, Begin P, Charlewood R, Chasse M, Coyne M, Cooper J, Daly J, Gosbell I, Harvala-Simmonds H, Hills T, MacLennan S, Menon D, McDyer J, Pridee N, Roberts D, Shankar-Hari M, Thomas H, Tinmouth A, Triulzi D, Walsh T, Wood E, Calfee C, O’Kane C, Shyamsundar M, Sinha P, Thompson T, Young I, Bihari S, Hodgson C, Laffey J, McAuley D, Orford N, Neto A, Detry M, Fitzgerald M, Lewis R, McGlothlin A, Sanil A, Saunders C, Berry L, Lorenzi E, Miller E, Singh V, Zammit C, van Bentum Puijk W, Bouwman W, Mangindaan Y, Parker L, Peters S, Rietveld I, Raymakers K, Ganpat R, Brillinger N, Markgraf R, Ainscough K, Brickell K, Anjum A, Lane JB, Richards-Belle A, Saull M, Wiley D, Bion J, Connor J, Gates S, Manax V, van der Poll T, Reynolds J, van Beurden M, Effelaar E, Schotsman J, Boyd C, Harland C, Shearer A, Wren J, Clermont G, Garrard W, Kalchthaler K, King A, Ricketts D, Malakoutis S, Marroquin O, Music E, Quinn K, Cate H, Pearson K, Collins J, Hanson J, Williams P, Jackson S, Asghar A, Dyas S, Sutu M, Murphy S, Williamson D, Mguni N, Potter A, Porter D, Goodwin J, Rook C, Harrison S, Williams H, Campbell H, Lomme K, Williamson J, Sheffield J, van’t Hoff W, McCracken P, Young M, Board J, Mart E, Knott C, Smith J, Boschert C, Affleck J, Ramanan M, D’Souza R, Pateman K, Shakih A, Cheung W, Kol M, Wong H, Shah A, Wagh A, Simpson J, Duke G, Chan P, Cartner B, Hunter S, Laver R, Shrestha T, Regli A, Pellicano A, McCullough J, Tallott M, Kumar N, Panwar R, Brinkerhoff G, Koppen C, Cazzola F, Brain M, Mineall S, Fischer R, Biradar V, Soar N, White H, Estensen K, Morrison L, Smith J, Cooper M, Health M, Shehabi Y, Al-Bassam W, Hulley A, Whitehead C, Lowrey J, Gresha R, Walsham J, Meyer J, Harward M, Venz E, Williams P, Kurenda C, Smith K, Smith M, Garcia R, Barge D, Byrne D, Byrne K, Driscoll A, Fortune L, Janin P, Yarad E, Hammond N, Bass F, Ashelford A, Waterson S, Wedd S, McNamara R, Buhr H, Coles J, Schweikert S, Wibrow B, Rauniyar R, Myers E, Fysh E, Dawda A, Mevavala B, Litton E, Ferrier J, Nair P, Buscher H, Reynolds C, Santamaria J, Barbazza L, Homes J, Smith R, Murray L, Brailsford J, Forbes L, Maguire T, Mariappa V, Smith J, Simpson S, Maiden M, Bone A, Horton M, Salerno T, Sterba M, Geng W, Depuydt P, De Waele J, De Bus L, Fierens J, Bracke S, Reeve B, Dechert W, Chassé M, Carrier FM, Boumahni D, Benettaib F, Ghamraoui A, Bellemare D, Cloutier È, Francoeur C, Lamontagne F, D’Aragon F, Carbonneau E, Leblond J, Vazquez-Grande G, Marten N, Wilson M, Albert M, Serri K, Cavayas A, Duplaix M, Williams V, Rochwerg B, Karachi T, Oczkowski S, Centofanti J, Millen T, Duan E, Tsang J, Patterson L, English S, Watpool I, Porteous R, Miezitis S, McIntyre L, Brochard L, Burns K, Sandhu G, Khalid I, Binnie A, Powell E, McMillan A, Luk T, Aref N, Andric Z, Cviljevic S, Đimoti R, Zapalac M, Mirković G, Baršić B, Kutleša M, Kotarski V, Vujaklija Brajković A, Babel J, Sever H, Dragija L, Kušan I, Vaara S, Pettilä L, Heinonen J, Kuitunen A, Karlsson S, Vahtera A, Kiiski H, Ristimäki S, Azaiz A, Charron C, Godement M, Geri G, Vieillard-Baron A, Pourcine F, Monchi M, Luis D, Mercier R, Sagnier A, Verrier N, Caplin C, Siami S, Aparicio C, Vautier S, Jeblaoui A, Fartoukh M, Courtin L, Labbe V, Leparco C, Muller G, Nay MA, Kamel T, Benzekri D, Jacquier S, Mercier E, Chartier D, Salmon C, Dequin P, Schneider F, Morel G, L’Hotellier S, Badie J, Berdaguer FD, Malfroy S, Mezher C, Bourgoin C, Megarbane B, Voicu S, Deye N, Malissin I, Sutterlin L, Guitton C, Darreau C, Landais M, Chudeau N, Robert A, Moine P, Heming N, Maxime V, Bossard I, Nicholier TB, Colin G, Zinzoni V, Maquigneau N, Finn A, Kreß G, Hoff U, Friedrich Hinrichs C, Nee J, Pletz M, Hagel S, Ankert J, Kolanos S, Bloos F, Petros S, Pasieka B, Kunz K, Appelt P, Schütze B, Kluge S, Nierhaus A, Jarczak D, Roedl K, Weismann D, Frey A, Klinikum Neukölln V, Reill L, Distler M, Maselli A, Bélteczki J, Magyar I, Fazekas Á, Kovács S, Szőke V, Szigligeti G, Leszkoven J, Collins D, Breen P, Frohlich S, Whelan R, McNicholas B, Scully M, Casey S, Kernan M, Doran P, O’Dywer M, Smyth M, Hayes L, Hoiting O, Peters M, Rengers E, Evers M, Prinssen A, Bosch Ziekenhuis J, Simons K, Rozendaal W, Polderman F, de Jager P, Moviat M, Paling A, Salet A, Rademaker E, Peters AL, de Jonge E, Wigbers J, Guilder E, Butler M, Cowdrey KA, Newby L, Chen Y, Simmonds C, McConnochie R, Ritzema Carter J, Henderson S, Van Der Heyden K, Mehrtens J, Williams T, Kazemi A, Song R, Lai V, Girijadevi D, Everitt R, Russell R, Hacking D, Buehner U, Williams E, Browne T, Grimwade K, Goodson J, Keet O, Callender O, Martynoga R, Trask K, Butler A, Schischka L, Young C, Lesona E, Olatunji S, Robertson Y, José N, Amaro dos Santos Catorze T, de Lima Pereira TNA, Neves Pessoa LM, Castro Ferreira RM, Pereira Sousa Bastos JM, Aysel Florescu S, Stanciu D, Zaharia MF, Kosa AG, Codreanu D, Marabi Y, Al Qasim E, Moneer Hagazy M, Al Swaidan L, Arishi H, Muñoz-Bermúdez R, Marin-Corral J, Salazar Degracia A, Parrilla Gómez F, Mateo López MI, Rodriguez Fernandez J, Cárcel Fernández S, Carmona Flores R, León López R, de la Fuente Martos C, Allan A, Polgarova P, Farahi N, McWilliam S, Hawcutt D, Rad L, O’Malley L, Whitbread J, Kelsall O, Wild L, Thrush J, Wood H, Austin K, Donnelly A, Kelly M, O’Kane S, McClintock D, Warnock M, Johnston P, Gallagher LJ, Mc Goldrick C, Mc Master M, Strzelecka A, Jha R, Kalogirou M, Ellis C, Krishnamurthy V, Deelchand V, Silversides J, McGuigan P, Ward K, O’Neill A, Finn S, Phillips B, Mullan D, Oritz-Ruiz de Gordoa L, Thomas M, Sweet K, Grimmer L, Johnson R, Pinnell J, Robinson M, Gledhill L, Wood T, Morgan M, Cole J, Hill H, Davies M, Antcliffe D, Templeton M, Rojo R, Coghlan P, Smee J, Mackay E, Cort J, Whileman A, Spencer T, Spittle N, Kasipandian V, Patel A, Allibone S, Genetu RM, Ramali M, Ghosh A, Bamford P, London E, Cawley K, Faulkner M, Jeffrey H, Smith T, Brewer C, Gregory J, Limb J, Cowton A, O’Brien J, Nikitas N, Wells C, Lankester L, Pulletz M, Williams P, Birch J, Wiseman S, Horton S, Alegria A, Turki S, Elsefi T, Crisp N, Allen L, McCullagh I, Robinson P, Hays C, Babio-Galan M, Stevenson H, Khare D, Pinder M, Selvamoni S, Gopinath A, Pugh R, Menzies D, Mackay C, Allan E, Davies G, Puxty K, McCue C, Cathcart S, Hickey N, Ireland J, Yusuff H, Isgro G, Brightling C, Bourne M, Craner M, Watters M, Prout R, Davies L, Pegler S, Kyeremeh L, Arbane G, Wilson K, Gomm L, Francia F, Brett S, Sousa Arias S, Elin Hall R, Budd J, Small C, Birch J, Collins E, Henning J, Bonner S, Hugill K, Cirstea E, Wilkinson D, Karlikowski M, Sutherland H, Wilhelmsen E, Woods J, North J, Sundaran D, Hollos L, Coburn S, Walsh J, Turns M, Hopkins P, Smith J, Noble H, Depante MT, Clarey E, Laha S, Verlander M, Williams A, Huckle A, Hall A, Cooke J, Gardiner-Hill C, Maloney C, Qureshi H, Flint N, Nicholson S, Southin S, Nicholson A, Borgatta B, Turner-Bone I, Reddy A, Wilding L, Chamara Warnapura L, Agno Sathianathan R, Golden D, Hart C, Jones J, Bannard-Smith J, Henry J, Birchall K, Pomeroy F, Quayle R, Makowski A, Misztal B, Ahmed I, KyereDiabour T, Naiker K, Stewart R, Mwaura E, Mew L, Wren L, Willams F, Innes R, Doble P, Hutter J, Shovelton C, Plumb B, Szakmany T, Hamlyn V, Hawkins N, Lewis S, Dell A, Gopal S, Ganguly S, Smallwood A, Harris N, Metherell S, Lazaro JM, Newman T, Fletcher S, Nortje J, Fottrell-Gould D, Randell G, Zaman M, Elmahi E, Jones A, Hall K, Mills G, Ryalls K, Bowler H, Sall J, Bourne R, Borrill Z, Duncan T, Lamb T, Shaw J, Fox C, Moreno Cuesta J, Xavier K, Purohit D, Elhassan M, Bakthavatsalam D, Rowland M, Hutton P, Bashyal A, Davidson N, Hird C, Chhablani M, Phalod G, Kirkby A, Archer S, Netherton K, Reschreiter H, Camsooksai J, Patch S, Jenkins S, Pogson D, Rose S, Daly Z, Brimfield L, Claridge H, Parekh D, Bergin C, Bates M, Dasgin J, McGhee C, Sim M, Hay SK, Henderson S, Phull MK, Zaidi A, Pogreban T, Rosaroso LP, Harvey D, Lowe B, Meredith M, Ryan L, Hormis A, Walker R, Collier D, Kimpton S, Oakley S, Rooney K, Rodden N, Hughes E, Thomson N, McGlynn D, Walden A, Jacques N, Coles H, Tilney E, Vowell E, Schuster-Bruce M, Pitts S, Miln R, Purandare L, Vamplew L, Spivey M, Bean S, Burt K, Moore L, Day C, Gibson C, Gordon E, Zitter L, Keenan S, Baker E, Cherian S, Cutler S, Roynon-Reed A, Harrington K, Raithatha A, Bauchmuller K, Ahmad N, Grecu I, Trodd D, Martin J, Wrey Brown C, Arias AM, Craven T, Hope D, Singleton J, Clark S, Rae N, Welters I, Hamilton DO, Williams K, Waugh V, Shaw D, Puthucheary Z, Martin T, Santos F, Uddin R, Somerville A, Tatham KC, Jhanji S, Black E, Dela Rosa A, Howle R, Tully R, Drummond A, Dearden J, Philbin J, Munt S, Vuylsteke A, Chan C, Victor S, Matsa R, Gellamucho M, Creagh-Brown B, Tooley J, Montague L, De Beaux F, Bullman L, Kersiake I, Demetriou C, Mitchard S, Ramos L, White K, Donnison P, Johns M, Casey R, Mattocks L, Salisbury S, Dark P, Claxton A, McLachlan D, Slevin K, Lee S, Hulme J, Joseph S, Kinney F, Senya HJ, Oborska A, Kayani A, Hadebe B, Orath Prabakaran R, Nichols L, Thomas M, Worner R, Faulkner B, Gendall E, Hayes K, Hamilton-Davies C, Chan C, Mfuko C, Abbass H, Mandadapu V, Leaver S, Forton D, Patel K, Paramasivam E, Powell M, Gould R, Wilby E, Howcroft C, Banach D, Fernández de Pinedo Artaraz Z, Cabreros L, White I, Croft M, Holland N, Pereira R, Zaki A, Johnson D, Jackson M, Garrard H, Juhaz V, Roy A, Rostron A, Woods L, Cornell S, Pillai S, Harford R, Rees T, Ivatt H, Sundara Raman A, Davey M, Lee K, Barber R, Chablani M, Brohi F, Jagannathan V, Clark M, Purvis S, Wetherill B, Dushianthan A, Cusack R, de Courcy-Golder K, Smith S, Jackson S, Attwood B, Parsons P, Page V, Zhao XB, Oza D, Rhodes J, Anderson T, Morris S, Xia Le Tai C, Thomas A, Keen A, Digby S, Cowley N, Wild L, Southern D, Reddy H, Campbell A, Watkins C, Smuts S, Touma O, Barnes N, Alexander P, Felton T, Ferguson S, Sellers K, Bradley-Potts J, Yates D, Birkinshaw I, Kell K, Marshall N, Carr-Knott L, Summers C. Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA. 2020 Oct 6;324(13):1317-1329. doi: 10.1001/jama.2020.17022. PMID: 32876697; PMCID: PMC7489418.
  2. Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA, Jose J, Pinto R, Al-Omari A, Kharaba A, Almotairi A, Al Khatib K, Alraddadi B, Shalhoub S, Abdulmomen A, Qushmaq I, Mady A, Solaiman O, Al-Aithan AM, Al-Raddadi R, Ragab A, Balkhy HH, Al Harthy A, Deeb AM, Al Mutairi H, Al-Dawood A, Merson L, Hayden FG, Fowler RA; Saudi Critical Care Trial Group. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018 Mar 15;197(6):757-767. doi: 10.1164/rccm.201706-1172OC. PMID: 29161116.
  3. Clemency BM, Varughese R, Gonzalez-Rojas Y, Morse CG, Phipatanakul W, Koster DJ, Blaiss MS. Efficacy of Inhaled Ciclesonide for Outpatient Treatment of Adolescents and Adults With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA Intern Med. 2022 Jan 1;182(1):42-49. doi: 10.1001/jamainternmed.2021.6759. PMID: 34807241; PMCID: PMC8609464.
  4. Corral-Gudino L, Bahamonde A, Arnaiz-Revillas F, Gómez-Barquero J, Abadía-Otero J, García-Ibarbia C, Mora V, Cerezo-Hernández A, Hernández JL, López-Muñíz G, Hernández-Blanco F, Cifrián JM, Olmos JM, Carrascosa M, Nieto L, Fariñas MC, Riancho JA; GLUCOCOVID investigators. Methylprednisolone in adults hospitalized with COVID-19 pneumonia : An open-label randomized trial (GLUCOCOVID). Wien Klin Wochenschr. 2021 Apr;133(7-8):303-311. doi: 10.1007/s00508-020-01805-8. Epub 2021 Feb 3. PMID: 33534047; PMCID: PMC7854876.
  5. COVID STEROID 2 Trial Group, Munch MW, Myatra SN, Vijayaraghavan BKT, Saseedharan S, Benfield T, Wahlin RR, Rasmussen BS, Andreasen AS, Poulsen LM, Cioccari L, Khan MS, Kapadia F, Divatia JV, Brøchner AC, Bestle MH, Helleberg M, Michelsen J, Padmanaban A, Bose N, Møller A, Borawake K, Kristiansen KT, Shukla U, Chew MS, Dixit S, Ulrik CS, Amin PR, Chawla R, Wamberg CA, Shah MS, Darfelt IS, Jørgensen VL, Smitt M, Granholm A, Kjær MN, Møller MH, Meyhoff TS, Vesterlund GK, Hammond NE, Micallef S, Bassi A, John O, Jha A, Cronhjort M, Jakob SM, Gluud C, Lange T, Kadam V, Marcussen KV, Hollenberg J, Hedman A, Nielsen H, Schjørring OL, Jensen MQ, Leistner JW, Jonassen TB, Kristensen CM, Clapp EC, Hjortsø CJS, Jensen TS, Halstad LS, Bak ERB, Zaabalawi R, Metcalf-Clausen M, Abdi S, Hatley EV, Aksnes TS, Gleipner-Andersen E, Alarcón AF, Yamin G, Heymowski A, Berggren A, La Cour K, Weihe S, Pind AH, Engstrøm J, Jha V, Venkatesh B, Perner A. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial. JAMA. 2021 Nov 9;326(18):1807-1817. doi: 10.1001/jama.2021.18295. Erratum in: JAMA. 2021 Dec 14;326(22):2333. PMID: 34673895; PMCID: PMC8532039.
  6. Dequin PF, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, François B, Aubron C, Ricard JD, Ehrmann S, Jouan Y, Guillon A, Leclerc M, Coffre C, Bourgoin H, Lengellé C, Caille-Fénérol C, Tavernier E, Zohar S, Giraudeau B, Annane D, Le Gouge A; CAPE COVID Trial Group and the CRICS-TriGGERSep Network. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA. 2020 Oct 6;324(13):1298-1306. doi: 10.1001/jama.2020.16761. PMID: 32876689; PMCID: PMC7489432.
  7. Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A, Mostafaei S, Najafizadeh SR, Farhadi E, Jalili N, Esfahani M, Rahimi B, Kazemzadeh H, Mahmoodi Aliabadi M, Ghazanfari T, Sattarian M, Ebrahimi Louyeh H, Raeeskarami SR, Jamalimoghadamsiahkali S, Khajavirad N, Mahmoudi M, Rostamian A. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020 Dec 24;56(6):2002808. doi: 10.1183/13993003.02808-2020. PMID: 32943404; PMCID: PMC7758541.
  8. Ezer N, Belga S, Daneman N, Chan A, Smith BM, Daniels SA, Moran K, Besson C, Smyth LY, Bartlett SJ, Benedetti A, Martin JG, Lee TC, McDonald EG. Inhaled and intranasal ciclesonide for the treatment of covid-19 in adult outpatients: CONTAIN phase II randomised controlled trial. BMJ. 2021 Nov 2;375:e068060. doi: 10.1136/bmj-2021-068060. PMID: 34728476; PMCID: PMC8561042.
  9. Griesel M, Wagner C, Mikolajewska A, Stegemann M, Fichtner F, Metzendorf MI, Nair AA, Daniel J, Fischer AL, Skoetz N. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2022 Mar 9;3(3):CD015125. doi: 10.1002/14651858.CD015125. PMID: 35262185; PMCID: PMC8905579.
  10. Hoenigl M, Seidel D, Carvalho A, Rudramurthy SM, Arastehfar A, Gangneux JP, Nasir N, Bonifaz A, Araiza J, Klimko N, Serris A, Lagrou K, Meis JF, Cornely OA, Perfect JR, White PL, Chakrabarti A; ECMM and ISHAM collaborators. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe. 2022 Jan 25. doi: 10.1016/S2666-5247(21)00237-8. Epub ahead of print. PMID: 35098179; PMCID: PMC8789240.
  11. Jamaati H, Hashemian SM, Farzanegan B, Malekmohammad M, Tabarsi P, Marjani M, Moniri A, Abtahian Z, Haseli S, Mortaz E, Dastan A, Mohamadnia A, Vahedi A, Monjazebi F, Yassari F, Fadaeizadeh L, Saffaei A, Dastan F. No clinical benefit of high dose corticosteroid administration in patients with COVID-19: A preliminary report of a randomized clinical trial. Eur J Pharmacol. 2021 Apr 15;897:173947. doi: 10.1016/j.ejphar.2021.173947. Epub 2021 Feb 16. PMID: 33607104; PMCID: PMC7885705.
  12. Jeronimo CMP, Farias MEL, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Safe IP, Borba MGS, Netto RLA, Maciel ABS, Neto JRS, Oliveira LB, Figueiredo EFG, Oliveira Dinelly KM, de Almeida Rodrigues MG, Brito M, Mourão MPG, Pivoto João GA, Hajjar LA, Bassat Q, Romero GAS, Naveca FG, Vasconcelos HL, de Araújo Tavares M, Brito-Sousa JD, Costa FTM, Nogueira ML, Baía-da-Silva DC, Xavier MS, Monteiro WM, Lacerda MVG; Metcovid Team. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With Coronavirus Disease 2019 (COVID-19; Metcovid): A Randomized, Double-blind, Phase IIb, Placebo-controlled Trial. Clin Infect Dis. 2021 May 4;72(9):e373-e381. doi: 10.1093/cid/ciaa1177. PMID: 32785710; PMCID: PMC7454320.
  13. Keller MJ, Kitsis EA, Arora S, Chen JT, Agarwal S, Ross MJ, Tomer Y, Southern W. Effect of Systemic Glucocorticoids on Mortality or Mechanical Ventilation in Patients With COVID-19. J Hosp Med. 2020 Aug;15(8):489-493. doi: 10.12788/jhm.3497. PMID: 32804611; PMCID: PMC7518134.
  14. Lee N, Allen Chan KC, Hui DS, Ng EK, Wu A, Chiu RW, Wong VW, Chan PK, Wong KT, Wong E, Cockram CS, Tam JS, Sung JJ, Lo YM. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004 Dec;31(4):304-9. doi: 10.1016/j.jcv.2004.07.006. PMID: 15494274; PMCID: PMC7108318.
  15. Meduri GU, Bridges L, Shih MC, Marik PE, Siemieniuk RAC, Kocak M. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients' data from four randomized trials and trial-level meta-analysis of the updated literature. Intensive Care Med. 2016 May;42(5):829-840. doi: 10.1007/s00134-015-4095-4. Epub 2015 Oct 27. PMID: 26508525.
  16. Munch MW, Meyhoff TS, Helleberg M, Kjaer MN, Granholm A, Hjortsø CJS, Jensen TS, Møller MH, Hjortrup PB, Wetterslev M, Vesterlund GK, Russell L, Jørgensen VL, Kristiansen KT, Benfield T, Ulrik CS, Andreasen AS, Bestle MH, Poulsen LM, Hildebrandt T, Knudsen LS, Møller A, Sølling CG, Brøchner AC, Rasmussen BS, Nielsen H, Christensen S, Strøm T, Cronhjort M, Wahlin RR, Jakob SM, Cioccari L, Venkatesh B, Hammond N, Jha V, Myatra SN, Jensen MQ, Leistner JW, Mikkelsen VS, Svenningsen JS, Laursen SB, Hatley EV, Kristensen CM, Al-Alak A, Clapp E, Jonassen TB, Bjerregaard CL, Østerby NCH, Jespersen MM, Abou-Kassem D, Lassen ML, Zaabalawi R, Daoud MM, Abdi S, Meier N, la Cour K, Derby CB, Damlund BR, Laigaard J, Andersen LL, Mikkelsen J, Jensen JLS, Rasmussen AH, Arnerlöv E, Lykke M, Holst-Hansen MZB, Tøstesen BW, Schwab J, Madsen EK, Gluud C, Lange T, Perner A. Low-dose hydrocortisone in patients with COVID-19 and severe hypoxia: The COVID STEROID randomised, placebo-controlled trial. Acta Anaesthesiol Scand. 2021 Nov;65(10):1421-1430. doi: 10.1111/aas.13941. Epub 2021 Sep 20. PMID: 34138478; PMCID: PMC8441888.
  17. Peter JV, John P, Graham PL, Moran JL, George IA, Bersten A. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008 May 3;336(7651):1006-9. doi: 10.1136/bmj.39537.939039.BE. Epub 2008 Apr 23. PMID: 18434379; PMCID: PMC2364864.
  18. Ramakrishnan S, Nicolau DV Jr, Langford B, Mahdi M, Jeffers H, Mwasuku C, Krassowska K, Fox R, Binnian I, Glover V, Bright S, Butler C, Cane JL, Halner A, Matthews PC, Donnelly LE, Simpson JL, Baker JR, Fadai NT, Peterson S, Bengtsson T, Barnes PJ, Russell REK, Bafadhel M. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med. 2021 Jul;9(7):763-772. doi: 10.1016/S2213-2600(21)00160-0. Epub 2021 Apr 9. Erratum in: Lancet Respir Med. 2021 Jun;9(6):e55. PMID: 33844996; PMCID: PMC8040526.
  19. Ranjbar K, Moghadami M, Mirahmadizadeh A, Fallahi MJ, Khaloo V, Shahriarirad R, Erfani A, Khodamoradi Z, Gholampoor Saadi MH. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. BMC Infect Dis. 2021 Apr 10;21(1):337. doi: 10.1186/s12879-021-06045-3. Erratum in: BMC Infect Dis. 2021 May 11;21(1):436. PMID: 33838657; PMCID: PMC8035859.
  20. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 Feb 25;384(8):693-704. doi: 10.1056/NEJMoa2021436. Epub 2020 Jul 17. PMID: 32678530; PMCID: PMC7383595.
  21. Salvarani C, Massari M, Costantini M, Franco Merlo D, Lucia Mariani G, Viale P, Nava S, Guaraldi G, Dolci G, Boni L, Savoldi L, Bruzzi P, Turrà C, Catanoso M, Maria Marata A, Barbieri C, Valcavi A, Franzoni F, Cavuto S, Mazzi G, Corsini R, Trapani F, Bartoloni A, Barisione E, Barbieri C, Jole Burastero G, Pan A, Inojosa W, Scala R, Burattini C, Luppi F, Codeluppi M, Eldin Tarek K, Cenderello G, Salio M, Foti G, Dongilli R, Bajocchi G, Alberto Negri E, Ciusa G, Fornaro G, Bassi I, Zammarchi L, Aloè T, Facciolongo N. Intravenous methylprednisolone pulses in hospitalised patients with severe COVID-19 pneumonia, A double-blind, randomised, placebo-controlled trial. Eur Respir J. 2022 Mar 31:2200025. doi: 10.1183/13993003.00025-2022. Epub ahead of print. PMID: 35361632; PMCID: PMC8971731.
  22. Solanich X, Antolí A, Rocamora-Blanch G, Padullés N, Fanlo-Maresma M, Iriarte A, Mitjavila F, Capdevila O, Riera-Mestre A, Bas J, Vicens-Zygmunt V, Niubó J, Calvo N, Bolivar S, Rigo-Bonnin R, Mensa-Vilaró A, Arregui L, Tebe C, Videla S, Hereu P, Corbella X. Methylprednisolone Pulses Plus Tacrolimus in Addition to Standard of Care vs. Standard of Care Alone in Patients With Severe COVID-19. A Randomized Controlled Trial. Front Med (Lausanne). 2021 Jun 14;8:691712. doi: 10.3389/fmed.2021.691712. PMID: 34195214; PMCID: PMC8236585.
  23. Song JY, Yoon JG, Seo YB, et al. Ciclesonide Inhaler Treatment for Mild-to-Moderate COVID-19: A Randomized, Open-Label, Phase 2 Trial. Journal of Clinical Medicine. 2021 Aug;10(16). DOI: 10.3390/jcm10163545. PMID: 34441840; PMCID: PMC8396813.
  24. Tang X, Feng YM, Ni JX, Zhang JY, Liu LM, Hu K, Wu XZ, Zhang JX, Chen JW, Zhang JC, Su J, Li YL, Zhao Y, Xie J, Ding Z, He XL, Wang W, Jin RH, Shi HZ, Sun B. Early Use of Corticosteroid May Prolong SARS-CoV-2 Shedding in Non-Intensive Care Unit Patients with COVID-19 Pneumonia: A Multicenter, Single-Blind, Randomized Control Trial. Respiration. 2021;100(2):116-126. doi: 10.1159/000512063. Epub 2021 Jan 22. PMID: 33486496; PMCID: PMC7900459.
  25. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, Avezum A, Lopes RD, Bueno FR, Silva MVAO, Baldassare FP, Costa ELV, Moura RAB, Honorato MO, Costa AN, Damiani LP, Lisboa T, Kawano-Dourado L, Zampieri FG, Olivato GB, Righy C, Amendola CP, Roepke RML, Freitas DHM, Forte DN, Freitas FGR, Fernandes CCF, Melro LMG, Junior GFS, Morais DC, Zung S, Machado FR, Azevedo LCP; COALITION COVID-19 Brazil III Investigators. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020 Oct 6;324(13):1307-1316. doi: 10.1001/jama.2020.17021. PMID: 32876695; PMCID: PMC7489411.
  26. Tsai MJ, Yang KY, Chan MC, Kao KC, Wang HC, Perng WC, Wu CL, Liang SJ, Fang WF, Tsai JR, Chang WA, Chien YC, Chen WC, Hu HC, Lin CY, Chao WC, Sheu CC; for Taiwan Severe Influenza Research Consortium (TSIRC) Investigators. Impact of corticosteroid treatment on clinical outcomes of influenza-associated ARDS: a nationwide multicenter study. Ann Intensive Care. 2020 Feb 27;10(1):26. doi: 10.1186/s13613-020-0642-4. PMID: 32107651; PMCID: PMC7046839.
  27. Wagner C, Griesel M, Mikolajewska A, Mueller A, Nothacker M, Kley K, Metzendorf MI, Fischer AL, Kopp M, Stegemann M, Skoetz N, Fichtner F. Systemic corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2021 Aug 16;8(8):CD014963. doi: 10.1002/14651858.CD014963. PMID: 34396514; PMCID: PMC8406706.
  28. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 Jul 1;180(7):934-943. doi: 10.1001/jamainternmed.2020.0994. Erratum in: JAMA Intern Med. 2020 Jul 1;180(7):1031. PMID: 32167524; PMCID: PMC7070509
  29. Yang ZG, Lei XL, Li XL. Early application of low-dose glucocorticoid improves acute respiratory distress syndrome: A meta-analysis of randomized controlled trials. Exp Ther Med. 2017 Apr;13(4):1215-1224. doi: 10.3892/etm.2017.4154. Epub 2017 Feb 22. PMID: 28413460; PMCID: PMC5377286.
  30. Yu LM, Bafadhel M, Dorward J, Hayward G, Saville BR, Gbinigie O, Van Hecke O, Ogburn E, Evans PH, Thomas NPB, Patel MG, Richards D, Berry N, Detry MA, Saunders C, Fitzgerald M, Harris V, Shanyinde M, de Lusignan S, Andersson MI, Barnes PJ, Russell REK, Nicolau DV Jr, Ramakrishnan S, Hobbs FDR, Butler CC; PRINCIPLE Trial Collaborative Group. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021 Sep 4;398(10303):843-855. doi: 10.1016/S0140-6736(21)01744-X. Epub 2021 Aug 10. Erratum in: Lancet. 2021 Aug 18;: PMID: 34388395; PMCID: PMC8354567.

 

Corticosteroids

Dexamethasone

Study reference

Study characteristics

Patient characteristics

Intervention (I)

Comparison / control (C)

 

Follow-up

Outcome measures and effect size

Comments

Tomazini et al.

2020

Type of study:

Multicenter, randomized, open-label, clinical trial

 

Setting:

41 intensive care units (ICUs)

 

Country:

Brazil

 

Source of funding:

This trial was funded and supported by the Coalition COVID-19 Brazil. The Laboratórios Farmacêuticos provided the study drug, distribution logistics, and insurance for the study patients.

 

 

 

 

Sample characteristics:

Patients with severe disease: intubated and mechanically ventilated.

 

 

Inclusion criteria:

  • Age ≥18 yrs;
  • Probable or confirmed infection by SARS-CoV2;
  • Intubated and mechanically ventilated;
  • Moderate or severe ARDS according to Berlin criteria;
  • Within 48 hours of meeting criteria for moderate or severe ARDS.

 

Exclusion criteria:

  • Pregnancy or active lactation;
  • Known history of dexamethasone allergy;
  • Corticosteroids use in non hospitalized patients in the past 15 days;
  • Indication for corticosteroids use for other clinical conditions;
  •  Patients who used corticosteroids during hospital stay for more than one day;
  • Use of immunosuppressive drugs;
  • Cytotoxic chemotherapy in the past 21 days;
  • Neutropenia due to hematological or solid malignancies with bone marrow invasion;
  • Patients expected to die in the next 24 hours;
  • Consent refusal for participation.

 

N total at baseline:

N = 299

Intervention: 151

Control: 148

 

Important characteristics:

Age, mean (SD):

I: 60.1 yrs (15.8)

C: 62.7 yrs (13.1)

 

Sex, n/N (%) male:

I: 90/151 male (59.6%)

C: 97/148 male (65.6%)

 

Baseline characteristics were well balanced between groups

dexamethasone 20 mg intravenously once daily for 5 days, followed by 10 mg intravenously once daily for additional 5 days or until ICU discharge, whichever occurred first, plus standard care.

 

 

All clinical interventions,

such as use of antibiotics, ventilatory strategy, laboratory testing, and hemodynamic management were left at the discretion of the ICU team for both groups.

Standard care only

28 days after randomization or until hospital discharge, whichever occurred first.

 

 

Clinical outcomes

 

All-cause mortality, n/N (%) at 28 days

I: 85/151 (56.3%)

C: 91/148 (61.5%)

Adj. HR= 0.97 (95% CI= 0.72 to 1.31)

P=0.85

Unadj. HR= 0.86 (95% CI= 0.64 to 1.15)

P=0.31

 

Days alive and ventilator free at 28 days, mean (95% CI)

I: 6.6 (95% CI 5.0 to 8.2)

C: 4.0 (95% CI= 2.9 to 5.4)

Adj. MD= 2.26 (95% CI = 0.2 to 4.38)

P=0.04

Unadj. MD= 2.55 (95% CI= 0.46 to 4.6)

P=0.02

 

ICU free days, mean (95% CI)

I: 2.1 (95% CI= 1.0 to 4.5)

C: 2.0 (95% CI= 0.8 to 4.2)

Adj. MD= 0.28 (95% CI= -0.49 to 1.02)

P=0.50

Unadj. MD= 0.14 (95% CI= -0.92 to 1.27)

P=0.78

 

Mechanical ventilation days, mean (95% CI)

I: 12.5 (95% CI= 11.2 to 13.8)

C: 13.9 (95% CI= 12.7 to 15.1)

Adj. MD= -1.54 (95% CI= -3.24 to 0.12)

P=0.11

Unadj. MD= -1.46 (95% CI = -3.10 to 0.57)

P=0.18

 

Serious adverse events, n/N (%)

I: 5/151 (3.3%)

C: 9/148 (6.1%)

AD= 2.8 (95% CI= -2.7 to 8.2)

*AD = absolute difference

 

Clinical status of patient (day 15)

I: 5 (3 to 6)

C: 5 (5 to 6)

Adj. OR=0.66 (95% CI = 0.43 to 1.03) P = 0.07

Unadj. OR=0.62 (95% CI = 0.41 to 0.94) P=0.03

 

Also available

  • Sequential Organ Failure Assessment (SOFA)
  • Other adverse events
  • Subgroup analysis based on age

 

Virological outcomes

not reported

Definitions:

clinical status of patients: using a 6-point ordinal scale adapted from the World Health Organization

R&D Blueprint expert group.

 

Remarks:

  • Second, 35%of the patients in the control group received corticosteroids during the study period
  • the study was interrupted before the original sample size was obtained

 

Conflict of interests

  • Multiple authors reported support from pharmaceutical or other companies.
  • Regarding funding of study: support from pharmaceutical company in terms of providing of drugs, logistics, insurance.

 

Authors conclusion:

In patients with COVID-19 and moderate or severe ARDS, use of intravenous dexamethasone plus standard care, compared with standard care alone, resulted in a statistically significant increase in the number of ventilator-free days (days alive and free of mechanical ventilation) over 28 days.

 

Jamaati, 2021

Type of study:

RCT, clinical trial

 

Setting:

Conducted in

March 2020 at Dr. Masih Daneshvari Hospital: primary

referral center for patients with COVID-19.

 

Country:

Iran

 

Source of funding:

None

 

 

 

 

 

Hospitalized patients with mild

to moderate acute respiratory distress syndrome (ARDS) due to COVID-19

 

Inclusion criteria:

  • Age > 18y;
  • Confirmed SARS-CoV-2 infection;
  • PaO2/FiO2 between 100 and 300 mmHg;
  • Bilateral lung infiltration;
  • Written informed consent by the patient.

 

Exclusion criteria:

  • Chronic kidney disease;
  • Chronic liver disease;
  • Hyperglycemia;
  • Pregnant or breastfeeding.

 

N total at baseline:

N = 50

Intervention: 25

Control: 25

 

Important characteristics:

Age, median (IQR):

I: 62 y (52-71)

C: 62 y (54-68)

 

Sex, n/N (%) male:

I: 18/25 (72%)

C: 18/25 (72%)

 

Disease severity:

Defined by symptoms, n (%)/N

Fever

I: 16 (64%) / 25

C:18 (72%) / 25

 

Cough

I: 15 (60%) / 25

C: 14 (56%) / 25

 

Dyspnea

I: 7 (28%) / 25

C: 20 (80%) / 25

 

Myalgia

I: 1 (4%) / 25

C: 8 (32%) / 25

 

Nausea or vomiting

I: 1 (4%) / 25

C: 1 (4%) / 25

 

Groups were comparable at baseline, with the exception of the number of patients with pulmonary diseases as part of their medical history. This number was higher in the control group (I: 1, C: 9).

Intravenous dexamethasone at a dose of 20 mg/day from day 1–5 and then at 10 mg/day from day 6–10 + standard care

 

Standard care only

Length of follow up:

28 days

 

Loss to follow-up:

I: 0/25 (%)

C: 0/25 (%)

 

Clinical outcomes

Mortality (n (%)/N) within 28 days

I: 16/25 (64%)

C: 15/25 (60%)

RR: 1.07 [95% CI 0.69 to 1.65]

 

Discharged patients within 28 days

I: 9/25 (37%)

C: 10/25 (40%)

RR: 0.90 [95% CI 0.44 to 1.83]

 

Duration of hospitalization (days), median (IQR)

Overall

I: 11 (6–16)

C: 6 (4–9)

Survivors (sub-group)

I: 16 (9-21), n=9

C: 8.5 (5-13), n=10

Non-survivors (sub-group)

I: 9.5 (5.5-13), n=16

C: 6 (3-7), n=15

 

Duration of ICU stay (days),

median (IQR)

Overall

I: 7 (4–11)

C: 3 (2–5)

Survivors (sub-group)

I: 7 (4-12), n=9

C: 4.5 (3-5), n=10

Non-survivors (sub-group)

I: 7 (4.5-10), n=16

C: 3 (2-3), n=15

 

Symptom resolution

Not reported

 

Need for non-invasive ventilation, n(%)/N

Overall

I: 23 (92%) / 25

C: 24 (96%) / 25

Survivors (sub-group)

I: 9 (100%), n=9

C: 10 (100%), n=10

Non-survivors (sub-group)

I: 14 (88%), n=16

C: 14 (93%), n=15

 

Among the patients who required non-invasive ventilation, the following numbers of patients required invasive mechanical ventilation:

Need for invasive ventilation

Overall

I: 13 (52%) / 25

C: 11 (44%) / 25

Survivors (sub-group)

I: 2 (22%), n=9

C: 1 (10%), n=10

Non-survivors (sub-group)

I: 11 (69%), n=16

C: 10 (67%), n=15

 

SOFA-score, mean (SD)

Overall

I: 4.68 (1.38)

C: 4.56 (1.36)

Survivors (sub-group), median (IQR)

I: 4 (4-5) n=9

C: 4 (4-5), n=10

Non-survivors (sub-group), median (IQR)

I: 5 (4-6), n=16

C: 4 (4-6), n=15

 

Improvements in lung CT scan images

I: 40% of patients

C: 12% of patients

 

Safety

Adverse events

Not reported

 

Virological outcomes

Viral clearance

Not reported

Definitions:

 

Remarks:

  • At baseline, more patients in the control group suffered from pulmonary diseases. The authors do not address this result in the text.
  • Authors do not state whether the patients, caretakers or outcome assessors were blinded to treatment allocation, except for the radiologist who judged the CT scans (this person was blinded to the lab data and clinical findings).
  • Sample size was adjusted based on the study results: authors state they halted their study because they did not achieve a clinical response in fifty patients.
  • Small sample size (N=50)

 

Authors conclusion:

The current study showed that there was no clinical benefit in high dose administration of corticosteroid for the treatment of mild to moderate ARDS in patients with COVID-19. However, dexamethasone

administration may shorten the duration of hospitalization.

 

Horby et al., 2021

Type of study:

randomized, controlled, open-label, trial

 

Setting:

hospitalized COVID-19 patients; 176 National Health Service (NHS) hospital organizations

 

Country:

UK

 

Source of funding:

Conflicts of interest:

The authors have no conflict of interest or financial relationships relevant to the submitted work

to disclose; this work was supported by the National Institute for

Health Research Clinical Research Network

 

Inclusion criteria:

  • Hospitalized
  • clinically suspected or laboratory confirmed SARS-CoV-2 infection
  • no medical history that might, in opinion of attending clinician, put patient at significant risk
  • NOTE: pregnant or breast-feeding women were eligible

 

Exclusion criteria:

Not further specified

 

N total at baseline:

Intervention: 2104

Control: 4321

 

Important characteristics:

Mean age (SD):

I: 66.9y (15.4)

C: 65.8y (15.8)

 

Male/N (%):

I:  1338/2104 (64%)

C: 2750/4321 (64%)

 

Intervention group 1.1y older than control group; rate ratios and risk ratios were adjusted for baseline age

 

Disease severity:

•     mild disease (no supplemental oxygen)

I: 24%, C:24%

•     moderate disease (supplemental oxygen: low flow oxygen, non-rebreathing mask)

I: 61%, C: 60%

•     severe disease (supplemental oxygen: HFNC, CPAP, (NIV), mechanical ventilation).

I: 15%, C: 16%

Usual care + dexamethasone [6 mg given once daily for up to 10 days]

 

Remark:

In the intervention group, 95% of the patients

received at least one dose of a glucocorticoid.

Usual care

 

 

 

 

Remark:

In the control group, 8% of the patients received

a glucocorticoid as part of their clinical care.

(This means cross-over between treatment groups took place.)

Length of follow-up:

28 days

 

Loss-to-follow-up data handling:

Completed follow-up forms were available for 2095 of 2104 patients (99.6%) in the intervention group and 4306

of 4321 patients (99.7%) in the control group.

 

All information is based on a data cutoff

of December 14, 2020. Information regarding the

primary and secondary outcomes is complete for

99.9% of trial participants.

Mortality, day 28

I:  482/2104 (22.9%)

C: 1110/4321 (25.7%)

Rate ratio 0.83 (95% CI 0.75 to 0.93)

Sub group analysis, by level of respiratory support received at randomization:

Invasive mechanical ventilation

I:  29.3%

C: 41.4%

Rate ratio 0.64 (95% CI 0.51 to 0.81)

Oxygen only

I: 23.3%

C: 26.2%

Rate ratio 0.82 (95% CI 0.72 to 0.94)

No oxygen received

I: 17.8%

C: 14.0%

Rate ratio 1.19 (95% CI

0.91 to 1.55)

 

Discharge from hospital alive within 28 days

I: 1416/2104 (67.3%)

C: 2748/4321 (63.6%)

RR 1.10 (96% CI 1.03−1.17)

Sub group analysis, by level of respiratory support received at randomization:

Invasive mechanical ventilation

I: 104/324 (32.1%)

C: 157/683 (23.0%)

RR 1.45 (95% CI 1.13−1.85)

Oxygen only

I: 925/1279 (72.3%)

C: 1760/2604 (67.6%)

RR 1.16 (95% CI 1.07−1.25)

No oxygen received

I: 387/501 (77.2%)

C: 831/1034 (80.4%)

RR 0.95 (95% CI 0.84−1.07)

 

Receipt of invasive mechanical ventilation

(including extra-corporeal membrane oxygenation; among patients not receiving invasive

mechanical ventilation at randomization)

I: 110/1780 (6.2)

C: 298/3638 (8.2)

RR 0.79 (95% CI 0.64–0.97)

Death

(among patients not receiving invasive

mechanical ventilation at randomization)

I: 387/1780 (21.7)

C: 827/3638 (22.7)

RR 0.93 (95% CI 0.84–1.03)

 

Length of stay (median), days:

I: 12 days

C: 13 days

 

Safety

Serious adverse events

There were four reports of a serious adverse reaction that was deemed by the investigators to be related to dexamethasone: two of hyperglycemia, one of gastrointestinal hemorrhage, and one of psychosis

 

Virological outcomes

Viral clearance

not reported

 

Also available

  • Use of ventilation among patients not receiving supplementary oxygen at randomization
  • Renal-replacement therapy

Remarks:

Trial design

  • This was a randomized controlled trial
  • Patients and local members of the trial staff were aware of the assigned treatments.

It is likely that the beneficial

effect of glucocorticoids in severe viral respiratory infections is dependent on the selection of the right dose, at the right time, in the right patient. The phase of COVID-19 of the participants was not specified

 

Conflict of interests

  • Multiple authors reported (financial) support from pharmaceutical or other companies.

 

 

Author’s conclusion:

In patients hospitalized with Covid-19, the use of dexamethasone resulted in

lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support.

 

Hydrocortisone

Angus et al.

2020

Type of study:

Ongoing, international, multicenter, open-label randomized clinical trial

 

Setting:

­An intensive care unit for respiratory or cardiovascular organ support at 121 sites in Australia, Canada, France, Ireland, the Netherlands, New Zealand, the United Kingdom, and the United States.

 

Source of funding:

This study was funded by multiple (national) research grants.

 

 

 

 

 

Inclusion criteria:

  • Age >18;
  • presumed or confirmed SARS-CoV-2 infection;
  • admitted to intensive care unit.

 

Exclusion criteria:

  • Death is deemed to be imminent and inevitable during the next 24 hours AND one or more of the patient, substitute decision maker or attending physician are not committed to full active treatment;
  • Patient is expected to be discharged from hospital today or tomorrow;
  • More than 14 days have elapsed while admitted to hospital with symptoms of an acute illness due to suspected or proven pandemic infection;
  • Previous participation in this REMAP within the last 90 days.

 

N total at baseline:

N = 614

Intervention (I): 137

Intervention (II): 146

Control: 101

 

Important characteristics:

Age, mean (SD):

I: 60.4y (11.6)

II: 59.5y (12.7)

C: 59.9y (14.6)

 

Sex, n/N (%) male:

I: 98/137 male (71.5%)

II: 103/146 male (70.6%)

C: 72/101 male (71.3%)

 

Disease severity:

•     mild disease (no supplemental oxygen)

I: 0%, II: 1%, C:0%

•     moderate disease (supplemental oxygen: low flow oxygen, non-rebreathing mask)

I: 36%, II: 49% C: 48%

•     severe disease (supplemental oxygen: HFNC, CPAP, (NIV), mechanical ventilation).
I: 64%, II: 50%, C: 52%

 

 

I: fixed-dose hydrocortisone:

Patients received a fixed dose of intravenous hydrocortisone, 50 mg or 100 mg, every 6 hours for 7 days.

 

II: shock-dependent hydrocortisone:

intravenous hydrocortisone, 50 mg, every 6 hours while in shock for up to 28 days.

 

No hydrocortisone

 Up to day 21

 

 

Clinical outcomes

In hospital deaths; N (%)

I: 41/137 (30%)

II: 37/141 (26%)

C: 33/101 (33%)

 

Time to death; adjusted hazard ratio (mean (SD))

I: 0.97 (0.22)

II: 1.01 (0.23)

C: 1 (reference)

adjusted hazard ratio (median (95%CI))

I: 0.94 (0.61 – 1.46)

II: 0.98 (0.63 – 1.54)

C: 1 (reference)

 

Respiratory support-free days; adjusted odds-ratio (mean (SD))

I: 1.45 (0.34)

II: 1.31 (0.30)

C: 1 (reference)

adjusted odds-ratio (median/95%Crl)

I: 1.42 (0.90 – 2.24)

II: 1.28 (0.81 – 2.00)

C: 1 (reference)

 

Length of ICU stay; adjusted hazard ratio (mean (SD))

I: 0.93 (0.14)

II: 0.86 (0.13)

C: 1 (reference)

adjusted hazard ratio (median (95% CI))

I: 0.92 (0.68 – 1.24)

II: 0.85 (0.62 – 1.15)

C: 1 (reference)

 

Length of hospital stay; adjusted hazard ratio (mean (SD))

I: 0.99 (0.16)

II: 0.94 (0.15)

C: 1 (reference)

adjusted hazard ratio (median (95% CI)

I: 0.97 (0.72 – 1.32)

II: 0.93 (0.69 – 1.26)

C: 1 (reference)

 

Clinical status of patient (day 14); WHO scale

Adjusted odds ratio (mean(SD))

I: 1.33 (0.32)

II: 1.06 (0.26)

C:1 (reference

Adjusted odds ratio (median (95% CI)

I: 1.29 (0.83 to 2.05)

II: 1.03 (0.65 to 1.65)

C: 1 (reference)

 

Safety

Serious adverse events (>1) N (%)

I: 4/137 (3%)

II: 5/141 (4%)

C: 1/101 (1%)

 

Virological outcomes

Viral clearance

not reported

 

Also available

  • Organ support-free days
  • Organ support-free days among survivors
  • Subcomponents of organ support-free days

 

Definitions:

The WHO scale ranges from 0

(no disease) to 8 (death).

 

Remarks:

For an additional 11 patients, of whom 5 were in the corticosteroid domain, follow-up data were unavailable. Thus, the final cohort available for outcome analysis comprised 576 participants in the REMAP-CAP severe COVID-19 cohort (whose data are used for covariate adjustment in the primary analysis), of whom 379 were randomized within the corticosteroid domain (after removing 5 patients in the shock-dependent hydrocortisone group whose outcomes were not available).

 

The study was stopped early,

the probability of benefit with hydrocortisone did not meet the prespecified statistical trigger for a trial conclusion of superiority, and no strategy was determined to be optimal.

 

Source of funding:

Conflicts of interest:

  • Multiple authors reported support from pharmaceutical or other companies.
  • The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

 

Authors conclusion:

Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support–free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions.

 

 

Dequin et al., 2020

 

CAPECOVID trial = Community-Acquired Pneumonia: Evaluation of

Corticosteroids in Coronavirus Disease

Type of study:

RCT; randomized double-blind sequential trial

 

Setting:

Multicentre; 9 ICUs; embedded in the ongoing Community-

Acquired Pneumonia: Evaluation of Corticosteroids (CAPECOD) trial.

 

Start inclusion COVID-19 patients in parent trial: March 7, 2020; ethical committee approval: April 9, 2020.

The sponsor decided to discontinue the trial: July 3, 2020.

 

Country:

France

 

Source of funding:

This study was funded by the

French Ministry of Health, Programme Hospitalier

de Recherche Clinique (PHRC) (2014 [CAPE COD parent trial], 2020 [CAPE COVID subtrial]).

 

 

 

 

 

Inclusion criteria:

  • Age ≥18 years
  • admitted to participating ICU for ARDS
  • confirmed (RT-PCR) or suspected (suggestive CT chest) COVID-19
  • experimental treatment administered < 24 hours of the onset of first severity criterion (see below) or < 48 hours for patients referred from another hospital.
  • One of four severity criteria had to be present: 1) need for mechanical ventilation with positive end-expiratory pressure (PEEP) of 5 cm H20 or more; 2) a ratio of PaO2 to fraction of inspired oxygen (FIo2) < 300 on high-flow oxygen therapy with an FIO2 value of at least 50%; 3) for patients receiving oxygen through a reservoir mask, a PaO2:FIO2 ratio less than 300, estimated using prespecified charts; 4) or a Pulmonary Severity Index > 130

 

Exclusion criteria:

  • septic shock
  • do-not-intubate orders.

 

N total at baseline: N = 149

Intervention: 76

Control: 73

 

Important characteristics:

Age, median (IQR), y:

I: 63.1 (51.5-70.8)

C: 66.3 (53.5-72.7)

Sex, n/N (%) male:

I: 54/76 (71.1%)

C: 50/73 (68.5%)

 

Groups comparable at baseline.

Hydrocortisone

 

Continuous intravenous infusion. Initial dose of 200mg/d

 

Treatment was continued at 200mg/d until day 7 and then decreased to 100 mg/d for 4 days and 50 mg/d for 3 days, for a total of 14 days.

 

If the patient’s respiratory and general status had sufficiently improved by day 4, a short treatment regimen was used (200mg/d for 4 days, followed by 100mg/d for 2 days and then 50 mg/d for the next 2 days, for a total of 8 days).

[see publication for criteria that allowed considering adaptive scheme)

 

Adjunctive

treatments could be administered at the discretion of the patients’ primary physicians.

 

Median duration treatment: 10.5 days

(IQR 6.0 to 14.0)

 

Placebo (Saline)

 

Continuous IV infusion

Initial dose of 200mg/d

 

Treatment was continued at 200mg/d until day 7 and then decreased to 100 mg/d for 4 days and 50 mg/d for 3 days, for a total of 14 days.

 

If the patient’s respiratory and general status had sufficiently improved by day 4, a short treatment regimen was used (200mg/d for 4 days, followed by 100mg/d for 2 days and then 50 mg/d for the next 2 days, for a total of 8 days).

[see publication for criteria that allowed considering adaptive scheme)

 

Adjunctive

treatments could be administered at the discretion of the patients’ primary physicians.

 

Median duration treatment: 12.8 days

(IQR 8.0 to 13.0)

Length of follow-up:

21 days or to death

 

Loss-to-follow up:

I: 0/76

C: 0/73

1 patient in the intervention group withdrew consent; for the primary outcome this patient was considered to have experienced treatment failure on day 21.

 

Clinical outcomes

Status on day 21 ((5-item scale)

Death

I: 11 (14.7)

C: 20 (27.4)

Mechanical ventilation

I: 17 (22.7)

C: 17 (23.3)

High-flow oxygen therapy I: 3 (4.0)

C: 0

Low-flow oxygen therapy

I: 1 (1.3)

C: 4 (5.5)

Discharged from ICU

I: 43 (57.3)

C: 32 (43.8)

 

Need for endotracheal intubation (among patients not intubated at baseline);

I: 8/16 (50%)

C: 12/16 (75%)

Cumulative incidences of prone position sessions (until day 21)

I: 36/76 (47.4%)

C: 39/73 (53.4%)

HR 0.85 (95% CI 0.55 to 1.32)

 

PaO2:FIO2 ratio measured daily from day 1 to day 7, day 14 and day 21: “Daily evolution of Pa02:FIO2 ratio during the first week and on days 14 and 21 did not significantly differ between the groups (P = .37.”

 

Safety

Serious adverse events

Three events in intervention group: one episode of cerebral vasculitis possibly related to SARS-CoV-2, one episode of cardiac arrest related to a pulmonary embolism, and one episode of intraabdominal hemorrhage related to anticoagulant therapy for pulmonary embolism. No serious adverse events were attributed to the study treatment.

 

Virological outcomes

Viral clearance

not reported

 

Also available

  • treatment failure on day 21
  • At least 1 episode of nosocomial infection
  • At least 1 episode of ventilator-associated pneumonia
  • Bacteremia
  • Extracorporeal membrane oxygenation / Inhaled nitric oxide

 

Definitions:

Treatment failure: was defined as death or persistent dependency on mechanical ventilation or high-flow oxygen therapy.

Patient’s status: was determined using a 5-item scale: death, presence in the ICU on mechanical ventilation, high-flow or low-flow oxygen therapy, ICU discharge.

 

Remarks:

The study was stopped early after release of the RECOVERY trial and might therefore be underpowered

 

Source of funding:

Conflicts of interest:

  • Multiple authors reported support from pharmaceutical or other companies.
  • The French Ministry of Health PHRC had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

 

Authors conclusion:

In this study of critically ill patients with COVID-19 and acute respiratory failure, low-dose hydrocortisone, compared with placebo, did not significantly reduce treatment failure (defined as death or persistent respiratory support) at day 21. However, the study was stopped early and likely was underpowered

to find a statistically and clinically important difference in the primary outcome.

 

Munch, 2021

Type of study:

Multicentre, parallel-group, placebo-controlled, blinded, centrally randomised, stratified clinical trial

 

Setting:

Hospital-based, between April 15 and June 16, 2020

 

Country:

12 trial sites in Denmark

 

Source of funding:

Funded by the Novo Nordisk Foundation, Grant/Award Number: 0062998 and supported by Rigshospitalet's Research Council, Grant/Award Number: E-22703-06 and Pfizer, Grant/Award Number: 60473019. The funding sources were not involved in designing, conducting, analysing or reporting of the trial.

 

Conflicts of interest:

Conflicts of interest were transparently and extensively reported.

Patients with COVID-19 and severe hypoxia

 

Inclusion criteria:

  • age ≥ 18 y
  • confirmed COVID-19 requiring hospitalisation
  • use of one of the following:
    • invasive mechanical ventilation, OR
    • non-invasive ventilation or continuous use of CPAP for hypoxia, OR
    • oxygen supplementation with an oxygen flow of at least 10 L/min independent of delivery system

 

Exclusion criteria:

  • use of systemic corticosteroids
  • invasive mechanical ventilation > 48 hrs prior to screening
  • invasive fungal infection.
  • fertile woman (< 60 y) with positive urine-hCG or plasma-hCG
  • known hypersensitivity to hydrocortisone
  • a patient for whom the clinical team has decided not to use invasive
  • mechanical ventilation
  • previously randomised into the COVID STEROID trial
  • informed consent not obtainable

 

N total at baseline:

Randomized: N = 30

 

Intervention: N = 16

Control: N = 14

 

Important characteristics:

Age, median (IQR):

I: 59 y (52-74)

C: 62 y (55-71)

 

Sex, n/N (%) male:

I: 14/16 (88%)

C: 10/14 (71%)

 

Unclear whether groups were (statistically) comparable at baseline.

Hydrocortisone i.v. (200 mg/day) for 7 days or until hospital discharge in addition to standard care; continuous infusion over 24 hrs or as bolus injections every 6 hrs (50 mg per bolus)

Placebo (0.9% isotonic saline) i.v. for 7 days or until hospital discharge; continuous infusion over 24 hrs or as bolus injections every 6 hrs (50 mg per bolus)

Length of follow-up:

90 days

 

Loss-to-follow-up:

I: 0/16 (0%)

Reasons: -

 

Control: 0/14 (0%)

Reasons: -

The researchers planned to conduct statistical analyses of subgroup differences on the primary outcome (i.e. days alive without life support at day 28) in the ITT population, but refrained from this due to the reduced sample size.

 

Clinical outcomes

Mortality

Days alive without life support at day 28

Days, median (IQR)

I: 7 (2-24)

C: 10 (3-26)

aMD -1.1 (95% CI -9.5-7.3)

 

Days alive without life support at day 90

Days, median (IQR)

I: 41 (6-86)

C: 72 (52-88)

aMD -14.7 (95% CI -40.4-10.9)

 

All-cause mortality at day 28

n/N (%)

I: 6/16 (38%)

C: 2/14 (14%)

RR 2.63 (95% CI 0.74-16.03)

 

All-cause mortality at day 90

n/N (%)

I: 7/16 (44%)

C: 3/14 (21%)

RR 2.04 (95% CI 0.71-8.16)

 

Days alive and out of hospital at day 90

Days, median (IQR)

I: 31 (8-78)

C: 53 (42-68)

aMD -6.5 (95% CI -29.6-16.7)

 

Duration of hospitalization

Not reported.

 

Time to symptom resolution

Not reported.

 

Respiratory support

Not reported.

 

Safety

≥ 1 serious adverse reactions

n/N (%)

I: 1/16 (6%)

C: 0/14 (0%)

 

Virological outcomes

Viral clearance

Not reported.

Definitions:

-

 

Remarks:

The researchers planned to randomise 1000 adult patients with COVID-19 and severe hypoxia in Denmark, Sweden, Switzerland and India. The trial was commenced on April 15, 2020; paused on June 16, 2020; and terminated early on September 4, 2020, after 30 patients had been enrolled at 12 trial sites in Denmark. The trial was terminated very quickly after starting enrollment, due to unexpected (at trial design) inability to enroll participants.

 

Authors conclusion:

In this early terminated randomised clinical trial of adult patients with COVID-19 and severe hypoxia, we were unable to provide any precise estimates on the benefits and harms of hydrocortisone versus placebo for any outcomes as only 3% of the planned sample size had been enrolled.

Methylprednisolone

Jeronimo, et al.,

2020

Type of study: RCT

 

Setting: a tertiary care facility in Manaus, Brazil

 

Country: Brazil

 

 

 

 

 

 

Diagnosis COVID-19:

Hospitalized patients with clinical AND/OR radiological suspicion of COVID-19 (history of fever AND any respiratory symptom, e.g., cough or dyspnea AND/OR ground glass opacity OR pulmonary consolidation on CT scan)

 

Inclusion criteria:

  • Age 18 years or older
  • SpO2 ≤ 94% at room air OR in use of supplementary oxygen OR required IMV.

 

 

Exclusion criteria:

  • history of hypersensitivity to MP
  • HIV/AIDS
  • chronic use of corticosteroids or immunosuppressive agents
  • pregnant or breastfeeding
  • decompensated cirrhosis
  • chronic renal failure.

 

N total at baseline:

N = 397

Intervention: 195

Control: 202

 

Important characteristics:

Age, mean (SD):

I: 54 (15)

C: 57 (15)

 

Sex, n/N (%) male:

I: 68/194 (35.1)

C: 71/199 (35.7)

 

Disease severity:

Invasive mechanical ventilation n/N (%):

I: 66/194 (34%)

C: 67/199 (33.7%)

Non-invasive oxygen therapy n/N (%):

I: 98/194 (50.5%)

C: 90/199 (45.2%)

 

Groups comparable at baseline

 

Intravenous sodium succinate MP (0.5 mg/kg), twice daily for 5 days

 

 

Remark:

all patients meeting ARDS criteria used pre-emptive intravenous ceftriaxone (1 g 2× for 7 days) plus azithromycin (500 mg 1× for 5 days) or clarithromycin (500 mg 2× for 7 days), starting on Day 1.

Intravenous placebo (saline solution) (0.5 mg/kg), twice daily for 5 days

 

Up to 28 days or to death.

 

 

Clinical outcomes

28-day mortality, %

I: 72/194 (37.1%)

C: 76/199 (38.2%)

P-value: 0.629

 

7-day mortality, %

I: 32/194 (16.5%)

C: 47/199 (23.6%)

P-value: 0.089

 

14-day mortality, %

I: 53/194 (27.3%)

C: 63/199 (31.7%)

P-value: 0.290

 

Need for invasive mechanical ventilation until day 7, n/N (%):

I: 18/93 (19.4%)

C: 16/95 (16.8%)

 

Proportion of patients with oxygenation index, PaO2/FiO2, <100 until day 7, n/N (%):

I: 21/60 (35%)

C: 16/51 (25.5%)

 

Length of hospitalization, days, median (IQR):

I: 10 (7-13)

C: 9 (7-12)

 

Safety

not reported

 

Virological outcomes

Presence of viral RNA in the naso/oropharyngeal swab on day 5, %

I: 69/144 (47.9%)

C: 66/139 (47.5%)

P-value: 0.942

 

Presence of viral RNA in the naso/oropharyngeal swab on day 7, %

I: 61/117 (52.1%)

C: 50/95 (52.6%)

 

Also available

  • pulmonary fibrosis after day 7
  • bronchiolitis obliterans with organizing pneumonia
  • positive blood culture on day 7
  • need for insulin therapy until day 28
  • sepsis until day 28

 

Remarks:

limitations, including that it: (1) was a single-center study; (2) had a low sample size to estimate small differences between the arms and subgroup analyses; (3) had high overall mortality as compared to other settings; and (4) included late administration of the drug in some patients.

 

Source of funding:

Conflicts of interest:

 

  • F. G. N., M. L. N., F. T. M. C., W. M. M., and M. V. G. L. are research fellows from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico. All other authors report no potential conflicts
  • The funder of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

 

Authors conclusion: “In conclusion, the use of MP during only 5 days in hospitalized patients with COVID-19 was not sufficient to improve prognosis, as opposed to RECOVERY trial, in which dexamethasone was successfully used for 10 days. Our exploratory analysis showed that MP reduces mortality in hospitalized patients older than 60 years with COVID-19. Caution is needed in the use of steroids in less severe patients, as a trend towards more harm was seen in the lower age group.”

 

 

Edalatifard, 2021

Type of study:

RCT; single-blind, two-arm parallel, randomized, controlled trial

 

Setting:

April 20, till Jun 20, 2020; multi-center; 2 university hospitals, Tehran

 

Country:

Iran

 

Source of funding:

This study was supported by a grant from Deputy of Research, Tehran University of Medical Sciences

 

 

 

 

 

Severe hospitalized patients with confirmed COVID-19

 

Diagnosis COVID-19:

1. Positive RT-PCR for SARS-CoV-2 in nasopharyngeal swab or sputum samples

2. Abnormal CT scan finding (bilateral, subpleural, peripheral ground-glass opacities) with oxygen saturation <90% at rest. Early pulmonary phase:

start of pulmonary involvement including hypoxia (SO2<93%) tachypnea (RR> 18) and little dyspnea and based on CT scan findings.

 

Inclusion criteria:

  • Age 18 years or older;
  • Confirmed COVID-19 with blood oxygen saturation <90%), elevated C-reactive protein (CRP >10), interleukin (IL)-6 (>6) at early pulmonary phase of disease before connecting to ventilator and intubation
  • agreed to give informed consent

 

Exclusion criteria:

  • intolerant or allergic to any therapeutic agents
  • Pregnant or lactating women
  • blood oxygen saturation <75%
  • positive pro-calcitonin (PCT)
  • troponin test
  • Acute Respiratory Distress Syndrome (ARDS)
  • uncontrolled hypertension (HTN)
  • uncontrolled diabetes mellitus (DM)
  • gastrointestinal problems or gastrointestinal bleeding (GIB) history
  • heart failure (HF)
  • active malignancies and received any immune-suppressor agents.

 

N total at baseline:

N = 68

Intervention: 34

Control: 34

 

Important characteristics:

Age, mean ± SD:

I: 55.8y ± 16.35

C: 61.7y ± 16.62

Sex, n/N (%) male/female:

I: 24 (70.6%)/ 10 (29.4%)

C: 15 (53·5%)/ 13 (46.4%)

Days from illness onset to

Hospitalization, mean SD:

I: 6.7 ± 2.92

C: 6.9 ± 3.09

 

Disease severity:

Need for oxygen therapy:

Nasal Cannula

I: 4 (11.8%)

C: 9 (32.1%)

Simple Mask

I: 5 (14.7%)

C: 2 (7.1%)

Reserve Mask

I: 12 (35.3%)

C: 6 (21.4%)

Non-invasive ventilation

I: 13 (38.2%)

C: 10 (35.7%)

 

Baseline group comparability: More males in the intervention group. More nasal cannula in control group, more simple mask and reserve mask in intervention group.

Methylprednisolone pulse + standard of care

 

 

(intravenous

injection, 250mg/day for 3 days)

 

 

Standard of care, no methylprednisolone or other glucocorticoids

 

Standard care: Hydroxychloroquine sulfate, Lopinavir, and Naproxen

Length of follow up:

For most outcomes 3 days of treatment and discharge time; primary outcomes:

“All patients were followed-up from day 0 to day 3, improvement, hospital discharge or death and 1 week after hospital discharge”

 

Loss to follow-up:

I: 0 (0%)

C: 0 (0%), n=6 excluded, received intervention therapy

Clinical outcomes

Death, n (%)

I: 2 (5.9)

C: 12 (42.9)

Recovery, n (%)

I: 32 (94.1)

C: 16 (57.1)

 

Survival rate,

Kaplan–Meier Log-rank test:

HR 0.293 (95% CI 0.154–0.556).

 

Need for oxygen therapy, day 3, n:

I: 28/34 (82.4%)

C: 26/28 (92.8%)

 

 

Safety

Severe adverse events

I: 2 (5.8%)

C: 2 (7.1%)

Adverse events

Infection, n (%)

I: 1 (2.9%)

C: 0

Edema, n (%)

I: 1(2.9%)

C: 0

Shock, n (%)

I: 0

C: 2 (7.1%)

Digestive bleeding, n (%)

I: 0

C: 0

Others

I: 0

C: 0

Of which events related to study treatment

I: 0

C: 0

Psychiatric or delirium events

I: 0

C: 0

 

Virological outcomes

Viral clearance

not reported

 

Also available

  • Laboratory findings and clinical symptoms before and after treatment
  • Time to event (discharge or death)

Time to improvement

Definitions:

Improvement: was defined as Borg score >3, improved dyspnoea, no fever for 72 h, SpO2 >93%, tolerated oral regime, normal urinary output and reduced CRP level without any treatment side-effects.

 

 

Remarks:

  • 6 patients in the control group received intervention treatment and were excluded from analysis
  • Treating physicians were not blinded to treatment
  • Follow up short compared to other studies
  • There are several other limitations in this study, including the possible existence of bias, single-blind design of the study, lack of follow-up to identify late adverse events and limited sample size

 

 

Authors conclusion:

Our results suggest that methylprednisolone pulse could be an efficient therapeutic agent for

hospitalized severe COVID-19 patients at the pulmonary phase.

 

Source of funding:

Conflicts of interest:

  • The authors declare that they have no competing interests
  • The funder of the study had no role in study design, data collection, data analysis, data

interpretation or writing of the report.

 

Corral-Gudino et al.,

2021

Type of study:

Partially randomized open-label controlled trial

 

Setting:

5 hospitals in Spain in April-May 2020

 

Country:

Spain

 

Source of funding:

The authors received no specific funding for this work.

 

 

 

 

 

Inclusion criteria:

  • Over 18 years of age
  • Hospitalized
  • laboratory confirmed diagnosis of SARS-CoV2 infection
  • Symptom duration ≥7 days
  • Radiological evidence of lung disease in chest X-ray or CT-scan
  •  Moderate-to-severe disease with abnormal gas exchange: PaFi (PaO2/FiO2) < 300, or SAFI (SAO2/FiO2) < 400, or at least 2 criteria of the BRESCIA-COVID Respiratory Severity Scale (BCRSS)
  •  Laboratory parameters suggesting a hyper-inflammatory state: serum C-Reactive Protein (CRP) >15 mg/dl, D-dimer > 800 mg/dl, ferritin > 1000 mg/dl or IL-6 levels > 20 pg/ml.

 

Exclusion criteria:

  • intubated or mechanically ventilated
  • hospitalized in the ICU
  • treated with corticosteroids or immunosuppressive drugs at the time of enrolment
  • chronic kidney disease on dialysis
  • pregnant
  • refused to participate

 

N total at baseline:

N = 85,

(22 received MP according to clinician’s preference, and 64 were randomized)

Intervention: 35

Control: 29

 

Important characteristics:

Age, mean (SD):

I: 73 (11)

C: 66 (12)

Mean diff: -7 (95% CI: -13 to -2)

 

Sex, n/N (%) male:

I: 23/35 (68%)

C: 26/29 (55%)

Mean diff: -11% (95% CI: -33 to 13)

 

Groups comparability at baseline:

Those in the intervention group were slightly older, but the baseline characteristics were otherwise very similar across groups.

The use of lopinavir/ritonavir was slightly more frequent in the control arm.

Methylprednisolone (MP)

 

In addition to SOC, patients in the experimental group received intravenous methylprednisolone (MP) 40 mg, twice a day, for 3 days and then 20 mg, twice a day, for 3 more days.

 

The clinical teams freely prescribed Interleukin-blocking agents and other therapies, as indicated.

Standard of care (SOC)

 

SOC included symptomatic treatment with acetaminophen, oxygen therapy, thrombosis prophylaxis with low molecular weight heparin, and antibiotics for co-infections. Azythromycin, hydroxychloroquine and lopinavir plus ritonavir were frequently prescribed.

Up to 28 days or to death.

 

Clinical outcomes

 

Mortality at 28 days:

I: 7/35 (20%)

C: 5/29 (17%)

 

Intention-to-treat

Primary composite outcome:

Relative risk: 0.68 (0.37-1.26), p=0.25

 

Escalation to ICU admission

I: 6/35 (17%)

C: 8/29 (28%)

RR: 0.85 (95% CI: 0.27 to 2.66)

 

Progression of respiratory insufficiency that required non-invasive ventilation (NIV)

I: 10/35 (29%)

C: 7/29 (24%)

 

Safety

Adverse events

Hyperglycaemia:

I: 9/35 (26%)

C: 0/29 (0%)

RR: 7.70 (95% CI: 1.10 to 40.4)

Nosocomial infection

I: 5/35 (14%)

C: 1/29 (3%)

RR: 2.12 (95% CI: 0.31 to 14.38)

 

Virological outcomes

not reported

 

Also available

  • Per protocol analysis
  • % variation in biochemical markers of inflammation from baseline to six days after randomization

Definitions:

Primary composite outcome: In-hospital all-cause mortality OR escalation to ICU admission OR progression of respiratory insufficiency that required NIV

 

 

Remarks:

- Initial sample size was 90 patients in each study arm. In this paper the results of the interim analysis, which was planned a priori after inclusion of one-half of the patients, to avoid delaying the communication of clinically useful data in the current pandemic scenario.

- Patients were censored at hospital discharge or day 15 after inclusion.

- 85 patients were analysed; 22 received MP according to the clinician’s preference, and 63 were randomized. Although allowed by design, no patient was included in the control arm by clinician’s preference.

- More than 90% of the patients took hydroxychloroquine and/or azithromycin during hospital admission.

- According to the authors, a purely randomized design appeared difficult to follow, and it could likely had implied a high risk of inclusion bias. So, we adopted a pragmatic mixed preference/ randomized design.

 

Conflicts of interest:

All authors declare that they have no competing interests

 

Authors conclusion:

In summary, although the study was terminated before achieving the complete sample size and no significant differences in ITT analysis were found, our PP analysis suggests that MP most likely has a clinically relevant effect in reducing the risk of developing severe respiratory insufficiency and ARDS, thus helping clinicians tailor therapy in non-mechanically ventilated patients with lung disease and systemic inflammation. These data should be interpreted with caution along with the outcomes of other trials of corticosteroid use in COVID-19 patients

Solanich, 2021

Type of study:

Randomized, single-center, open-label, phase II trial

 

Setting:

One public hospital for adults, between 1 April and 2 May 2020

 

Country:

Spain

 

Source of funding:

 COVID-19 funding from the Departament de Salut de la Generalitat de Catalunya

 

Conflicts of interest:

No conflict of interest

 

 

 

 

 

 

Severe COVID-19 patients with lung injury and systemic hyperinflammatory syndrome

 

Inclusion criteria:

  • COVID-19 confirmed by nasopharyngeal RT-PCR
  • New pulmonary infiltrates
  • Respiratory failure (PaO2/FiO2 <300 or SpO2/FiO2 <220)
  • High analytical inflammatory parameters: CRP >100 mg/L, D-Dimer >1000 µg/L, ferritin > 1000 µg/L

 

Exclusion criteria:

  • Life expectancy ≤254h
  • Glomerular filtration ≤30 ml/min/1.73m2
  • Leukopenia ≤4000 cells/µl or other immunosuppression conditions
  • Concomitant potential serious infections
  • Contraindication for corticosteroids or tracolimus
  • Known hypersensitivity to study drugs, their metabolites or formulation excipient
  • Previous participation in RCT <3 months before

 

N total at baseline:

N = 55

Intervention: 27

Control: 28

 

Important characteristics:

Age, mean (SD):

I: .61.5 y (13.9)

C: 64.8 y (12.1)

 

Sex, n/N (%) male:

I: 23/27 (85.2%)

C: 21/28 (75.0%)

 

Disease severity, mean (SD):

Defined by ordinal scale

I: 5 (5-5)

C: 5 (5-6)

Score 5:

I: 23/27 (85.2%)

C: 16/28 (57.1%)

Score 6:

I: 4/27 (14.8%)

C: 12/28 (42.9%)

 

Groups are not completely balanced, especially regarding time between symptom onset and randomization, the need for non-invasive ventilation or high-flow oxygen devices, corticosteroids use, CRP and creatinine kinase.

Methylprednisolone pulses and tracolimus added to standard of care

 

methylprednisolone pulses of 120 mg/day had to be administered on 3 consecutive days after randomization (if not previously administered). The administration of higher doses or longer duration of corticosteroids was allowed if their treating physicians considered it appropriate. Tacrolimus starting dose was 0.05 mg/kg (Adoport®) twice daily. Patients using lopinavir-ritonavir received 0.2 mg (Modigraf®) every 48 h. Thereafter, tacrolimus dosing was individualized through therapeutic drug monitoring to achieve blood trough levels of 8–10 ng/ml. In addition, patients in the experimental arm could receive standard of care (SoC) for their management in accordance with treating physicians.

Standard of care

 

SoC included measures of supplemental oxygen and respiratory support, fluid therapy, antipyretic treatment, postural measures, low molecular weight heparins, and could also include treatments with unproved antiviral (lopinavir-ritonavir, hydroxichloroquine, etc.) or immunosuppressive (any regimen of corticosteroids, tocilizumab, anakinra, etc.) drugs, or those necessary at the discretion of the treating physician, except for cyclosporine and/or tacrolimus.

Length of follow-up: 56 days

 

 

Loss-to-follow-up:

Intervention: 3/27 (11.1%)

Reasons (describe)

n=3: treatment compliance

 

Control: 2/28 (7.1%)

Reasons (describe)

n=2: deceased with <5 days of follow-up

 

Incomplete outcome data:

Some incomplete data regarding viral load, however, reasons not clear.

 

Clinical outcomes

COVID-19-related mortality (28 day)

I: 3/27 (11.1%)

C: 4/28 (14.3%)

OR: 0.76 [0.13-4.02]

COVID-19-related mortality (56 day)

I: 4/27 (14.8%)

C: 4/28 (14.3%)

OR: 1.04 [0.21-5.13]

All-cause mortality (28 day)

I: 4/27 (14.8%)

C: 6/28 (21.4%)

OR: 0.65 [0.14-2.67]

All-cause mortality mortality (28 day)

I: 5/27 (18.5%)

C: 6/28 (21.4%)

OR: 0.84 [0.21-3.28]

Also reported: mortality rates at day 10, time to COVID-19 related death, and time to all-cause death.

 

Duration of hospitalization

I: 13.0 (8.5-21.0)

C: 14.0 (9.0-22.5)

Discharge at day 65

I: 21/27 (77.8%)

C: 21/28 (75.0%)

OR: 1.16 [0.32-4.28]

 

Time to symptom resolution:

clinical stability at 56 days, n/N (%):

I: 21/27 (77.8%)

C: 22/28 (78.6%)

OR: 0.96 [0.25-3.61]

Time to clinical stability, median days (IQR):

I: 10 (7-13)

C: 11 (8-18.8)

HR=0.73 (95% CI 0.39-1.37)

Also reported: clinical stability at 10 and 28 days, ordinal scale at day 5, day 10, day 28 and day 58, time to body temperature normalization, PaO2/FiO2 >400 or SpO2/FiO2 >300, and respiratory rate <24 bpm.

 

Respiratory support

Duration of oxygen support (days)

I: 11.0 (8.0-19.5)

C: 13.0 (7.75-23.0)

p=0.953

High-flow or ventilatory support therapies

I: 14/27 (51.9%)

C: 18/28 (64.3%)

p=0.509

Duration of high-flow or ventilatory support (days)

I: 8.00 (5.0-27.2)

C: 6.5.0 (4.25-14.2)

p=0.303

 

Safety

Adverse events

I: 23/27 (85.2%)

C: 23/28 (82.1%)

Serious adverse events

I: 9/27 (33.3%)

C: 10/28 (35.7%)

 

Virological outcomes

SARS-CoV-2 positive test at day 56

Upper respiratory tract samples at day 0

I: 24/24, 100%

C: 20/20, 100%

Upper respiratory tract samples at day 28

I: 4/19, 21.1%

C: 2/18, 11.1%

Upper respiratory tract samples at day 56

I: 1/17 (5.8%)

C: 1/20 (5.0%)

Blood samples

I: 1/22 (4.5%)

C: 2/19 (10.5%)

OR/RR not reported

Also reported: positive test at day 28, viral load.

Definitions:

Clinical stability was defined as fulfilling all of the following criteria for 48 consecutive hours: body temperature ≤37.5°C; PaO2/FiO2 >400 and/or SpO2/FiO2 > 300; and respiratory rate ≤ 24 rpm.

Treatment failures were defined as: 1) not hospitalized and no limitations of activities; 2) not hospitalized, with limitation of activities, home oxygen requirement, or both; 3) hospitalized, not requiring supplemental oxygen and no longer requiring ongoing medical care (used if hospitalization was extended for infection-control or other nonmedical reasons); 4) hospitalized, not requiring supplemental oxygen but requiring ongoing medical care (related to Covid-19 or to other medical conditions); 5) hospitalized, requiring any supplemental oxygen; 6) hospitalized, requiring noninvasive ventilation or use of high-flow oxygen devices; 7) hospitalized, receiving invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO); and 8) death.

 

 

Remarks:

  • Groups are not comparable on baseline (see patient characteristics)

 

 

Authors conclusion:

The combined use of methylprednisolone pulses and tacrolimus, in addition to the SoC did not significantly improve the time to clinical stability or other secondary outcomes compared with SoC alone in hospitalized patients with severe COVID-19. Although not statistically significant, patients receiving the experimental therapy had numerically lower all-cause mortality than those receiving SoC. No relevant differences were observed in the clearance of the virus or in the rate of adverse events between the two groups. The reason why the largest and longest corticosteroid doses were used in the control group remains unclear.

Tang, 2021

Type of study:

prospective, multicentre, single-blind, clinical RCT

 

Setting:

Conducted between February and April 2020 in respiratory departments or infectious disease department of 7 tertiary hospitals in Beijing and Hubei province of China.

 

Country:

China

 

Source of funding:

Beijing Municipal Administration

of Hospitals’ Mission Plan, China; Excellence

Program of Beijing Clinical Key Specialty (2018); Novel Coronavirus

Pneumonia Key Technology Research and Development

Funding of Beijing Municipal Administration of Hospitals.

 

The authors declare no conflict of interest.

 

Pfizer Manufactoring Belgium NV produced the methylprednisolone, but was not involved in analysis of the results.

 

Patients with COVID-19 pneumonia admitted to general wards for less than 72h.

 

Inclusion criteria:

  • Laboratory confirmed SARS-CoV-2 infection and had pneumonia;
  • Age ≥ 18 y;
  • Admitted to general wards for less than 72 h;
  • Able to sign informed consent.

 

Exclusion criteria:

  • Severe immunosuppression;
  • Pregnant or breastfeeding women;
  • Corticosteroid needs for other diseases;
  • Refractory hypertension;
  • Epilepsy or delirium;
  • Glaucoma;
  • Active gastro-intestinal bleeding within 3 months;
  • Refractory hypokalemia;
  • Secondary bacterial or fungal infection;
  • Unwilling or unable to participate or complete the study;
  • Participation in other studies

 

N total at baseline:

N = 86

Intervention: 43

Control: 43

 

Important characteristics:

Age, median (IQR):

I: 57 y (49-67)

C: 55 y (38-65)

Sex, n/N (%) male:

I: 21/43 (48.8%)

C: 20/43 (46.5%)

 

Groups were comparable at baseline, with the exception of the number of patients who showed the symptom “sputum”. In the intervention group, more patients showed this symptom (I: 17 vs. C: 6).

 

1 mg/kg per day of methylprednisolone

dissolved in 100 mL 0.9% normal saline, administered intravenously for 7 days + standard care

 

100 mL 0.9% normal saline administered intravenously + standard care

Length of follow up: 14 days

 

Loss to follow-up:

I: 0/43 (0%)

C: 0/43 (0%)

 

Clinical outcomes

In-hospital mortality, n (%)

I: 0 (0%) / 43

C: 1 (2.3%) / 43

OR 0.977 [0.933 to 1.023]

P = 0.314

 

Duration of hospitalization, median (IQR), days

I: 17 (13–22)

C: 13 (10–20)

HR 1.300 [0.844 to 2.002]

P = 0.235

 

ICU admission, n (%)

I: 2 (4.8%) / 43

C: 2 (4.8%) / 43

OR 1.000 [0.134 to 7.442]

P = 1.000

 

Clinical deterioration 14 days after randomization, n (%)

I: 2 (4.8%) / 43

C: 2 (4.8%) / 43

OR 1.000 [0.134 to 7.442]

P = 1.000

 

Clinical cure 14 days after randomization, n (%)

I: 22 (51.2%) / 43

C: 25 (58.1%) / 43

OR 1.326 [0.566 to 3.106]

P = 0.516

 

Time from randomization to clinical cure, median (IQR), days

I: 14 (10–19)

C: 12 (9–17)

HR 1.043 [0.673 to 1.617]

P = 0.850

 

Need for respiratory support

The median duration of hospitalization was 17 days (IQR: 13-22) and 13 days (IQR: 10-20) in the methylprednisolone and placebo groups, respectively. No significant differences between groups were found (p=0.314, HR = 1.3 [95% CI 0.84-2.00]).

 

Safety

Adverse events

Not reported

 

Virological outcomes

Time from virus shedding of SARS-CoV-2, median (IQR), days

I: 11 (6–16)

C: 8 (2–12)

HR 1.782 [1.057 to 3.003]

P = 0.030

 

 

Definitions:

  • Clinical deterioration: patient met at least one of the following criteria: the clinical symptoms and signs continue to deteriorate, new pulmonary or extrapulmonary lesions appear, the chest computed tomography indicates the progress, or the patient is transferred to the ICU or is dead.
  • Clinical cure: patient met all of the following criteria: the clinical symptoms and signs of COVID-19 improved or alleviated (body temperature for 3 consecutive days, respiratory symptoms improved significantly, and computed tomographic images showed obvious absorption of bilateral extensive ground-glass opacification and/or consolidation), and no additional or alternative treatments were needed.
  • Virus shedding: SARS-CoV-2-negative result of the nucleic acid tests from throat swabs for 2 consecutive times (sampling interval of at least 1 day). RT-PCR was used to test SARS-CoV-2.

 

Remarks:

  • Pfizer pharmaceuticals produced the intervention drug.
  • Single-blinded RCT: physicians were aware of treatment randomization
  • Trail was terminated prematurely (because the number of patients with COVID-pneumonia decreased).

 

Authors conclusion:

Due to early termination of this trial, most outcomes were difficult to estimate because of the low statistical power. However, the short-term early use of corticosteroid could suppress the immune cells, which may prolong SARS-CoV-2 shedding in patients with COVID-19 pneumonia, especially for the patients without acute respiratory failure. It was suggested that corticosteroids

should not be added to standard therapy as a general treatment for the patients of COVID-19 patients; moreover, it should be evaluated according to the severity

and necessity. The interpretation still needs to be further verified by a large sample size and randomized clinical

trials.

 

 

 

 

First author, year

Describe method of randomisation1

Bias due to inadequate concealment of allocation?2

 

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of participants to treatment allocation?3

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of care providers to treatment allocation?3

 

(unlikely/likely/unclear)

Bias due to inadequate blinding of outcome assessors to treatment allocation?3

 

(unlikely/likely/unclear)

Bias due to selective outcome reporting on basis of the results?4

 

 

(unlikely/likely/unclear)

Bias due to loss to follow-up?5

 

 

 

(unlikely/likely/unclear)

Bias due to violation of

intention to treat analysis?6

 

 

(unlikely/likely/unclear)

Dexamethasone

Tomazini et al. 2020

 

 

The randomization list was generated by the trial statistician, not involved in patient care or enrolment, using the R software. The list comprised random

blocks of two and four, unknown to researchers and stratified at center level and was uploaded and implemented in the on-line web-based system used for randomization data collection.

Unlikely

 

The randomization list was generated by the trial statistician, not involved in patient care or enrolment, using the R software.

 

The group treatment was disclosed to the investigator only after all information regarding patient enrolment was recorded in the online system.

Likely

 

Physicians, patients, and individuals who assessed the outcomes were not blinded for the assigned treatment

 

Likely

 

Physicians, patients, and individuals who assessed the outcomes were not blinded for the assigned treatment

 

Likely

 

Physicians, patients, and individuals who assessed the outcomes were not blinded for the assigned treatment

 

Unlikely

 

All predefined outcome measures were reported

Unlikely

 

All patients were included in the primary analysis. There was no loss to follow-up, and data on the primary outcome, mortality within 28 days, clinical status at day 15, ICU-free days at 28 days, and mechanical ventilation duration were available for all patients.

 

 

Unlikely

 

ITT analysis performed.

Jamaati, 2021

 

 

 

Computerized

 

The selected patients were allocated to either the dexamethasone group or the control group by block randomization. Ten blocks were generated by the Online Randomizer website. Each block included five patients; of these, two patients were assigned to the dexamethasone group and three patients were assigned to the control group or vice versa.

Unclear

 

It is unclear whether allocation of treatment was concealed to the patients and caretakers.

Unlikely

 

The authors do not report whether the patients were blind to the randomization. However, it is not expected that patients influenced the reported outcome measures (need for invasive mechanical ventilation, death rate, length of hospital / ICU stay, and radiological changes in the CT scan).

Unclear

 

The authors do not report whether any blinding occurred. This may have affected the more subjective outcome measures such as duration of hospital stay, and whether ventilation was started or maintained.

Unlikely

 

The authors report that the radiologist who assessed the CT scans was blinded to the lab data and clinical findings.

Unlikely

 

All outcome measures stated in the methods section were reported in the results.

Unlikely

 

No patients seem to have been lost to follow up (except for those who died).

Unlikely

 

No mention of ITT analysis, however the participants seem to be analyzed as allocated.

Horby et al., 2021

 

 

 

Randomization was performed

with the use of a Web-based system with concealment

of the trial-group assignment

Unlikely

 

Adequate concealment

 

“webbased

system randomization with concealment of the trial-group assignment”.

Likely

 

Patients not blinded, primary outcome not susceptible for bias (death)

Likely

 

Study staff not blinded to allocated treatment

Likely

 

Study staff not blinded to allocated treatment

Unlikely

 

Relevant outcomes reported; protocol and analysis plan available

Unlikely

 

Completed follow-up forms were available for 2095 of 2104 patients (99.6%) in the intervention group and 4306 of 4321 patients (99.7%) in the control group.

 

All information is based on a data cut-off

of December 14, 2020. Information regarding the primary and secondary outcomes is complete for 99.9% of trial participants.

Unlikely

 

Analyses performed according to intention-to-treat protocol

Hydrocortisone

Angus et al. 2020

Randomization will be conducted through a password-protected, secure website using a central, computer-based randomization program.

Unlikely

 

Randomization will be at the patient level

and occur after data necessary to implement the inclusion and exclusion criteria have been entered into the secure randomization website. The RAR will occur centrally as part of the computerized randomization process. Sites will receive the allocation status and will not be informed of the randomization proportions.

Unclear

 

Not reported in the study

 

Unlikely

 

The default position within the REMAP is that treatments determined by randomization will

be provided on an open-label basis. However, the blinding of treatment status is not precluded within the REMAP. If required, details related to blinding of interventions will be

specified in the DSAs.

Unlikely

 

The primary outcome of all-cause mortality censored at 90 days is not subject to ascertainment bias. Wherever possible, trial management personnel, who are blinded to allocation status, will conduct any follow up after discharge.

Unlikely

 

Wherever possible, trial management personnel, who are blinded to allocation status, will conduct any follow up after discharge.

Unlikely

 

Patients missing the

primary end point (n = 5) were ignored; there was no imputation

of missing primary (or secondary) end point values. A patient who survived to hospital discharge was assumed

to be free of organ support through 21 days (last status carried

forward).

Unlikely

 

Analysis of the primary outcome was then repeated in a second model using only data from those patients enrolled in the corticosteroid domain with no adjustment for assignment to interventions in other domains. Although using less information, this analysis is more typical for an RCT. Further secondary analyses explored the effects of excluding patients who were ruled out for COVID-19 (defined as documented negative test results for SARS-CoV-2 infection and no positive test results), of excluding adjustment for site and time epoch, and of combining the fixed-dose and shock-dependent hydrocortisone groups.

 

 

 

Dequin et al., 2020

 

 

 

Computerized

 

“Randomization was centralized and performed electronically.

Allocation sequences were generated in a 1:1 ratio by a computer-generated random number using a blocking schema; the range of block sizes remains confidential until the completion of the parent trial. Randomization was stratified by center and by use of mechanical ventilation at the

time of inclusion.”

Likely

 

Randomization stratified by center

Unlikely

 

Patients in placebo group in identical protocol

Unlikely

 

“Both hydrocortisone and placebo were provided in industrially

prepared packaging (Serb Specialty Pharmaceuticals).”

Unclear

 

 

Unlikely

 

Trial registered; all relevant outcomes reported

Unlikely

 

1 patient in the intervention group withdrew consent; this patient was considered to have experiences treatment failure on day 21 (primary outcome)

Unlikely

 

Analyses performed according to intention-to-treat protocol

Munch, 2021

Computerised

 

Participants were randomised (1:1) using a centralised and web-based randomisation system at the Copenhagen Trial Unit (CTU. The randomisation was performed according to a computer-generated allocation sequence, stratification variables, and varying block sizes.

Unlikely

 

The allocation sequence was only known by the data

manager at the CTU.

Unlikely

 

Participants were blinded to treatment allocation.

Unlikely

 

Clinical staff members were blinded to the allocation.

Unlikely

 

Management Committee, investigators, trial site staff registering outcome data and the trial statistician were blinded to the allocation.

Unlikely

 

All outcome measures described in the methods are reported in the results.

Unlikely

 

No participants were lost to follow-up.

Unlikely

 

All analyses were done in the intention-to-treat population, defined as all randomised participants for whom there were consent to use data.

Methylprednisolone

Edalatifard et al., 2021

 

 

 

Method not described

 

“the patients randomly

allocated in control (n=34) and intervention group (n=34), in a 1:1 ratio by block

randomization method.”

Unclear

 

not described

Unlikely

 

Patients were blinded to treatment

Likely

 

“ Physicians and

clinicians team know about the medicine and intervention groups”

Likely

 

“ Physicians and

clinicians team know about the medicine and intervention groups”

Unlikely

 

Relevant outcomes reported

 

Trial registered:

Iranian Registry of Clinical Trials on 15

April 2020 (IRCT ID: IRCT20200404046947N1

Likely

 

34/34 (100%) of patients of the intervention and 28/34 (82.4%) of patients of the control group included in analysis

Likely

 

6 patients (17.8%) discontinued treatment of control group and received intervention. They were excluded from the analysis.

 

Analyses performed according to intention-to-treat protocol

Jeronimo et al., 2020

 

 

 

An independent statistician prepared an electronically generated

randomization list with 14 blocks of 30 participants

per block,

Unlikely

 

The list was accessible only to nonblinded pharmacists

in the study. Participants were randomized by the study

pharmacist to their designated treatment regimen at the time

of inclusion and were subsequently identified throughout the

study only by their allocated study number.

Unlikely

 

Patients were considered to be blinded for the interventional drug

 

Unclear

 

No blinding of care providers

Unlikely:

 

Radiologists and other assessors were blinded

Unlikely

 

Primary outcome was mortality

 

Unlikely

 

Low loss to follow up:

I: 0.5%
C: 1%

Unlikely

 

A modified and non-modified intention-to-treat analyses was conducted

Corral-Gudino et al., 2021

 

 

Patients were randomized based on a spreadsheet that transformed every medical record number into a group allocation using a concealed mathematical formula

 

Partly randomized; i.e. some participants received treatment according to the clinician’s preference, the other participants were randomized.

 

If the clinical team decided that a strong preference for glucocorticoid therapy existed, the patient was allocated to the preference arm. Otherwise, the patient was randomized (1:1) and allocated to the MP or control arm accordingly..

Unclear

 

Note: allocation concealment not described.

allocation.

Unclear

 

Note: Blinding of participants was not described

 

 

 

Unclear

 

Note: Blinding of care providers was not described

 

 

Unclear

 

Note: Blinding of outcome assessors was not described

 

 

Unclear

 

Note: Protocol not available

 

Unclear

 

Note: Loss to follow-up was not reported

 

Likely

 

Note: In the intention-to-treat analysis, only patients who received at least one dose of treatment were included in the treatment arm.

Tang, 2021

Computerized

 

Randomization was

stratified by the statistician of the leading site, who produced computer-

generated block randomization lists with a block size of 4

patients.

Unlikely

 

Allocation of treatment seems to have been concealed properly.

Unlikely

 

Patients were blind to treatment allocation.

 

Likely

 

Care providers were not blind to treatment allocation. Therefore, they could have biased the outcome measures that are prone to subjectivity, such as the duration of hospitalization and ICU admission.

 

Unlikely

 

It is unlikely that care providers biased objective outcome measures such as mortality, clinical deterioration or clinical cure, and virus shedding.

 

Unlikely

 

During the study, data collection and end point judgement were blinded, and the statisticians were also blinded during the statistical analysis.

Unlikely

 

All outcome measures stated in the methods section were reported in the results.

Unlikely

 

No patients were lost to follow up.

Unlikely

 

Authors indicate that an ITT was not necessary and the included patients seem to be analyzed as allocated.

Solanich, 2021

 

 

 

Computerized

 

Patients were randomized using the RedCap, a secure web application for building and managing electronic case report forms (eCRF). Patients were randomly (1:1) assigned to one of the study arms with no baseline stratification.

Unclear

 

No information on concealment

Likely

 

Open-label RCT

Likely

 

Open-label RCT

Unlikely

 

The IDIBELL Biostatistical Unit performed the analysis and analysts were blinded to the treatment received by patients (intervention vs. usual care)

Unlikely

 

All outcomes were reported in main article of appendix

 

Unlikely

 

Similar loss to follow-up, no indications for bias

 

Unlikely

 

Except for outcome on viral load, but no comparisons were done.

 

 

Table of excluded studies

On request.

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 03-10-2022

Laatst geautoriseerd  : 03-10-2022

Geplande herbeoordeling  :

Initiatief en autorisatie

Initiatief:
  • Federatie Medisch Specialisten
  • Stichting Werkgroep Antibioticabeleid
Geautoriseerd door:
  • Nederlandse Internisten Vereniging
  • Nederlandse Vereniging van Artsen voor Longziekten en Tuberculose
  • Nederlandse Vereniging voor Klinische Geriatrie
  • Nederlandse Vereniging voor Medische Microbiologie
  • Nederlandse Vereniging van Ziekenhuisapothekers
  • Nederlandse Vereniging voor Intensive Care
  • Stichting Werkgroep Antibioticabeleid
  • Patiëntenfederatie Nederland

Algemene gegevens

De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut). Deze ondersteuning werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS). De werkgroep werd gefinancierd uit een VWS subsidie.

De financiers hebben geen enkele invloed gehad op de inhoud van de richtlijnmodule.

Samenstelling werkgroep

Voor het ontwikkelen van de richtlijnmodules is in 2020 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de behandeling van patiënten met COVID-19.

 

In 2020 is een multidisciplinair expertiseteam behandeling ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van het expertiseteam behandeling) die betrokken zijn bij de zorg voor patiënten met COVID-19. Dit expertiseteam fungeerde als stuurgroep, welke opdracht heeft gegeven tot het ontwikkelen van de module, alsmede fungeerde als klankbordgroep.

 

Werkgroep

  • Dr. Marjolein Hensgens, internist-infectioloog, Afdeling Infectieziekten, UMC Utrecht en LUMC Leiden (Stichting Werkgroep Antibiotica Beleid)
  • Drs. Emilie Gieling, apotheker, Afdeling Klinische Farmacie, UMC Utrecht.
  • Prof. Dr. Dylan de Lange, intensivist, Afdeling Intensive Care, UMC Utrecht.
  • Dr. Wim Boersma, longarts, Afdeling Longziekten, Noordwest Ziekenhuisgroep, Alkmaar.
  • Dr. Paul van der Linden, apotheker, Afdeling Klinische Farmacie, Tergooi MC, Hilversum (Stichting Werkgroep Antibiotica Beleid).
  • Prof. Dr. Bhanu Sinha, arts-microbioloog, Afdeling Medische Microbiologie & Infectiepreventie, UMCG, Groningen (Stichting Werkgroep Antibiotica Beleid).
  • Dr. Mark de Boer, internist-infectioloog, Afdelingen Infectieziekten en Klinische Epidemiologie, LUMC, Leiden (Stichting Werkgroep Antibiotica Beleid).
  • Tot 1-11-2021 tevens deel van de werkgroep: Dr. Albert Vollaard, internist-infectioloog, LCI, RIVM

 

Stuurgroep (expertiseteam Behandeling COVID-19)

  • Dr. L.M. van den Toorn (voorzitter), longarts, Erasmus Medisch Centrum (Erasmus MC), NVALT
  • Dr. M.G.J. de Boer, internist-infectioloog, Leids Universitair Medisch Centrum (LUMC), SWAB/NIV)
  • Drs. A.J. Meinders, internist-intensivist, St. Antonius Ziekenhuis, NVIC
  • Prof. dr. D.W. de Lange, intensivist-toxicoloog, Universitair Medisch Centrum Utrecht (UMC Utrecht), NVIC
  • Dr. C.H.S.B. van den Berg, infectioloog-intensivist Universitair Medisch Centrum Groningen (UMCG), NVIC
  • Dr. S.U.C. Sankatsing, internist-infectioloog, Diakonessenhuis, NIV
  • Dr. E.J.G. Peters, internist-infectioloog, Amsterdam University Medical Centers (Amsterdam UMC), NIV
  • Drs. M.S. Boddaert, arts palliatieve geneeskunde, Leids Universitair Medisch Centrum (LUMC), IKNL
  • Dr. P.L.A. Fraaij, kinderarts-infectioloog, Erasmus Medisch Centrum (Erasmus MC), Sophia Kinderziekenhuis, NVK
  • Dr. E. van Leeuwen, gynaecoloog, Amsterdam University Medical Centers (Amsterdam UMC), NVOG
  • Dr. J.J. van Kampen, arts-microbioloog, Erasmus Medisch Centrum (Erasmus MC), NVMM
  • Dr. M. Bulatović-Ćalasan, internist allergoloog-immunoloog en klinisch farmacoloog, Universitair Medisch Centrum Utrecht (UMC Utrecht), Amsterdam University Medical Centers (Amsterdam UMC), NIV
  • Drs. A.F.J. de Bruin, anesthesioloog-intensivist, St. Antonius Ziekenhuis, NVA
  • Drs. A. Jacobs, klinisch geriater, Catharina Ziekenhuis, NVKG
  • Drs. B. Hendriks, ziekenhuisapotheker, Leids Universitair Medisch Centrum (LUMC), NVZA
  • Drs. M. Nijs, huisarts, NHG
  • Dr. S.N. Hofstede, senior adviseur, Kennisinstituut van Medisch Specialisten

 

Meelezer

  • Drs. K. (Klaartje) Spijkers, senior adviseur patiëntenbelang, Patiëntenfederatie Nederland, Utrecht

 

Met ondersteuning van:

  • dr. S.N. Hofstede, senior adviseur, Kennisinstituut van Medisch Specialisten
  • dr. L.M.P. Wesselman, adviseur, Kennisinstituut van Medisch Specialisten
  • dr. D. Nieboer, adviseur, Kennisinstituut van Medisch Specialisten
  • drs. A.L.J. (Andrea) Kortlever - van der Spek, adviseur, Kennisinstituut van Medisch Specialisten
  • M. Griekspoor MSc., junior adviseur, Kennisinstituut van Medisch Specialisten

  • drs. I. van Dusseldorp, senior literatuurspecialist, Kennisinstituut van Medisch Specialisten

Belangenverklaringen

De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.

Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

De Lange

1. Afdelingshoofd Nationaal Vergiftigingen Informatie Centrum (NVIC) van het UMC Utrecht (0,6 fte)
2. Intensivist, afdeling Intensive Care, UMC Utrecht (0,4 fte)

Secretaris Stichting Nationale Intensive Care Evaluatie (Stichting NICE), onbezoldigd.

Geen

Geen actie nodig

De Boer

Internist-Infectioloog, klinisch epidemioloog, senior medisch specialist, Leids Universitair Medisch Centrum, afdeling Infectieziekten

- Voorzitter Stichting Werkgroep Antibioticabeleid (onkostenvergoeding)
- Voorzitter NIV-COIG commissie Immuniteit en Infectieziekten (beperkt honorarium)
- Sectieredacteur Infectieziekten Nederlands Tijdschrift voor Geneeskunde (onbetaald)
- Lid FMS Expertiseteam behandeling COVID-19 (onbetaald)

Geen

Geen actie nodig

Sinha

Arts-microbioloog/hoogleraar, Universitair Medisch Centrum Groningen (voltijd) (zie ook https;//www.rug.nl/staff/b.sinha/)

- SWAB-bestuur: secretaris [onbetaald; vacatiegeld voor instelling]
- SWAB redactiegroep Leidraad/RL Medicamenteuze behandeling van patiënten met COVID-19 (infectie met SARS-CoV-2) [onbetaald]
- Verschillende functies in meerdere UMCG commissies [onbetaald]

- Projectsubsidie EU (Cofund): deelprojecten, cofinanciering
- Projectsubsidie PUSH: deelprojecten, cofinanciering
- Projectsubsidie Stichting Beatrixoord
- Projectsubsidie Cross Border Institute (RUG): deelproject
- Projectsubsidie Data Federation Hub (RUG)
- Projectsubsidie Interreg (via instelling): deelproject
- Geen m.b.t. het onderwerp van de leidraad/richtlijn

 

 

Mogelijk boedbeeldfunctie SWAB

Geen actie nodig

Van der Linden

Ziekenhuisapotheker
Afdeling klinische farmacie
Tergooi

Penningmeester SWAB, vacatiegeld
METC UMCU, betaald

Geen

Geen actie nodig

Vollaard

Internist-infectioloog, Landelijke Coordinatie Infectieziektebestrijding, RIVM

Arts voor ongedocumenteerde migranten, Dokters van de Wereld, Amsterdam (onbetaald)

Geen

Geen actie nodig

Gieling

Ziekenhuisapotheker - Klinisch Farmacoloog, UMC Utrecht

Lid OMT Nederlandse Vereniging voor Ziekenhuisapothekers (onbetaald)

Geen

Geen actie nodig

Boersma

Longarts Noordwest Ziekhuisgroep

Hoofd research afdeling longziekten

Lid sectie infectieziekten NVALT, onbetaald
Lid workgroup repiratory infections group 10.1 ERS, onbetaald
LId EMBARC streering committee, onbetaald

Eenmalige digitale deelname aan adviesraad MSD Pneumovax over Pneumococcal disease, betaald

 

Geen actie nodig

Hensgens

Internist-infectioloog, UMC Utrecht (0.8 aanstelling, waarvan nu 0.4 gedetacheerd naar LUMC)

Internist-infectioloog, LUMC (via detachering, zie boven)

Geen

Geen

Geen actie nodig

 

Stuurgroep

 

Achternaam stuurgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

Van den Toorn (voorzitter)

Voorzitter NVALT
Longarts in Erasmus MC

Geen

Geen

Geen actie nodig

De Boer

Internist-Infectioloog, senior medisch specialist, LUMC, afdeling infectieziekten

- Voorzitter Stichting Werkgroep Antibioticabeleid (onkostenvergoeding)
- Voorzitter NIV-COIG commissie Immuniteit en Infectieziekten (beperkt honorarium)
- Sectieredacteur Infectieziekten Nederlands Tijdschrift voor Geneeskunde (onbetaald)
- Lid FMS Expertiseteam behandeling COVID-19 (onbetaald)

Geen

Geen actie nodig

Meinders

Internist-intensivist, St.-Antonius ziekenhuis, Nieuwegein

commissie werk
geen betaalde nevenfunctie of relatie industrie

Geen

Geen actie nodig

De Lange

Afdelingshoofd Nationaal Vergiftigingen Informatie Centrum (NVIC) van het UMC Utrecht
Intensivist, afdeling Intensive Care, UMC Utrecht

secretaris Stichting Nationale Intensive Care Evaluatie (Stichting NICE) (onbetaald)

Geen

Geen actie nodig

Van den Berg

Infectioloog-intensivist, UMCG

Geen

Geen

Geen actie nodig

Sankatsing

Internist-infectioloog/internist-acute geneeskunde, Diakonessenhuis, Utrecht

- Bestuurslid Nederlandse Vereniging van Internist-Infectiologen (NVII) (onbetaald).
- Lid Commissie Richtlijnen Nederlandse Internisten Vereniging (NIV) (betaald).
- Lid Werkgroep Richtlijn Sepsis II en III van de FMS (betaald).
- Lid Regionaal Coördinatieteam van het Regionaal Zorgnetwerk Antibioticaresistentie Utrecht (betaald).

Geen

Geen actie nodig

Peters

Internist - aandachtsgebieden infectieziekten en Acute Geneeskunde Amsterdam UMC, locatie Vumc
Opleider Infectieziekten Vumc
Plaatsvervangend Hoofd Infectieziekten Amsterdam UMC

Wetenschappelijk Secretaris International Working Group on the Diabetic Foot (onbetaald)
Voorzitter Werkgroep Behandeling Gewrichtsprotheseinfecties voor Stichting Werkgroep Antibioticabeleid (onbetaald)

Geen

Geen actie nodig

Boddaert

Medisch adviseur bij Integraal Kankercentrum Nederland (IKNL) en Palliatieve Zorg Nederland (PZNL)

Arts palliatieve geneeskunde in LUMC

Geen

Geen

Geen actie nodig

Fraaij

Kinderarts infectioloog- immunoloog, Erasmus MC-Sophia, Rotterdam
Klinische wetenschapper, Viroscience, ErasmusMC, Rotterdam

Bestuur Stichting Infecties bij Kinderen (onbetaald)

deelname aan RECOVER, European Union's Horizon 2020 research

Geen actie nodig

Van Leeuwen

Gyaecoloog Amsterdam Universitair Medisch Centra
Bestuurder Stichting Prenatale Screening Amsterdam en Omstreken (SPSAO)

Geen

Geen

Geen actie nodig

Van Kampen

Arts-microbioloog, afdeling Viroscience, Erasmus MC

- associate editor antimicrobial resistance & infection control (onbetaald)
- lid sectie virusdetectie SKML (onbetaald)

- lid antibioticacommissie Erasmus MC (onbetaald)
- plaatsvervangend lid infectiecommissie Erasmus MC (onbetaald)

1. Mede uitvinder patent: 1519780601-1408/3023503

2. R01AI147330 (NIAID/NH) (HN onderzoek

(1+2 niet gerelateerd aan COVID-19)

 

 

 

 

 

 

Geen actie nodig

Bulatovic

Internist allergoloog-immunoloog en klinische farmacoloog, UMC Utrecht en Diakonessenhuis Utrecht
Onderzoeker Amsterdam Medisch Centrum

Functie 1: arts
Functie 2: onderzoeker
(Beide betaald)

Geen

Geen actie nodig

De Bruin

Anesthesioloog - Intensivist St. Antonius ziekenhuis Nieuwegein en Utrecht
Sectie voorzitter IC&PACU NVA

Geen

Geen

Geen actie nodig

Jacobs

Klinisch geriater en klinisch farmacoloog

Geen

Geen

Geen actie nodig

Hendriks

Ziekenhuisapotheker farmaceutische patiëntenzorg, afd. Kiinische Farmacie en

Toxicoiogie, Leids Universitair Medisch Centrum

Lid SWAB werkgroep surveillance antibioticagebruik, onbetaald

Lid SWAB richtlijncommissie antibiotica allergie, onbetaald

Geen

Geen actie nodig

Nijs

Huisarts

Geen

Geen

Geen actie nodig

Hofstede

Senior adviseur Kennisinstituut van Medisch Specialisten

Geen

Geen

Geen actie nodig

 

Meelezer

 

Achternaam

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

Spijkers

Senior adviseur patiëntenbelang

Voorzitter Stichting Samen voor Duchenne
Lid Community Advisory Board for Duchenne

Geen

Geen actie nodig

 

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief door een afgevaardigde patiëntenvereniging in de klankbordgroep. De verkregen input is meegenomen bij het opstellen van de module. De conceptrichtlijn is tevens voor commentaar voorgelegd aan de Patiëntenfederatie Nederland en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.

Werkwijze

Van leidraad naar richtlijnmodules

Bij aanvang van de pandemie in 2020 was het onduidelijk of bestaande of nieuwe medicijnen een relevante bijdrage konden leveren aan het herstel van patiënten geïnfecteerd met het SARS-CoV-2. Vandaar dat eind februari 2020 werd aangevangen met de eerste versie van de leidraad ‘Medicamenteuze behandeling voor patiënten met COVID-19 (infectie met SARS–CoV-2)’, welke begin maart 2020 online beschikbaar werd gesteld op de website van de SWAB (https://swab.nl/nl/covid-19). Sindsdien werd het adviesdocument op wekelijkse basis gereviseerd en indien nodig op basis van nieuwe publicaties van onderzoek aangepast. Het initiatief en de coördinatie hiertoe werden genomen door de SWAB Leidraadcommissie, ondersteund door het kennisinstituut van de Federatie Medisch Specialisten en een brede klankbordgroep waarbinnen de betrokken specialisten(verenigingen) zijn vertegenwoordigd. In september 2021 is gestart met het doorontwikkelen van de leidraad naar richtlijnmodules.

 

AGREE

Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).

 

Knelpuntenanalyse en uitgangsvragen

Tijdens de COVID-19 pandemie zijn knelpunten op verschillende manieren geïnventariseerd:

1. De expertiseteams benoemde de knelpunten in de zorg voor patiënten met COVID-19.

2. Er is een mailadres geopend (covid19@demedischspecialist.nl) waar verschillende partijen knelpunten konden aandragen, die vervolgens door de expertiseteams geprioriteerd werden.

3. Door de Federatie van Medisch Specialisten zijn webinars georganiseerd waarbij vragen konden worden ingestuurd. Deze vragen zijn na afloop van de webinars voorgelegd aan de expertiseteams en geprioriteerd.

 

Uitkomstmaten

Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Methode literatuursamenvatting

Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur en de beoordeling van de risk-of-bias van de individuele studies is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. Wanneer mogelijk werd de data uit verschillende studies gepoold in een random-effects model. Review Manager 5.4 werd gebruikt voor de statistische analyses. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is mogelijk dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • er is een reële kans dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • de literatuurconclusie is zeer onzeker.

 

Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.

In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.

 

Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers

 

Sterke aanbeveling

Zwakke (conditionele) aanbeveling

Voor patiënten

De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet.

Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet.

Voor behandelaars

De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen.

Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren.

Voor beleidsmakers

De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid.

Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen.

 

Organisatie van zorg

Bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen.

 

Commentaar- en autorisatiefase

De conceptrichtlijnmodule werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Literatuur

Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.

 

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.

 

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.

 

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.

 

Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.

 

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html

 

Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.

 

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Langdurige klachten en revalidatie na COVID-19