Cerebrale arterioveneuze malformatie (AVM)

Initiatief: NVvN Aantal modules: 10

Differentiaal diagnose

Uitgangsvraag

2. Op welke radiologische kenmerken is een AVM te onderscheiden van andere vaatafwijkingen?

Aanbeveling

Bij een patiënt met de verdenking op een AVM is het aan te bevelen te verwijzen naar een centrum met voldoende specifieke kennis van verschillende vasculaire afwijkingen in de hersenen. 

 

Indien nadere diagnostiek naar een klein AVM is geïndiceerd, dan is een DSA de  gouden  standaard omdat een klein AVM gemist kan worden op een CTA of MRI/A.

Overwegingen

Professioneel perspectief

Meestal is een AVM radiologisch goed te onderscheiden van andere vaatafwijkingen.

Het onderscheid tussen een micro-AVM en een piale fistel kan moeilijk zijn op conventionele beeldvorming (CT en MRI) omdat door de beperkte resolutie en het ontbreken van hemodynamische informatie de aan- of afwezigheid van een kleine nidus moeilijk kan worden vastgesteld. DSA is hiervoor geïndiceerd. Ook het onderscheid tussen een AVM en CPA kan lastig zijn en ook hiervoor is een DSA behulpzaam.Voor laesies zonder arterioveneuze shunt kan de diagnostiek meestal beperkt blijven tot CT(A) en/of MRI(A).

 

Rationale van de aanbeveling

Het is belangrijk om vast te stellen of er sprake is van een AVM of van een andere vaatafwijking. Ondanks dat sommige kenmerkende verschillen duidelijk beschreven zijn, zijn de verschillen tussen de vaatafwijkingen soms subtiel.

Onderbouwing

In de praktijk zal indien er een CTA of een MRA is verricht onder de verdenking van een AVM, het goed mogelijk zijn vast te stellen of de vaatafwijking een AVM betreft of een andere vaatafwijking, zoals een durale AV-fistel, een piale AV-fistel, een caverneuze malformatie, een capillaire teleangiëctastie, of een developmental venous anomaly (DVA).   Een juiste karakterisering en angiografische beschrijving van een vaatafwijking, is van groot belang is voor de prognose en behandeling.  

 

Eén uitgangsvraag  is hierbij opgesteld:

2. Op welke radiologische kenmerken is een AVM te onderscheiden van andere vaatafwijkingen?

 

Wij maken in deze richtlijn voor de differentiële diagnose onderscheid tussen i) laesies met een arterioveneuze shunt met voeding uit piale arterieen, a) de cerebrale proliferatieve angiopathie(CPA); b) de piale arterioveneuze fistel en ii) laesies zonder AV-shunt, te weten de developmental venous anomaly (DVA) en de capillaire teleangiëctastie. Ondanks dat bij deze laatste groep aandoeningen de voor het AVM karakteristieke AV -shunting en bijbehorende hypertrofe arteriële voeding ontbreekt blijkt in de praktijk dat deze laesies voor verwarring kunnen zorgen.

2.1          

Voor dit hoofdstuk is een beschrijvende strategie gebruikt, de conclusies zijn daarom niet gescoord met GRADE.

 

 

Kwaliteit van bewijs met GRADE: -

Het AVM kent vele overeenkomsten met een cerebrale proliferatieve angiopathie (CPA) maar kan onderscheiden worden op basis van de angioarchitechtuur.

 

Bij een CPA bevindt zich hersenweefsel tussen de vaten van de nidus

 

Referentie: (14,15)

 

Kwaliteit van bewijs met GRADE: - 

Een piale AVF onderscheid zich van een AVM doordat bij een piale AVF de nidus ontbreekt. Bij een piale AVF is vaak sprake van een corticale varix of “giant venous aneurysm”, met name bij kinderen.  .

 

Referentie:  (16,18,19)

 

Kwaliteit van bewijs met GRADE: -

 Het DVA betreft een variatie van de normale veneuze afvloed. Er is geen sprake van aterioveneuze shunting.

 

De veneuze opbouw (caput medusa sign) is een karakteristiek radiologisch kenmerk dat het DVA onderscheidt van een AVM.

 

Referentie: (22,23)

                 

Kwaliteit van bewijs met GRADE: - 

CCT is in vrijwel alle gevallen een toevalsbevinding op MRI gekarakteriseerd door een susceptibiliteits-artefact en vlekkerige aankleuring na contrasttoediening.

 

Het CCT is niet zichtbaar op een DSA.  De typische lokalisatie is de pons.

 

Referentie: (23)

AVM kenmerken

Een cerebraal AVM is een vaatafwijking waarbij er een abnormale verbinding is tussen aanvoerende arteriën en venen via een vaatkluwen, de nidus.  Typisch zijn de aanvoerende arteriën verwijd, en zijn er één of meerdere drainerende venen (15).Wat betreft de veneuze drainage wordt onderscheid gemaakt tussen oppervlakkige en diepe veneuze drainage, hetgeen implicaties heeft voor het risico van operatie. Bij een AVM is er in de nidus geen tussenliggend hersenweefsel.

 

Andere laesies met arterioveneuze shunt

Cerebrale Proliferative Angiopathie (CPA)
CPA is een zeldzame aandoening waarbij er sprake is van vasculaire proliferatie, waarschijnlijk als respons op chronische oligemie dan wel ischemie van het hersenparenchym. Dit resulteert in een diffuus netwerk van vaatstructuren die bij beeldvorming in eerste instantie doet denken aan de nidus van een AVM. Er bestaan echter belangrijke verschillen tussen deze twee entiteiten, zowel in arteriële aanvoer, de nidus, als de veneuze afvloed van de laesie.

 

CPA kent geen predominante arteriële voeders zoals een AVM maar meerdere niet tot matig hypertrofe voeders (14). In tegenstelling tot in de voedende arteriën van een AVM worden er in de aanvoerende arteriën bij CPA wel vaak stenoses gevonden. In de studie van Lasjaunias (2008) was dit bij 39% het geval (14). Bij CPA is  de nidus over het algemeen groot en slecht afgrensbaar van de aangrenzende peri-nidale vaten; van deze peri-nidale vaten wordt gedacht dat deze ontstaan zijn door angiogenese. Bij beeldvorming kan hersenweefsel tussen de vaatstructuren van de nidus gezien worden (14). Bij meer dan 50% van de patiënten is er ook transdurale arteriële bloedvoorziening van het  hersenweefsel wordt gevonden in meer dan 50%. Intranidale aneurysmata zijn niet beschreven (14). Op het contrast angiogram kan stase van contrast in de laesie tonen en de vroeg veneuze vulling is minder prominent. De venen verantwoordelijk voor de veneuze afvloed zijn niet of slecht mild gedilateerd, zeker in verhouding tot de omvang van de laesie (14).

 

Er is beperkte ervaring met Perfusie MRI waarbij een enkele studie verhoogde bloed flow en volume, verlengde mean transit time (MTT) en vertraagde time-to-peak (TTP) toont (15).

 

Piale arterioveneuze fistel (AVF)

 

Een piale AVF is een zeer zeldzame vaatafwijking waarbij een of meerdere piale arteriële voeders in directe verbinding staan met een drainerende corticale vene,  tussenliggende nidus. Het ontbreken van een nidus is dan ook een belangrijk kenmerk in het radiologisch onderscheid tussen een piale AVF en een AVM. Op CT en MRI kan de beperking in resolutie onderscheid tussen een micro-AVM (AVM’s met een nidus kleiner dan <1 cm) en een piale AVF bemoeilijken. Met een contrast angiogram kan het onderscheid met zekerheid gemaakt worden.

Door de directe verbinding tussen arterie en vene is er sprake van een sterk verhoogde druk in de drainerende vene, hetgeen de formatie van een corticale varix of een “giant venous aneurysm” kan veroorzaken. In een serie van 147 kinderen met een  piale AVF was er sprake van een varix bij 110 van de 119  (92%)daar waar dat beschreven was (16). Bij kinderen met een PAVF lijkt vaker sprake van een varix dan bij volwassenen (90% vs. 62%) (17). Ook bij een AVM kan sprake zijn van dilatatie van corticale venen. Bij een PAVF is deze veneuze dilatatie echter vaak groot en een uitgesproken radiologisch kenmerk. Als de veneuze dilatatie uit meerdere ‘pouches’ bestaat kan de indruk bestaan dat er een nidus is, zoals bij een AVM (18).

       

Piale AVF’s verschillen van durale AVF’s in de arteriële voeding die in geval van een piale AVF uit piale of corticale arteriën bestaat, (en niet uit durale arteriële takken) en in de ligging die niet in de dura maar leptomeningeaal is.

 

Piale AVFs presenteren zich meestal op de kinderleeftijd (16,19).

 

Laesies zonder een arterioveneuze shunt

Developmental Venous Anomaly (DVA)

DVAs zijn de meest voorkomende vasculaire niet-pathologische variant (non-pathological normal venous patterns) in de hersenen met een gerapporteerde prevalentie van tot wel 2.6% (20). Embryologisch is er sprake van een onderontwikkeling van of het oppervlakkige of het diepe emissaire veneuze systeem. Dit  resulteert in een veneuze afvloed via meerdere gedilateerde medullaire venen die samen komen in een eveneens gedilateerde transcorticale of subependymale collector vene. DVAs zijn derhalve, in tegenstelling tot AVM’s, volledig veneus.

 

Deze typische opbouw van de laesie, waarbij meerdere medullaire venen samen komen in een collector vene, wordt ook teruggevonden op beeldvorming (CT, MRI en DSA). De configuratie wordt omschreven als een paraplu of palmboom, of als het caput medusa. Bij een DVA zijn er dus geen hypertrofe arteriële voeders zoals bij een AVM, en is er geen arterioveneuze shunting en geen vroege veneuze vulling waarmee arterioveneuze shunting gepaard gaat (21) . 

 

In uitzonderlijke situaties kan een AVM met een zeer prominente veneuze afvoer verward worden met een DVA. Ook zijn er patiënten beschreven bij wie een AVM draineert in een DVA. DVAs zijn geassocieerd met het ontstaan en aanwezigheid van geïsoleerde caverneuze malformaties (CMs). Aangezien CMs een, weliswaar laag, bloedingsrisico kennen kunnen DVAs ook in dit kader teruggevonden worden bij bloedingen. Zeer zeldzaam kan kan een veneuze trombose van een DVA leiden tot een hemorrhagische infarcering, die er uit kan zien als een bloeding (22). Onderscheid met een AVM is met name van belang aangezien een DVA de veneuze drainage van normaal functionerend weefsel verzorgt. Resectie zal dan ook resulteren in ischemie en is gecontraindiceerd. Een DVA behoeft geen behandeling en ook geen follow-up beeldvorming.

 

Cerebrale Capillaire Teleangiëctasieën (CCT)

CCT worden histologisch gekarakteriseerd door multipele gedilateerde capillairen in normaal hersenweefsel, meestal gelokaliseerd in de pons. Een CCT is vrijwel altijd een toevalsbevinding op MRI. De laesie is niet zichtbaar op CT of DSA (angiografisch occult). De prevalentie wordt geschat op ongeveer 0.4%(23). Op MRI wordt de laesie met name gekarakteriseerd door een susceptibiliteits artefact (veroorzaakt door slow flow en bloedafbraak producten) en een vlekkerige aankleuring na contrast toediening. Een CCT kent geen bloedingsrisico en moet dan ook gezien worden als een “don’t touch lesion”. 

Bij deze uitgangsvraag is systematisch literatuuronderzoek verricht. Neem hiervoor contact op met de Richtlijnendatabase. De volgende criteria zijn gehanteerd:

 

Inclusie:

Type studies

  • Systematic Reviews
  • Prospectieve cohort studies
  • Retrospectieve cohort studies
  • Reviews
  • Case series met minimal 10 patiënten

Type patiënten

  1. Patiënten met cerebrale proliferatieve angiopathie (CPA) en de piale arterioveneuze fistel
  2. laesies zonder AV-shunt, te weten de developmental venous anomaly (DVA) en de capillaire teleangiëctasie.

Interventie

  •  

Vergelijking

  •  

Uitkomstmaten

  •  Radiologische kenmerken

Exclusie

 

Gepubliceerd voor het jaar 2000

Case reports 

Editorials    

Conference abstracts    

 

De literatuur over deze zeldzame vasculaire aandoeningen beperkt zich tot een relatief klein aantal case-series van vaak beperkte omvang. Hierbij moet ook opgemerkt worden dat in deze case-series de radiologisch beschrijving van de vasculaire laesie niet het primaire onderwerp was maar in het bredere kader van de aandoening werd besproken.

  1. Cenzato M, Boccardi E, Beghi E, Vajkoczy P, Szikora I, Motti E, et al. European consensus conference on unruptured brain AVMs treatment (Supported by EANS, ESMINT, EGKS, and SINCH). In: Acta Neurochirurgica. Springer-Verlag Wien; 2017. p. 1059-64.
  2. Kato Y, Dong V, Chaddad F, Takizawa K, Izumo T, Fukuda H, et al. Expert consensus on the management of brain arteriovenous malformations. Asian J Neurosurg. 2019;14(04).
  3. Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, et al. Review of treatment and therapeutic targets in brain arteriovenous malformation. Vol. 41, Journal of Cerebral Blood Flow and Metabolism. 2021.
  4. Al-Shahi R, Fang JSY, Lewis SC. Prevalence of adults with brain arteriovenous malformations: a community based study in Scotland using capture-recapture analysis [Internet]. Vol. 73, J Neurol Neurosurg Psychiatry. 2002. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1738119/pdf/v073p00547.pdf
  5. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. Can Med Assoc J. 2010 Dec 14;182(18):E839-42.
  6. Schünemann H, BJ, GG& OA. https://gdt.gradepro.org/app/handbook/handbook.html. 2013. The GRADE Handbook.
  7. da Costa L, Wallace MC, ter Brugge KG, O'Kelly C, Willinsky RA, Tymianski M. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke. 2009 Jan 1;40(1):100-5.
  8. Kim BS, Sarma D, Lee SK, Terbrugge KG. Brain edema associated with unruptured brain arteriovenous malformations. Neuroradiology. 2009 May;51(5):327-35.
  9. Kim H, Al-Shahi Salman R, McCulloch CE, Stapf C, Young WL. Untreated brain arteriovenous malformation: Patient-level meta-analysis of hemorrhage predictors. Neurology. 2014;83(7):590-7.
  10. Stapf C, Mast ; H, Sciacca ; R R, Choi ; J H, Khaw ; A v, Connolly ; E S, et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation [Internet]. Vol. 66, NEUROLOGY. 2006. Available from: www.neurology.org
  11. Yamada S, Takagi Y, Nozaki K, Kikuta KI, Hashimoto N. Risk factors for subsequent hemorrhage in patients with cerebral arteriovenous malformations. J Neurosurg. 2007 Nov;107(5):965-72.
  12. Stefani MA, Sgarabotto Ribeiro D, Mohr JP. Grades of brain arteriovenous malformations and risk of hemorrhage and death. Ann Clin Transl Neurol. 2019 Mar 1;6(3):508-14.
  13. Brown RD, Wiebers DO, Forbes GS. Unruptured intracranial aneurysms and arteriovenous malformations: frequency of intracranial hemorrhage and relationship of lesions. Vol. 73, J Nearosurg. 1990.
  14. Lasjaunias PL, Landrieu P, Rodesch G, Alvarez H, Ozanne A, Holmin S, et al. Cerebral proliferative angiopathy: Clinical and angiographic description of an entity different from cerebral AVMs. Stroke. 2008 Mar;39(3):878-85.
  15. Catalina Vargas M, Castillo M. Magnetic Resonance Perfusion Imaging in Proliferative Cerebral Angiopathy [Internet]. 2011. Available from: www.jcat.org
  16. Madsen PJ, Lang SS, Pisapia JM, Storm PB, Hurst RW, Heuer GG. An institutional series and literature review of pial arteriovenous fistulas in the pediatric population. J Neurosurg Pediatr. 2013 Oct;12(4):344-50.
  17. Yang WH, Lu MS, Cheng YK, Wang TC. Pial arteriovenous fistula: A review of literature. Vol. 25, British Journal of Neurosurgery. 2011. p. 580-5.
  18. Goel A, Jain S, Shah A, Rai S, Gore S, Dharurkar P. Pial Arteriovenous Fistula: A Brief Review and Report of 14 Surgically Treated Cases. World Neurosurg. 2018 Feb 1;110:e873-81.
  19. Hetts SW, Cooke DL, Nelson J, Gupta N, Fullerton H, Amans MR, et al. Influence of patient age on angioarchitecture of brain arteriovenous malformations. American Journal of Neuroradiology. 2014;35(7):1376-80.
  20. Zafar A, Fiani B, Hadi H, Arshad M, Cathel A, Naeem M, et al. Cerebral vascular malformations and their imaging modalities. Neurological Sciences. 2020 Sep 25;41(9):2407-21.
  21. San Millán Ruíz D, Yilmaz H, Gailloud P. Cerebral developmental venous anomalies: Current concepts. Ann Neurol. 2009 Sep;66(3):271-83.
  22. Rinaldo L, Lanzino G, Flemming KD, Krings T, Brinjikji W. Symptomatic developmental venous anomalies. Acta Neurochir (Wien). 2020 May 11;162(5):1115-25.
  23. Gross BA, Puri AS, Popp AJ, Du R. Cerebral capillary telangiectasias: a meta-analysis and review of the literature. Neurosurg Rev. 2013 Apr 29;36(2):187-94.
  24. Laakso A, Hernesniemi J. Arteriovenous Malformations: Epidemiology and Clinical Presentation. Neurosurg Clin N Am. 2012 Jan 1;23(1):1-6.
  25. Chye CL, Wang KW, Chen HJ, Yeh SA, Tang JT, Liang CL. Haemorrhage rates of ruptured and unruptured brain arteriovenous malformation after radiosurgery: A nationwide population-based cohort study. BMJ Open. 2020 Oct 13;10(10).
  26. Cenzato M, Tartara F, D'Aliberti G, Bortolotti C, Cardinale F, Ligarotti G, et al. Unruptured Versus Ruptured AVMs: Outcome Analysis from a Multicentric Consecutive Series of 545 Surgically Treated Cases. World Neurosurg. 2018 Feb 1;110:e374-82.
  27. Aboukaïs R, Marinho P, Baroncini M, Bourgeois P, Leclerc X, Vinchon M, et al. Ruptured cerebral arteriovenous malformations: Outcomes analysis after microsurgery. Clin Neurol Neurosurg. 2015 Nov 1;138:137-42.
  28. Baharvahdat H, Blanc R, Fahed R, Smajda S, Ciccio G, Desilles JP, et al. Endovascular treatment for low-grade (spetzler-martin I-II) brain arteriovenous malformations. American Journal of Neuroradiology. 2019;40(4):668-72.
  29. Baharvahdat H, Blanc R, Fahed R, Pooyan A, Mowla A, Escalard S, et al. Endovascular treatment as the main approach for Spetzler-Martin grade III brain arteriovenous malformations. J Neurointerv Surg. 2021 Mar 1;13(3):241-6.
  30. Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Radiosurgery for ruptured intracranial arteriovenous malformations: Clinical article. J Neurosurg. 2014;121(2).
  31. Chen CJ, Ding D, Wang TR, Buell TJ, Ilyas A, Ironside N, et al. Microsurgery Versus Stereotactic Radiosurgery for Brain Arteriovenous Malformations: A Matched Cohort Study. Clin Neurosurg. 2019 Mar 1;84(3):696-707.
  32. Van Beijnum J, Bart Van Der Worp H, Buis DR, Al-Shahi R, Salman E, Kappelle LJ, et al. Treatment of Brain Arteriovenous Malformations A Systematic Review and Meta-analysis [Internet]. Available from: http://jama.jamanetwork.com/
  33. Beecher JS, Lyon K, Ban VS, Vance A, McDougall CM, Whitworth LA, et al. Delayed treatment of ruptured brain AVMs: is it ok to wait? J Neurosurg. 2017;128(4).
  34. Kim H, Al-Shahi Salman R, Edin Charles McCulloch FE, Stapf C, Young WL. Untreated brain arteriovenous malformation Patient-level meta-analysis of hemorrhage predictors [Internet]. 2014. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141996/pdf/NEUROLOGY2013562652.pdf.
  35. van Beijnum J, Lovelock CE, Cordonnier C, Rothwell PM, Klijn CJM, Al-Shahi Salman R, et al. Outcome after spontaneous and arteriovenous malformation-related intracerebral haemorrhage: Population-based studies. Brain. 2009 Feb;132(2):537-43.
  36. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. The Lancet. 2014;383(9917):614-21.
  37. Mohr JP, Overbey JR, Hartmann A, Kummer R von, Al-Shahi Salman R, Kim H, et al. Medical management with interventional therapy versus medical management alone for unruptured brain arteriovenous malformations (ARUBA): final follow-up of a multicentre, non-blinded, randomised controlled trial. Lancet Neurol. 2020 Jul 1;19(7):573-81.
  38. Al-Shahi Salman R, White PM, Counsell CE, Plessis J Du, Van Beijnum J, Josephson CB, et al. Outcome after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA. 2014;311(16).
  39. Zuurbier SM, Salman RAS. Interventions for treating brain arteriovenous malformations in adults. Vol. 2019, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2019.
  40. Karlsson B, Jokura H, Yang HC, Yamamoto M, Martinez R, Kawagishi J, et al. The NASSAU (New ASSessment of cerebral Arteriovenous Malformations yet Unruptured) Analysis: Are the Results from the ARUBA Trial Also Applicable to Unruptured Arteriovenous Malformations Deemed Suitable for Gamma Knife Surgery? Clin Neurosurg. 2019 Jul 1;85(1):E118-24.
  41. Bharatha A, Faughnan ME, Kim H, Pourmohamad T, Krings T, Bayrak-Toydemir P, et al. Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: Quantitative assessment. Stroke. 2012 Jan;43(1):72-8.
  42. Woodall MN, McGettigan M, Figueroa R, R Gossage J, Alleyne CH. Cerebral vascular malformations in hereditary hemorrhagic telangiectasia: Clinical article. J Neurosurg. 2014 Jan;120(1):87-92.
  43. Matsubara S, Manzia JL, ter Brugge K, Willinsky RA, Montanera W, Faughnan ME. Angiographic and Clinical Characteristics of Patients with Cerebral Arteriovenous Malformations Associated with Hereditary Hemorrhagic Telangiectasia. Vol. 21, AJNR Am J Neuroradiol.
  44. Porteous MEM, Burn J, Proctor SJ. Hereditary haemorrhagic telangiectasia: A clinical analysis. J Med Genet. 1992;29(8).
  45. Brinjikji W, Iyer VN, Sorenson T, Lanzino G. Cerebrovascular Manifestations of Hereditary Hemorrhagic Telangiectasia. Stroke. 2015 Nov 1;46(11):3329-37.
  46. Letteboer TGW, Mager JJ, Snijder RJ, Koeleman BPC, Lindhout D, Ploos Van Amstel JK, et al. Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet. 2006 Apr;43(4):371-7.
  47. Kilian A, Clancy MS, Olitsky S, Gossage JR, Faughnan ME. Screening for pulmonary and brain vascular malformations is the North American standard of care for patients with hereditary hemorrhagic telangiectasia (HHT): A survey of HHT Centers of Excellence. Vascular Medicine (United Kingdom). 2021 Feb 1;26(1):53-5.
  48. Yang W, Liu A, Hung AL, Braileanu M, Wang JY, Caplan JM, et al. Lower risk of intracranial arteriovenous malformation hemorrhage in patients with hereditary hemorrhagic telangiectasia. Neurosurgery. 2016 May 1;78(5):684-93.
  49. Willemse RB, Mager JJ, Westermann CJJ, Overtoom TTC, Mauser H, Wolbers JG. Bleeding risk of cerebrovascular malformations in hereditary hemorrhagic telangiectasia. J Neurosurg. 2000;92(5).
  50. Kim H, Nelson J, Krings T, Terbrugge KG, McCulloch CE, Lawton MT, et al. Hemorrhage Rates from Brain Arteriovenous Malformation in Patients with Hereditary Hemorrhagic Telangiectasia. Stroke. 2015;46(5).
  51. Wooderchak-Donahue WL, Akay G, Whitehead K, Briggs E, Stevenson DA, O'fallon B, et al. Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? Available from: https://www.sciencedirect.com/science/article/pii/S1098360021049911?ref=pdf_download& fr=RR-7&rr=876534956eb0b90c
  52. Orme CM, Boyden LM, Choate KA, Antaya RJ, King BA. Capillary malformation - Arteriovenous malformation syndrome: Review of the literature, proposed diagnostic criteria, and recommendations for management. Vol. 30, Pediatric Dermatology. 2013. p. 409-15.
  53. Chee D, Phillips R, Maixner W, Southwell BR, Hutson JM. The potential of capillary birthmarks as a significant marker for capillary malformation-arteriovenous malformation syndrome in children who had nontraumatic cerebral hemorrhage. J Pediatr Surg. 2010 Dec;45(12):2419-22.
  54. Krings T, Ozanne A, Chng SM, Alvarez H, Rodesch G, Lasjaunias PL. Neurovascular phenotypes in hereditary haemorrhagic telangiectasia patients according to age. Review of 50 consecutive patients aged 1 day-60 years. Vol. 47, Neuroradiology. 2005. p. 711-20.
  55. Tomarchio S, Portale A, Praticò AD, Catanzaro S, Polizzi A, Belfiore G, et al. Wyburn-Mason Syndrome. Vol. 16, Journal of Pediatric Neurology. Georg Thieme Verlag; 2018. p. 297-304.
  56. Eker OF, Boccardi E, Sure U, Patel MC, Alicante S, Alsafi A, et al. European Reference Network for Rare Vascular Diseases (VASCERN) position statement on cerebral screening in adults and children with hereditary haemorrhagic telangiectasia (HHT). Orphanet J Rare Dis. 2020 Jun 29;15(1).
  57. Garg N, Khunger M, Gupta A, Kumar N. Optimal management of hereditary hemorrhagic telangiectasia. Vol. 5, Journal of Blood Medicine. Dove Medical Press Ltd; 2014. p. 191-206.
  58. Easey AJ, Wallace F, Hughes JMB, Jackson JE, Taylor WJ. Should asymptomatic patients with hereditary haemorrhagic telangiectasia (HHT) be screened for cerebral vascular malformations? Data from 22 061 years of HHT patient life [Internet]. Vol. 74, J Neurol Neurosurg Psychiatry. 2003. Available from: www.jnnp.com
  59. Faughnan ME, Mager JJ, Hetts SW, Palda VA, Lang-Robertson K, Buscarini E, et al. Second international guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Vol. 173, Annals of Internal Medicine. American College of Physicians; 2020. p. 989-1001.
  60. Brinjikji W, Iyer VN, Wood CP, Lanzino G. Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia: A systematic review and meta-analysis. Vol. 127, Journal of Neurosurgery. American Association of Neurological Surgeons; 2017. p. 302-10.
  61. Latino GA, Al-Saleh S, Carpenter S, Ratjen F. The diagnostic yield of rescreening for arteriovenous malformations in children with hereditary hemorrhagic telangiectasia. In: Journal of Pediatrics. Mosby Inc.; 2014. p. 197-9.
  62. McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: An overview of diagnosis, management, and pathogenesis. Vol. 13, Genetics in Medicine. 2011. p. 607-16.
  63. Kroon S, Snijder RJ, Faughnan ME, Mager HJ. Systematic screening in hereditary hemorrhagic telangiectasia: A review. Vol. 24, Current Opinion in Pulmonary Medicine. Lippincott Williams and Wilkins; 2018. p. 260-8.
  64. Beslow LA, Breimann J, Licht DJ, Waldman J, Fallacaro S, Pyeritz RE, et al. Cerebrovascular Malformations in a Pediatric Hereditary Hemorrhagic Telangiectasia Cohort. Pediatr Neurol. 2020 Sep 1;110:49-54.
  65. Vella M, Alexander MD, Mabray MC, Cooke DL, Amans MR, Glastonbury CM, et al. Comparison of MRI, MRA, and DSA for detection of cerebral arteriovenous malformations in hereditary hemorrhagic telangiectasia. American Journal of Neuroradiology. 2020 May 1;41(5):969-75.
  66. Valdivielso-Ramos M, Martin-Santiago A, Azaña JM, Hernández-Nuñez A, Vera A, Perez B, et al. Capillary malformation?arteriovenous malformation syndrome: a multicentre study. Clin Exp Dermatol. 2021 Mar 1;46(2):300-5.
  67. Sorenson TJ, Brinjikji W, Bortolotti C, Kaufmann G, Lanzino G. Recurrent Brain Arteriovenous Malformations (AVMs): A Systematic Review. World Neurosurg. 2018 Aug 1;116:e856-66.
  68. Jimenez JE, Gersey ZC, Wagner J, Snelling B, Ambekar S, Peterson EC. Role of follow-up imaging after resection of brain arteriovenous malformations in pediatric patients: A systematic review of the literature. Vol. 19, Journal of Neurosurgery: Pediatrics. American Association of Neurological Surgeons; 2017. p. 149-56.
  69. Hak JF, Boulouis G, Kerleroux B, Benichi S, Stricker S, Gariel F, et al. Pediatric brain arteriovenous malformation recurrence: a cohort study, systematic review and meta-analysis. J Neurointerv Surg. 2021 Sep 28;neurintsurg-2021-017777.
  70. Lim 2021.
  71. McDowell MM, Agarwal N, Mao G, Johnson S, Kano H, Lunsford LD, et al. Long-term outcomes of pediatric arteriovenous malformations: The 30-year Pittsburgh experience. J Neurosurg Pediatr. 2020 Sep 1;26(3):275-82.
  72. Lauzier DC, Vellimana AK, Chatterjee AR, Osbun JW, Moran CJ, Zipfel GJ, et al. Return of the lesion: a meta-analysis of 1134 angiographically cured pediatric arteriovenous malformations. J Neurosurg Pediatr. 2021 Sep 10;28(6):677-84.
  73. Steinberg JA, Brandel MG, Kang KM, Rennert RC, Pannell & JS, Olson SE, et al. Arteriovenous malformation surgery in children: the Rady Children's Hospital experience (2002-2019). Available from: https://doi.org/10.1007/s00381-020-04994-9
  74. Hao Q, Zhang H, Han H, Jin H, Ma L, Li R, et al. Recurrence of Cerebral Arteriovenous Malformation Following Complete Obliteration Through Endovascular Embolization. Transl Stroke Res. 2023 Nov 13;
  75. Andreou A, Ioannidis I, Lalloo S, Nickolaos N, Byrne J V. Endovascular treatment of intracranial microarteriovenous malformations: Clinical article. J Neurosurg. 2008;109(6).
  76. Reig AS, Rajaram R, Simon S, Mericle RA. Complete angiographic obliteration of intracranial AVMs with endovascular embolization: incomplete embolic nidal opacification is associated with AVM recurrence. J Neurointerv Surg. 2010;2(3).
  77. Hofmeister C, Stapf C, Hartmann A, Sciacca RR, Mansmann U, TerBrugge K, et al. Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke. 2000;31(6).
  78. Langer DJ, Lasner TM, Hurst RW, Flamm ES, Zager EL, King JT. Hypertension, Small Size, and Deep Venous Drainage Are Associated with Risk of Hemorrhagic Presentation of Cerebral Arteriovenous Malformations [Internet]. Vol. 42. 1998. Available from: https://academic.oup.com/neurosurgery/article-abstract/42/3/481/2843342
  79. Brown RD, Wiebers DO, Forbes G, Michael O'fallon W, Piepgras DG, Marsh WR, et al. The natural history of unruptured intracranial arteriovenous malformations. Vol. 68, J Neurosurg. 1988.
  80. Davidoff CL, Lo Presti A, Rogers JM, Simons M, Assaad NNA, Stoodley MA, et al. Risk of First Hemorrhage of Brain Arteriovenous Malformations during Pregnancy: A Systematic Review of the Literature. Vol. 85, Clinical Neurosurgery. Oxford University Press; 2019. p. E806-14.
  81. Lee S, Kim Y, Navi BB, Abdelkhaleq R, Salazar-Marioni S, Blackburn SL, et al. Risk of intracranial hemorrhage associated with pregnancy in women with cerebral arteriovenous malformations. J Neurointerv Surg. 2021 Aug 1;13(8):707-10.
  82. lo Buono V, Bonanno L, Corallo F, Sidoti A, Bramanti P, Marino S. Evaluation of Qualitative Outcomes after Surgical Intervention on Patients Affected by Arteriovenous Malformations. Journal of Stroke and Cerebrovascular Diseases. 2016 Dec 1;25(12):2947-52.
  83. Pohjola A, Oulasvirta E, Roine RP, Sintonen HP, Hafez A, Koroknay-Pál P, et al. Long-term health-related quality of life in 262 patients with brain arteriovenous malformation. Neurology. 2019 Oct 1;93(14):E1374-84.
  84. van der Schaaf IC, Brilstra EH, Rinkel GJE, Bossuyt PM, van Gijn ; J. Quality of Life, Anxiety, and Depression in Patients With an Untreated Intracranial Aneurysm or Arteriovenous Malformation [Internet]. 2002. Available from: https://www.ahajournals.org/doi/10.1161/hs0202.102335?url_ver=Z39.88- 2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
  85. Rohn B, Haenggi D, Etminan N, Kunz M, Turowski B, Steiger HJ. Epilepsy, headache, and quality of life after resection of cerebral arteriovenous malformations. J Neurol Surg A Cent Eur Neurosurg. 2014;75(4):282-8.
  86. Stapf C, Moy CS, Overbey J, Moquete E, Parides M, Vicaut E, et al. INTERNATIONAL STROKE CONFERENCE ORAL ABSTRACTS SESSION TITLE: VASCULAR MALFORMATIONS ORAL ABSTRACTS Abstract 155: Health-Related Quality of Life in Patients With Unruptured Brain Avm Managed With or Without Interventional Therapy-The Aruba Trial. Available from: https://www.ahajournals.org/doi/abs/10.1161/str.45.suppl_1.155
  87. Jansen O, Szikora I, Causin F, Brückmann H, Lobotesis K. Standards of practice in interventional neuroradiology. Neuroradiology. 2017 Jun 19;59(6):541-4.
  88. Choi IS, Lasjaunias P, Picard L, Bracard S, Byrne J, Feng L, et al. Standards of practice in interventional neuroradiology or endovascular neurosurgery: WFITN site conditions and technical operational guidelines. Interventional Neuroradiology. 2006;12(1).

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 28-10-2024

Laatst geautoriseerd  : 28-10-2024

Geplande herbeoordeling  : 01-12-2029

De richtlijn zal worden opgenomen in een van de clusters voor modulaire herziening. Uiterlijk in 2029 bepaalt het bestuur van de Nederlandse Vereniging voor Neurochirurgie of de modules van deze richtlijn nog actueel zijn. De geldigheid van de richtlijn komt eerder te vervallen indien nieuwe ontwikkelingen aanleiding zijn een herzieningstraject te starten.

De Nederlandse Vereniging voor Neurochirurgie is regiehouder van deze richtlijn en eerstverantwoordelijke op het gebied van de actualiteitsbeoordeling van de richtlijn. De andere aan deze richtlijn deelnemende wetenschappelijke verenigingen of gebruikers van de richtlijn delen de verantwoordelijkheid en informeren de regiehouder over relevante ontwikkelingen binnen hun vakgebied.

Initiatief en autorisatie

Initiatief:
  • Nederlandse Vereniging voor Neurochirurgie
Geautoriseerd door:
  • Nederlandse Vereniging voor Neurochirurgie
  • Nederlandse Vereniging voor Neurologie
  • Nederlandse Vereniging voor Radiologie
  • Verpleegkundigen en Verzorgenden Nederland

Samenstelling werkgroep

De werkgroepleden zijn door hun beroepsverenigingen gemandateerd voor deelname aan de werkgroep voor de ontwikkeling van deze richtlijn. De werkgroep is verantwoordelijk voor de integrale tekst van deze richtlijn.

 

Werkgroep

  • Prof. dr. H.D.(Jeroen) Boogaarts, Neurochirurg, Radboud UMC, Nederlandse Vereniging Voor Neurochirurgie
  • Dr. R. (Rene) van den Berg, neurointerventieradioloog, Amsterdam UMC (AMC), Nederlandse Vereniging voor Radiologie
  • Dr. A (Adriaan) van Es, neurointerventieradioloog, Leids UMC, Nederlandse Vereniging voor Radiologie
  • Dr. O.(Otto) Meijer, Radiotherapeut, Amsterdam UMC (VU), Nederlandse Vereniging voor Radiotherapie en Oncologie
  • Dr. E. (Ernst) Smid, Radiotherapeut, UMC Utrecht, Nederlandse Vereniging voor Radiotherapie en Oncologie
  • Drs. S.M. (Saskia) Maas, Klinisch Geneticus, Amsterdam UMC (AMC), Vereniging Klinische Genetica Nederland
  • Prof. dr. C.J.M. (Karin) Klijn, Neuroloog, Radboud UMC, Nederlandse Vereniging Neurologie
  • Dr. J.E.A.(Julie) Staals, Neuroloog, Maastricht UMC, Nederlandse Vereniging Neurologie
  • Dr. J.M. (Jonathan) Coutinho, Neuroloog, Amsterdam UMC (AMC), Nerderlandse Vereniging Neurologie
  • Prof. Dr. J.M.C (Marc) van Dijk, Neurochirurg, UMC Groningen, Nederlandse Vereniging Voor Neurochirurgie
  • Prof. Dr. A. (Bart) van der Zwan, Neurochirurg, UMC Utrecht, Nederlandse Vereniging Voor Neurochirurgie
  • Drs. B. (Bram) van der Pol, Neurochirurg, Elisabeth-Twee Steden ziekenhuis, Nederlandse Vereniging Voor Neurochirurgie
  • Mevrouw. H. (Harriette) Petersen-Baltussen, Verpleegkundig specialist Neurochirurgie, Nederlandse Vereniging Voor Neurochirurgie
  • Mevrouw S. (Suzanne) Wijdeven - de Bruijn, Patiëntvertegenwoordiger, Radboud UMC  
  • Dhr. M. (Michiel) Lindhout, Patiëntvertegenwoordiger, Vereniging hersenletsel.nl

Met ondersteuning van

  • Drs. W.F.E (Willemijn) Irvine, adviseur, Qualicura, Breda

Belangenverklaringen

De KNMG-code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement, kennisvalorisatie) hebben gehad bij het ontwikkelen van de richtlijn IIH. Er zijn geen conflicterende belangen gemeld.  De ondertekende belangenverklaringen zijn op te vragen bij Qualicura.

Inbreng patiëntenperspectief

Twee patiëntenvertegenwoordigers hebben namens de patiëntenvereniging ‘Hersenletsel.nl’ en het platform ‘AVM in de hersenen’ in de werkgroep geparticipeerd tijdens het gehele proces. Daarnaast is de conceptrichtlijn geaccordeerd door de patiëntenvereniging ‘Hersenletsel.nl’.

Implementatie

In de verschillende fasen van de richtlijnontwikkeling is rekening gehouden met de implementatie van de richtlijn (module) en de praktische uitvoerbaarheid van de aanbevelingen. Daarbij is uitdrukkelijk gelet op factoren die de invoering van de richtlijn in de praktijk kunnen bevorderen of belemmeren. Het implementatieplan wordt gerapporteerd in de bijlagen.  

Werkwijze

Methode richtlijnontwikkeling

AGREE

Deze richtlijn is opgesteld conform de eisen vermeld in het rapport ‘Medisch Specialistische Richtlijnen 2.0’ van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (5)at een internationaal breed geaccepteerd instrument is. Voor een stap-voor-stap beschrijving hoe een evidence-based richtlijn tot stand komt, wordt verwezen naar het stappenplan ‘Ontwikkeling van Medisch Specialistische Richtlijnen’ van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Knelpuntenanalyse

Met de voorzitter en de werkgroep is een eerste inventarisatie van bestaande knelpunten gedaan. Vervolgens is in een invitational conference het conceptraamwerk besproken om aanvullende knelpunten te inventariseren. Voor de invitational conference zijn de gebruikelijke partijen uitgenodigd (zorgverleners, patiëntenorganisatie, zorgverzekeraars, koepels van ziekenhuizen en de IGZ). Deze richtlijn is ontwikkeld op basis van knelpunten, standaard diagnostiek of behandeling is niet verder uitgewerkt.

 

Werkwijze werkgroep

Uitgangsvragen en uitkomstmaten

Strategie voor zoeken en selecteren van literatuur

Voor iedere uitgangsvraag is een literatuursearch uitgevoerd door een literatuurspecialist. De deelnemers aan de werkgroep hebben uit de literatuursearch de literatuur geselecteerd die van belang leek te zijn voor het beantwoorden van de betreffende uitgangsvraag. Na de eerste selectie zijn de geïncludeerde artikelen full tekst beoordeeld op kwaliteit en inhoud. Alleen voor de module follow-up zijn de publicaties voor kinderen en volwassen gescheiden en apart beoordeeld. Een volledige overzicht van de zoekstrategie is beschikbaar in appendix A.

 

Kwaliteitsbeoordeling individuele studies

De relevante onderzoeksgegevens van alle geselecteerde artikelen zijn overzichtelijk weergegeven in  evidence tabellen. De individuele artikelen zijn beoordeeld aan de hand van verschillende Risk of Bias-methoden. De gebruikte methode is afhankelijk van de opzet van de studie. De evidence tabellen, GRADE tabellen en de Risk of Bias-tabellen zijn als bijlage aan de modules toegevoegd.

 

Samenvatten van de literatuur

De belangrijkste bevindingen uit de literatuur werden beschreven in de samenvatting van de literatuur.
 

Beoordelen van de kracht van het wetenschappelijke bewijs

Hieronder wordt beschreven hoe de kracht van het wetenschappelijke bewijs bij interventievragen en diagnostische vragen is beoordeeld.

 

A)        Interventievragen (vragen over therapie of screening)

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methodiek. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie .

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk*

  • er is redelijke zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • het is mogelijk dat de conclusie verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • er is een reële kans dat de conclusie verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt zoals vermeld in de literatuurconclusie;
  • de literatuurconclusie is zeer onzeker.

*in 2017 heeft het Dutch GRADE Network bepaald dat de voorkeursformulering voor de op een na hoogste gradering ‘redelijk’ is in plaats van ‘matig’

 

B)        Diagnostische vragen (vragen over diagnostische tests, schade of bijwerkingen, etiologie en prognose)

De kracht van het wetenschappelijke bewijs werd eveneens bepaald volgens de GRADE-methode: GRADE-diagnostiek voor diagnostische vragen (6) en een generieke GRADE-methode voor vragen over schade of bijwerkingen, etiologie en prognose. In de gehanteerde generieke GRADE-methode zijn de basisprincipes van de GRADE-methodiek toegepast: het benoemen en prioriteren van de klinisch relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van bewijskracht op basis van de vijf GRADE-criteria (startpunt kracht van bewijs hoog; downgraden voor risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias).

 

Formuleren van de conclusies

Voor elke relevante uitkomstmaat werd het wetenschappelijke bewijs samengevat in een of meerdere literatuurconclusies, waarbij het niveau van bewijs is bepaald volgens de GRADE-methodiek. De werkgroepleden maakten de balans op van elke uitgangsvraag (uiteindelijke conclusie). De bewijskracht wordt bepaald door de laagste bewijskracht gevonden bij een van de cruciale uitkomstmaten.

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling, zijn, naast (de kwaliteit van) het wetenschappelijke bewijs, ook andere aspecten van belang om mee te wegen, zoals de expertise van de werkgroepleden, de waarden en voorkeuren van de patiënt, kosten, beschikbaarheid van voorzieningen en organisatorische zaken. Deze aspecten worden, voor zover geen onderdeel van de literatuursamenvatting, vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’. Hierbij is ter onderbouwing soms gebruik gemaakt van artikelen die niet zijn geïncludeerd in de literatuursamenvatting, bijvoorbeeld door het ontbreken van de juiste studie-opzet of uitkomstmaten, maar die door de werkgroep van belang worden geacht bij het beantwoorden van de uitgangsvraag.

In de overwegingen is per uitgangsvraag gedefinieerd welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch relevant vonden.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs, de belangrijkste overwegingen en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijke bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk. De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen.

 

Randvoorwaarden (Organisatie van zorg)

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijn is expliciet rekening gehouden met de organisatie van zorg; alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg, zoals coördinatie, communicatie, (financiële) middelen, menskracht en infrastructuur. Randvoorwaarden die relevant zijn voor het beantwoorden van een specifieke uitgangsvraag maken onderdeel uit van de overwegingen bij de bewuste uitgangsvraag. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module ‘Organisatie van zorg’.

 

Kennishiaten

Tijdens de ontwikkeling van deze richtlijn is systematisch gezocht naar onderzoek waarvan de resultaten bijdragen aan een antwoord op de uitgangsvragen. Bij elke uitgangsvraag is door de werkgroep nagegaan of er (aanvullend) wetenschappelijk onderzoek gewenst is om de uitgangsvraag te kunnen beantwoorden. Onderwerpen waarvoor aanvullend wetenschappelijk onderzoek van belang worden geacht, zijn als aanbeveling beschreven onder de kopjes ‘kennishiaten’ onder de betreffende modules. 

 

Commentaar- en autorisatiefase

De conceptrichtlijn is aan de betrokken (wetenschappelijke) verenigingen en (patiënt)organisaties voorgelegd ter commentaar. De commentaren zijn verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren is de conceptrichtlijn aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijn is aan de deelnemende (wetenschappelijke) verenigingen en (patiënt)organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Referenties

 

1.           Cenzato M, Boccardi E, Beghi E, Vajkoczy P, Szikora I, Motti E, et al. European consensus conference on unruptured brain AVMs treatment (Supported by EANS, ESMINT, EGKS, and SINCH). In: Acta Neurochirurgica. Springer-Verlag Wien; 2017. p. 1059–64.

 

2.           Kato Y, Dong V, Chaddad F, Takizawa K, Izumo T, Fukuda H, et al. Expert consensus on the management of brain arteriovenous malformations. Asian J Neurosurg. 2019;14(04).

 

3.           Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, et al. Review of treatment and therapeutic targets in brain arteriovenous malformation. Vol. 41, Journal of Cerebral Blood Flow and Metabolism. 2021.

 

4.           Al-Shahi R, Fang JSY, Lewis SC. Prevalence of adults with brain arteriovenous malformations: a community based study in Scotland using capture-recapture analysis [Internet]. Vol. 73, J Neurol Neurosurg Psychiatry. 2002. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1738119/pdf/v073p00547.pdf

 

5.           Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. Can Med Assoc J. 2010 Dec 14;182(18):E839–42.

 

6.           Schünemann H, BJ, GG& OA. https://gdt.gradepro.org/app/handbook/handbook.html. 2013. The GRADE Handbook .

 

7.           da Costa L, Wallace MC, ter Brugge KG, O’Kelly C, Willinsky RA, Tymianski M. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke. 2009 Jan 1;40(1):100–5.

 

8.           Kim BS, Sarma D, Lee SK, Terbrugge KG. Brain edema associated with unruptured brain arteriovenous malformations. Neuroradiology. 2009 May;51(5):327–35.

 

9.           Kim H, Al-Shahi Salman R, McCulloch CE, Stapf C, Young WL. Untreated brain arteriovenous malformation: Patient-level meta-analysis of hemorrhage predictors. Neurology. 2014;83(7):590–7.

 

10.        Stapf C, Mast ; H, Sciacca ; R R, Choi ; J H, Khaw ; A v, Connolly ; E S, et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation [Internet]. Vol. 66, NEUROLOGY. 2006. Available from: www.neurology.org

 

11.        Yamada S, Takagi Y, Nozaki K, Kikuta KI, Hashimoto N. Risk factors for subsequent hemorrhage in patients with cerebral arteriovenous malformations. J Neurosurg. 2007 Nov;107(5):965–72.

 

12.        Stefani MA, Sgarabotto Ribeiro D, Mohr JP. Grades of brain arteriovenous malformations and risk of hemorrhage and death. Ann Clin Transl Neurol. 2019 Mar 1;6(3):508–14.

 

13.        Brown RD, Wiebers DO, Forbes GS. Unruptured intracranial aneurysms and arteriovenous malformations: frequency of intracranial hemorrhage and relationship of lesions. Vol. 73, J Nearosurg. 1990.

 

14.        Lasjaunias PL, Landrieu P, Rodesch G, Alvarez H, Ozanne A, Holmin S, et al. Cerebral proliferative angiopathy: Clinical and angiographic description of an entity different from cerebral AVMs. Stroke. 2008 Mar;39(3):878–85.

 

15.        Catalina Vargas M, Castillo M. Magnetic Resonance Perfusion Imaging in Proliferative Cerebral Angiopathy [Internet]. 2011. Available from: www.jcat.org

 

16.        Madsen PJ, Lang SS, Pisapia JM, Storm PB, Hurst RW, Heuer GG. An institutional series and literature review of pial arteriovenous fistulas in the pediatric population. J Neurosurg Pediatr. 2013 Oct;12(4):344–50.

 

17.        Yang WH, Lu MS, Cheng YK, Wang TC. Pial arteriovenous fistula: A review of literature. Vol. 25, British Journal of Neurosurgery. 2011. p. 580–5.

 

18.        Goel A, Jain S, Shah A, Rai S, Gore S, Dharurkar P. Pial Arteriovenous Fistula: A Brief Review and Report of 14 Surgically Treated Cases. World Neurosurg. 2018 Feb 1;110:e873–81.

 

19.        Hetts SW, Cooke DL, Nelson J, Gupta N, Fullerton H, Amans MR, et al. Influence of patient age on angioarchitecture of brain arteriovenous malformations. American Journal of Neuroradiology. 2014;35(7):1376–80.

 

20.        Zafar A, Fiani B, Hadi H, Arshad M, Cathel A, Naeem M, et al. Cerebral vascular malformations and their imaging modalities. Neurological Sciences. 2020 Sep 25;41(9):2407–21.

 

21.        San Millán Ruíz D, Yilmaz H, Gailloud P. Cerebral developmental venous anomalies: Current concepts. Ann Neurol. 2009 Sep;66(3):271–83.

 

22.        Rinaldo L, Lanzino G, Flemming KD, Krings T, Brinjikji W. Symptomatic developmental venous anomalies. Acta Neurochir (Wien). 2020 May 11;162(5):1115–25.

 

23.        Gross BA, Puri AS, Popp AJ, Du R. Cerebral capillary telangiectasias: a meta-analysis and review of the literature. Neurosurg Rev. 2013 Apr 29;36(2):187–94.

 

24.        Laakso A, Hernesniemi J. Arteriovenous Malformations: Epidemiology and Clinical Presentation. Neurosurg Clin N Am. 2012 Jan 1;23(1):1–6.

 

25.        Chye CL, Wang KW, Chen HJ, Yeh SA, Tang JT, Liang CL. Haemorrhage rates of ruptured and unruptured brain arteriovenous malformation after radiosurgery: A nationwide population-based cohort study. BMJ Open. 2020 Oct 13;10(10).

 

26.        Cenzato M, Tartara F, D’Aliberti G, Bortolotti C, Cardinale F, Ligarotti G, et al. Unruptured Versus Ruptured AVMs: Outcome Analysis from a Multicentric Consecutive Series of 545 Surgically Treated Cases. World Neurosurg. 2018 Feb 1;110:e374–82.

 

27.        Aboukaïs R, Marinho P, Baroncini M, Bourgeois P, Leclerc X, Vinchon M, et al. Ruptured cerebral arteriovenous malformations: Outcomes analysis after microsurgery. Clin Neurol Neurosurg. 2015 Nov 1;138:137–42.

 

28.        Baharvahdat H, Blanc R, Fahed R, Smajda S, Ciccio G, Desilles JP, et al. Endovascular treatment for low-grade (spetzler-martin I–II) brain arteriovenous malformations. American Journal of Neuroradiology. 2019;40(4):668–72.

 

29.        Baharvahdat H, Blanc R, Fahed R, Pooyan A, Mowla A, Escalard S, et al. Endovascular treatment as the main approach for Spetzler-Martin grade III brain arteriovenous malformations. J Neurointerv Surg. 2021 Mar 1;13(3):241–6.

 

30.        Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Radiosurgery for ruptured intracranial arteriovenous malformations: Clinical article. J Neurosurg. 2014;121(2).

 

31.        Chen CJ, Ding D, Wang TR, Buell TJ, Ilyas A, Ironside N, et al. Microsurgery Versus Stereotactic Radiosurgery for Brain Arteriovenous Malformations: A Matched Cohort Study. Clin Neurosurg. 2019 Mar 1;84(3):696–707.

 

32.        Van Beijnum J, Bart Van Der Worp H, Buis DR, Al-Shahi R, Salman E, Kappelle LJ, et al. Treatment of Brain Arteriovenous Malformations A Systematic Review and Meta-analysis [Internet]. Available from: http://jama.jamanetwork.com/

 

33.        Beecher JS, Lyon K, Ban VS, Vance A, McDougall CM, Whitworth LA, et al. Delayed treatment of ruptured brain AVMs: is it ok to wait? J Neurosurg. 2017;128(4).

 

34.        Kim H, Al-Shahi Salman R, Edin Charles McCulloch FE, Stapf C, Young WL. Untreated brain arteriovenous malformation Patient-level meta-analysis of hemorrhage predictors [Internet]. 2014. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141996/pdf/NEUROLOGY2013562652.pdf.

 

35.        van Beijnum J, Lovelock CE, Cordonnier C, Rothwell PM, Klijn CJM, Al-Shahi Salman R, et al. Outcome after spontaneous and arteriovenous malformation-related intracerebral haemorrhage: Population-based studies. Brain. 2009 Feb;132(2):537–43.

 

36.        Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. The Lancet. 2014;383(9917):614–21.

 

37.        Mohr JP, Overbey JR, Hartmann A, Kummer R von, Al-Shahi Salman R, Kim H, et al. Medical management with interventional therapy versus medical management alone for unruptured brain arteriovenous malformations (ARUBA): final follow-up of a multicentre, non-blinded, randomised controlled trial. Lancet Neurol. 2020 Jul 1;19(7):573–81.

 

38.        Al-Shahi Salman R, White PM, Counsell CE, Plessis J Du, Van Beijnum J, Josephson CB, et al. Outcome after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA. 2014;311(16).

 

39.        Zuurbier SM, Salman RAS. Interventions for treating brain arteriovenous malformations in adults. Vol. 2019, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2019.

 

40.        Karlsson B, Jokura H, Yang HC, Yamamoto M, Martinez R, Kawagishi J, et al. The NASSAU (New ASSessment of cerebral Arteriovenous Malformations yet Unruptured) Analysis: Are the Results from the ARUBA Trial Also Applicable to Unruptured Arteriovenous Malformations Deemed Suitable for Gamma Knife Surgery? Clin Neurosurg. 2019 Jul 1;85(1):E118–24.

 

41.        Bharatha A, Faughnan ME, Kim H, Pourmohamad T, Krings T, Bayrak-Toydemir P, et al. Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: Quantitative assessment. Stroke. 2012 Jan;43(1):72–8.

 

42.        Woodall MN, McGettigan M, Figueroa R, R Gossage J, Alleyne CH. Cerebral vascular malformations in hereditary hemorrhagic telangiectasia: Clinical article. J Neurosurg. 2014 Jan;120(1):87–92.

 

43.        Matsubara S, Manzia JL, ter Brugge K, Willinsky RA, Montanera W, Faughnan ME. Angiographic and Clinical Characteristics of Patients with Cerebral Arteriovenous Malformations Associated with Hereditary Hemorrhagic Telangiectasia. Vol. 21, AJNR Am J Neuroradiol.

 

44.        Porteous MEM, Burn J, Proctor SJ. Hereditary haemorrhagic telangiectasia: A clinical analysis. J Med Genet. 1992;29(8).

 

45.        Brinjikji W, Iyer VN, Sorenson T, Lanzino G. Cerebrovascular Manifestations of Hereditary Hemorrhagic Telangiectasia. Stroke. 2015 Nov 1;46(11):3329–37.

 

46.        Letteboer TGW, Mager JJ, Snijder RJ, Koeleman BPC, Lindhout D, Ploos Van Amstel JK, et al. Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet. 2006 Apr;43(4):371–7.

 

47.        Kilian A, Clancy MS, Olitsky S, Gossage JR, Faughnan ME. Screening for pulmonary and brain vascular malformations is the North American standard of care for patients with hereditary hemorrhagic telangiectasia (HHT): A survey of HHT Centers of Excellence. Vascular Medicine (United Kingdom). 2021 Feb 1;26(1):53–5.

 

48.        Yang W, Liu A, Hung AL, Braileanu M, Wang JY, Caplan JM, et al. Lower risk of intracranial arteriovenous malformation hemorrhage in patients with hereditary hemorrhagic telangiectasia. Neurosurgery. 2016 May 1;78(5):684–93.

 

49.        Willemse RB, Mager JJ, Westermann CJJ, Overtoom TTC, Mauser H, Wolbers JG. Bleeding risk of cerebrovascular malformations in hereditary hemorrhagic telangiectasia. J Neurosurg. 2000;92(5).

 

50.        Kim H, Nelson J, Krings T, Terbrugge KG, McCulloch CE, Lawton MT, et al. Hemorrhage Rates from Brain Arteriovenous Malformation in Patients with Hereditary Hemorrhagic Telangiectasia. Stroke. 2015;46(5).

 

51.        Wooderchak-Donahue WL, Akay G, Whitehead K, Briggs E, Stevenson DA, O’fallon B, et al. Phenotype of CM-AVM2 caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? Available from: https://www.sciencedirect.com/science/article/pii/S1098360021049911?ref=pdf_download& fr=RR-7&rr=876534956eb0b90c

 

52.        Orme CM, Boyden LM, Choate KA, Antaya RJ, King BA. Capillary malformation - Arteriovenous malformation syndrome: Review of the literature, proposed diagnostic criteria, and recommendations for management. Vol. 30, Pediatric Dermatology. 2013. p. 409–15.

 

53.        Chee D, Phillips R, Maixner W, Southwell BR, Hutson JM. The potential of capillary birthmarks as a significant marker for capillary malformation-arteriovenous malformation syndrome in children who had nontraumatic cerebral hemorrhage. J Pediatr Surg. 2010 Dec;45(12):2419–22.

 

54.        Krings T, Ozanne A, Chng SM, Alvarez H, Rodesch G, Lasjaunias PL. Neurovascular phenotypes in hereditary haemorrhagic telangiectasia patients according to age. Review of 50 consecutive patients aged 1 day-60 years. Vol. 47, Neuroradiology. 2005. p. 711–20.

 

55.        Tomarchio S, Portale A, Praticò AD, Catanzaro S, Polizzi A, Belfiore G, et al. Wyburn-Mason Syndrome. Vol. 16, Journal of Pediatric Neurology. Georg Thieme Verlag; 2018. p. 297–304.

 

56.        Eker OF, Boccardi E, Sure U, Patel MC, Alicante S, Alsafi A, et al. European Reference Network for Rare Vascular Diseases (VASCERN) position statement on cerebral screening in adults and children with hereditary haemorrhagic telangiectasia (HHT). Orphanet J Rare Dis. 2020 Jun 29;15(1).

 

57.        Garg N, Khunger M, Gupta A, Kumar N. Optimal management of hereditary hemorrhagic telangiectasia. Vol. 5, Journal of Blood Medicine. Dove Medical Press Ltd; 2014. p. 191–206.

 

58.        Easey AJ, Wallace F, Hughes JMB, Jackson JE, Taylor WJ. Should asymptomatic patients with hereditary haemorrhagic telangiectasia (HHT) be screened for cerebral vascular malformations? Data from 22 061 years of HHT patient life [Internet]. Vol. 74, J Neurol Neurosurg Psychiatry. 2003. Available from: www.jnnp.com

 

59.        Faughnan ME, Mager JJ, Hetts SW, Palda VA, Lang-Robertson K, Buscarini E, et al. Second international guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Vol. 173, Annals of Internal Medicine. American College of Physicians; 2020. p. 989–1001.

 

60.        Brinjikji W, Iyer VN, Wood CP, Lanzino G. Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia: A systematic review and meta-analysis. Vol. 127, Journal of Neurosurgery. American Association of Neurological Surgeons; 2017. p. 302–10.

 

61.        Latino GA, Al-Saleh S, Carpenter S, Ratjen F. The diagnostic yield of rescreening for arteriovenous malformations in children with hereditary hemorrhagic telangiectasia. In: Journal of Pediatrics. Mosby Inc.; 2014. p. 197–9.

 

62.        McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: An overview of diagnosis, management, and pathogenesis. Vol. 13, Genetics in Medicine. 2011. p. 607–16.

 

63.        Kroon S, Snijder RJ, Faughnan ME, Mager HJ. Systematic screening in hereditary hemorrhagic telangiectasia: A review. Vol. 24, Current Opinion in Pulmonary Medicine. Lippincott Williams and Wilkins; 2018. p. 260–8.

 

64.        Beslow LA, Breimann J, Licht DJ, Waldman J, Fallacaro S, Pyeritz RE, et al. Cerebrovascular Malformations in a Pediatric Hereditary Hemorrhagic Telangiectasia Cohort. Pediatr Neurol. 2020 Sep 1;110:49–54.

 

65.        Vella M, Alexander MD, Mabray MC, Cooke DL, Amans MR, Glastonbury CM, et al. Comparison of MRI, MRA, and DSA for detection of cerebral arteriovenous malformations in hereditary hemorrhagic telangiectasia. American Journal of Neuroradiology. 2020 May 1;41(5):969–75.

 

66.        Valdivielso-Ramos M, Martin-Santiago A, Azaña JM, Hernández-Nuñez A, Vera A, Perez B, et al. Capillary malformation−arteriovenous malformation syndrome: a multicentre study. Clin Exp Dermatol. 2021 Mar 1;46(2):300–5.

 

67.        Sorenson TJ, Brinjikji W, Bortolotti C, Kaufmann G, Lanzino G. Recurrent Brain Arteriovenous Malformations (AVMs): A Systematic Review. World Neurosurg. 2018 Aug 1;116:e856–66.

 

68.        Jimenez JE, Gersey ZC, Wagner J, Snelling B, Ambekar S, Peterson EC. Role of follow-up imaging after resection of brain arteriovenous malformations in pediatric patients: A systematic review of the literature. Vol. 19, Journal of Neurosurgery: Pediatrics. American Association of Neurological Surgeons; 2017. p. 149–56.

 

69.        Hak JF, Boulouis G, Kerleroux B, Benichi S, Stricker S, Gariel F, et al. Pediatric brain arteriovenous malformation recurrence: a cohort study, systematic review and meta-analysis. J Neurointerv Surg. 2021 Sep 28;neurintsurg-2021-017777.

 

70.        Lim 2021.

 

71.        McDowell MM, Agarwal N, Mao G, Johnson S, Kano H, Lunsford LD, et al. Long-term outcomes of pediatric arteriovenous malformations: The 30-year Pittsburgh experience. J Neurosurg Pediatr. 2020 Sep 1;26(3):275–82.

 

72.        Lauzier DC, Vellimana AK, Chatterjee AR, Osbun JW, Moran CJ, Zipfel GJ, et al. Return of the lesion: a meta-analysis of 1134 angiographically cured pediatric arteriovenous malformations. J Neurosurg Pediatr. 2021 Sep 10;28(6):677–84.

 

73.        Steinberg JA, Brandel MG, Kang KM, Rennert RC, Pannell & JS, Olson SE, et al. Arteriovenous malformation surgery in children: the Rady Children’s Hospital experience (2002-2019). Available from: https://doi.org/10.1007/s00381-020-04994-9

 

74.        Hao Q, Zhang H, Han H, Jin H, Ma L, Li R, et al. Recurrence of Cerebral Arteriovenous Malformation Following Complete Obliteration Through Endovascular Embolization. Transl Stroke Res. 2023 Nov 13;

 

75.        Andreou A, Ioannidis I, Lalloo S, Nickolaos N, Byrne J V. Endovascular treatment of intracranial microarteriovenous malformations: Clinical article. J Neurosurg. 2008;109(6).

 

76.        Reig AS, Rajaram R, Simon S, Mericle RA. Complete angiographic obliteration of intracranial AVMs with endovascular embolization: incomplete embolic nidal opacification is associated with AVM recurrence. J Neurointerv Surg. 2010;2(3).

 

77.        Hofmeister C, Stapf C, Hartmann A, Sciacca RR, Mansmann U, TerBrugge K, et al. Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke. 2000;31(6).

 

78.        Langer DJ, Lasner TM, Hurst RW, Flamm ES, Zager EL, King JT. Hypertension, Small Size, and Deep Venous Drainage Are Associated with Risk of Hemorrhagic Presentation of Cerebral Arteriovenous Malformations [Internet]. Vol. 42. 1998. Available from: https://academic.oup.com/neurosurgery/article-abstract/42/3/481/2843342

 

79.        Brown RD, Wiebers DO, Forbes G, Michael O’fallon W, Piepgras DG, Marsh WR, et al. The natural history of unruptured intracranial arteriovenous malformations. Vol. 68, J Neurosurg. 1988.

 

80.        Davidoff CL, Lo Presti A, Rogers JM, Simons M, Assaad NNA, Stoodley MA, et al. Risk of First Hemorrhage of Brain Arteriovenous Malformations during Pregnancy: A Systematic Review of the Literature. Vol. 85, Clinical Neurosurgery. Oxford University Press; 2019. p. E806–14.

 

81.        Lee S, Kim Y, Navi BB, Abdelkhaleq R, Salazar-Marioni S, Blackburn SL, et al. Risk of intracranial hemorrhage associated with pregnancy in women with cerebral arteriovenous malformations. J Neurointerv Surg. 2021 Aug 1;13(8):707–10.

 

82.        lo Buono V, Bonanno L, Corallo F, Sidoti A, Bramanti P, Marino S. Evaluation of Qualitative Outcomes after Surgical Intervention on Patients Affected by Arteriovenous Malformations. Journal of Stroke and Cerebrovascular Diseases. 2016 Dec 1;25(12):2947–52.

 

83.        Pohjola A, Oulasvirta E, Roine RP, Sintonen HP, Hafez A, Koroknay-Pál P, et al. Long-term health-related quality of life in 262 patients with brain arteriovenous malformation. Neurology. 2019 Oct 1;93(14):E1374–84.

 

84.        van der Schaaf IC, Brilstra EH, Rinkel GJE, Bossuyt PM, van Gijn ; J. Quality of Life, Anxiety, and Depression in Patients With an Untreated Intracranial Aneurysm or Arteriovenous Malformation [Internet]. 2002. Available from: https://www.ahajournals.org/doi/10.1161/hs0202.102335?url_ver=Z39.88-
2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

 

85.        Rohn B, Haenggi D, Etminan N, Kunz M, Turowski B, Steiger HJ. Epilepsy, headache, and quality of life after resection of cerebral arteriovenous malformations. J Neurol Surg A Cent Eur Neurosurg. 2014;75(4):282–8.

 

86.        Stapf C, Moy CS, Overbey J, Moquete E, Parides M, Vicaut E, et al. INTERNATIONAL STROKE CONFERENCE ORAL ABSTRACTS SESSION TITLE: VASCULAR MALFORMATIONS ORAL ABSTRACTS Abstract 155: Health-Related Quality of Life in Patients With Unruptured Brain Avm Managed With or Without Interventional Therapy-The Aruba Trial. Available from: https://www.ahajournals.org/doi/abs/10.1161/str.45.suppl_1.155

 

87.        Jansen O, Szikora I, Causin F, Brückmann H, Lobotesis K. Standards of practice in interventional neuroradiology. Neuroradiology. 2017 Jun 19;59(6):541–4.

 

88.        Choi IS, Lasjaunias P, Picard L, Bracard S, Byrne J, Feng L, et al. Standards of practice in interventional neuroradiology or endovascular neurosurgery: WFITN site conditions and technical operational guidelines. Interventional Neuroradiology. 2006;12(1).

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Behandeling van een gebloed AVM