Bronchopulmonale dysplasie (BPD)

Initiatief: NVK Aantal modules: 25

Non-invasief beademen versus invasief en CPAP bij BPD

Uitgangsvraag

Reduceert non-invasieve beademing, in vergelijking met invasieve beademing en in vergelijking met CPAP, het risico op BPD?

Aanbeveling

Zwak

De werkgroep beveelt zowel non-invasieve nasale positieve drukbeademing als nasale CPAP aan voor de primaire behandeling van RDS in het kader van preventie van BPD en/of mortaliteit.

 

Sterk

De werkgroep beveelt zowel non-invasieve nasale positieve druk beademing als nasale CPAP aan na een periode van invasieve beademing in het kader van preventie van BPD en/of mortaliteit. Langer doorbeademen wordt afgeraden.

Overwegingen

Bovenstaand bewijs toont een significant verschil aan in het voordeel van nasale beademing in vergelijking met CPAP in het kader van preventie van BPD bij gebruik postpartum voor de behandeling van RDS. Er is geen effect aangetoond op het voorkomen van mortaliteit bij gebruik voor deze indicatie. Er zijn geen verschillen in optreden van complicaties gevonden. Voor de indicatie preventie van detubatiefalen na een periode van invasieve beademing vanwege RDS, is geen effect gevonden op de kans op BPD, ondanks een positief effect van nasale beademing op detubatiefalen en kans op herintubatie. Nasale beademing na detubatie geeft minder pneumothorax en minder mortaliteit, zonder toename van overige complicaties. In vergelijking met invasieve beademing geeft nasale beademing minder BPD en de gecombineerde uitkomstmaat BPD.

 

De beschikbare studies zijn beperkt in kwaliteit en aantal geïncludeerde patiënten waardoor de werkgroep van mening is dat het moeilijk is om harde aanbevelingen te doen over de keuze tussen CPAP en nasale beademing. CPAP is een goed onderzochte, bewezen effectieve en veilige interventie waar jarenlange ervaring mee is opgebouwd. De laatste jaren neemt de ervaring met het gebruik van nasale beademing echter ook toe. Er zijn nog veel zaken onduidelijk, onder andere over het verschil in effectiviteit tussen gesynchroniseerde en niet-gesynchroniseerde nasale beademing. Meer onderzoek is nodig om de effectiviteit en veiligheid van nasale beademing aan te tonen of uit te sluiten. De kwaliteit van dit bewijs zal echter altijd beperkt blijven vanwege de onmogelijkheid om geblindeerde interventies uit te voeren.

 

Op dit moment is de werkgroep van mening dat het gebruik van nasale beademing niet aanbevolen kan worden boven het gebruik van CPAP, vanwege onvoldoende bewijskracht en beperkte ervaring in vergelijking met CPAP. Wat betreft de vergelijking met invasieve beademing is de werkgroep van mening dat de periode van invasieve beademing in elk geval zo kort mogelijk gehouden dient te worden.

Onderbouwing

Premature pasgeborenen hebben vaak in meer of mindere mate last van respiratoire insufficiëntie. Eind jaren ’60 werd ondersteuning met CPAP geïntroduceerd. Later kwam hiervoor ook endotracheale, ofwel invasieve beademing beschikbaar en verdween het gebruik van CPAP weer naar de achtergrond. Invasieve beademing gaat echter gepaard met complicaties, zoals BPD, maar ook beschadiging van de stembanden en infecties, zoals ventilator acquired pneumonia en sepsis. Om het risico op deze complicaties te verminderen zijn er alternatieve, niet-invasieve technieken voor de ondersteuning van de ademhaling ontwikkeld. CPAP is een goede behandeling gebleken om de kans op (her)intubatie te verkleinen (Davis, 2000). NIPPV ofwel NIMV is een vorm van niet-invasieve ondersteuning waarbij CPAP wordt gecombineerd met beademingsslagen. Het werd voor het eerst onderzocht in het licht van de behandeling van de apnoe van de prematuur (Lemyre, 2002). Vervolgens werd het ook onderzocht ter verbetering van het succes op extubatie. Het werkingsmechanisme is niet helemaal opgehelderd, maar berust op een combinatie van een toename van de faryngeale dilatatie, een verbetering van de ademdrive, een toename van de gemiddelde luchtwegdruk met alveolaire recrutering, een toename van de functioneel residuele capaciteit en een toename van het teug- en minutenvolume (Owen, 2007). Ditzelfde principe ligt aan de grondslag aan de SiPAP.

 

Nasale beademing kan via diverse interfaces en met verschillende apparaten worden toegediend. De beademingsslagen kunnen gesynchroniseerd toegediend worden met een beter effect op het teugvolume (Owen, 2011). De synchronisatie wordt bewerkstelligd met pneumatische abdominale capsule of met een nasale flowsensor. Beide principes zijn foutgevoelig waardoor gesynchroniseerde nasale beademing beperkt wordt gebruikt. Voor deze richtlijn werd gekeken naar de meest gebruikte vormen van al dan niet gesynchroniseerde NIPPV/NIMV en SiCPAP. Voor de eenvoud werd geen onderscheid gemaakt tussen toedieningsvormen en/of interfaces. Tevens werden studies die niet invasieve beademing vergelijken met het toedienen van O2 buitenom (via een zogenaamde headbox) buiten beschouwing gelaten, omdat deze laatste vorm van respiratoire ondersteuning in de niet-ontwikkelingslanden nagenoeg niet meer gebruikt wordt.

 

Doel van deze uitgangsvraag was om te bekijken of de vormen van niet-invasieve beademing ten opzichte van invasieve beademing, of ten opzichte van CPAP effect hebben op de incidentie van BPD.

Zeer laag

Nasale positieve drukbeademing geeft, in vergelijking met nasale CPAP bij pasgeborenen met RDS, at risk voor BPD, een significante reductie van het risico op respiratoir falen en op BPD bij 36 weken PML.

 

Laag

Bij gebruik van nasale positieve drukbeademing is, in vergelijking met nasale CPAP bij pasgeborenen met RDS, at risk voor BPD, geen reductie van het risico op mortaliteit aangetoond.

 

Zeer laag

Bij gebruik van nasale positieve drukbeademing is, in vergelijking met nasale CPAP bij pasgeborenen met RDS, at risk voor BPD, geen verschil in complicaties aangetoond.

 

Matig

Nasale positieve drukbeademing geeft, in vergelijking met nasale CPAP bij premature pasgeborenen die na een periode van invasieve beademing vanwege RDS gedetubeerd worden, een significante reductie van de kans op herintubatie. Er is geen verschil op het voorkomen van BPD aangetoond.

 

Matig

Nasale positieve drukbeademing geeft, in vergelijking met nasale CPAP bij premature pasgeborenen die na een periode van invasieve beademing vanwege RDS gedetubeerd worden, een significante reductie van mortaliteit.

 

Laag

Nasale positieve drukbeademing geeft, in vergelijking met nasale CPAP bij premature pasgeborenen die na een periode van invasieve beademing vanwege RDS gedetubeerd worden, een significante reductie van pneumothorax. Er is geen verschil in overige complicaties aangetoond.

 

Laag

Nasale positieve drukbeademing geeft, in vergelijking met voortzetten van invasieve beademing bij premature pasgeborenen die vanwege RDS invasieve beademing nodig hadden, een significante reductie van de kans op BPD en de gecombineerde uitkomstmaat dood/BPD.

 

Algehele kwaliteit van bewijs* = zeer laag

*De algehele kwaliteit van het bewijs wordt bepaald door de cruciale uitkomstmaat met de laagste kwaliteit van bewijs.

Beschrijving literatuurselectie algemeen

Bij de eerste versie van de richtlijn werden 287 potentieel relevante artikelen gevonden met de search. Hiervan werden er direct 237 geëxcludeerd op basis van de titel. Van de 50 overgebleven artikelen werd het abstract gelezen, waarna er 36 geëxcludeerd werden om diverse redenen. De 14 overgebleven artikelen waren drie SR’s en 11 RCT’s die het effect van nasale positieve druk beademing onderzochten. De drie SR’s onderscheiden zich door een verschil in indicatie voor nasale beademing, maar hebben alle als oorspronkelijke primaire uitkomst de preventie van endotracheale (re-)intubatie. De oudere SR van Lemyre (2002) is geëxcludeerd daar de indicatie voor nasale beademing de apnoe van de prematuur is en geen van de kritische uitkomstmaten van de PICO werd bestudeerd. De twee andere SR’s, één CR (Davis, 2001) en één niet-Cochrane meta-analyse (Meneses, 2012), hebben respectievelijk als indicatie voor de nasale beademing: het succesvol extuberen en het voorkomen van endotracheale beademing bij de primaire behandeling van RDS. Beide SR’s beschrijven ook de kritische uitkomsten BPD bij 36 weken PML. Van de 11 overgebleven RCT’s waren er vijf (Khalaf, 2001; Barrington, 2001; Kugelman, 2007; Meneses, 2011; Sai Sunil, 2009) opgenomen in de bovengenoemde SR’s van Davis en Meneses. Hierna bleven er zes RCT’s over waarvan de tekst volledig is gelezen (Moretti, 2008; OBrien, 2012; Ramanathan, 2012; Bhandari, 2007; Lista, 2010; Kumar, 2011). De RCT’s van Lista en Kumar werden uitgesloten, omdat alleen zeer korte termijnuitkomsten en niet de cruciale uitkomstmaten van de PICO beschreven werden.

 

Bij de update werden 214 potentieel relevante studies gevonden. Hiervan werden er 188 op basis van de titel geëxcludeerd. Van de 26 abstracts die werden gelezen, viel de helft af om diverse redenen. In totaal werden 13 studies full-tekst beoordeeld. Hierbij waren twee CR’s naar het gebruik van NIPPV; in één werd gekeken naar NIPPV voor de indicatie RDS (Lemyre, 2016), in de andere voor de indicatie preventie van detubatiefalen (Lemyre, 2017). Deze laatste CR is een update van de eerder gebruikte CR van Davis (2001). De CR van Lemyre (2016) over NIPPV bij RDS vervangt voor het beantwoorden van deze vraag de eerder gebruikte SR van Meneses (2012). Van de overgebleven 11 studies, alle RCT’s, waren er drie geïncludeerd in de CR’s (Jasani, 2015; Kahramaner, 2014; Kirpalani, 2013). Van de overige acht studies werd beoordeeld of het zinvol was de data toe te voegen aan de gegevens van de meta-analyses van de CR’s. Drie studies verschenen na de CR’s en werden opgenomen in de richtlijn voor het beantwoorden van de uitgangsvraag (Ribeiro, 2017; Komatsu, 1992; Oncel, 2015). De overige vijf studies werden niet meegenomen in de richtlijn voor het beantwoorden van deze vraag, vanwege verkeerde populatie (Silveira, 2015; Shi, 2014), verkeerde uitkomstmaat (Silveira, 2015; Gao, 2014), verkeerde interventie (Salvo, 2015) en/of Chinese taal (Gao, 2014; Chen, 2013). De bij de eerste versie van de richtlijn geïncludeerde studies van Moretti (2008), O’Brien (2012) en Ramanathan (2012) zijn inmiddels opgenomen in de CR. De studie van Bhandari (2007) werd geëxcludeerd door de schrijvers van de CR, omdat NIPPV werd vergeleken met invasieve beademing. Deze studie wordt daarom apart besproken.

 

Beschrijving studies

De geïncludeerde studies zijn onder te verdelen in drie grote groepen: twee op basis van de indicatie voor de interventie (succesvolle extubatie of primaire RDS-behandeling) en op basis van de behandeling van de controlegroep (NCPAP versus conventionele beademing). Dit resulteert in drie subgroepen waarin de studies verdeeld zijn.

 

Indicatie voor de nasale beademing is de primaire behandeling van RDS

Hiervoor wordt de CR van Lemyre (2016) gebruikt, aangevuld met gegevens uit de studie van Oncel (2016). Deze CR onderzocht het effect van NIPPV, toegepast in de eerste uren na geboorte bij pasgeborenen met (verhoogd risico op) RDS. Primaire uitkomstmaten waren: respiratoire insufficiëntie en noodzaak tot intubatie in de eerste levensweek. Secundair werd ook naar BPD en mortaliteit gekeken. De CR includeerde tien studies in een meta-analyse. Hierin werden 1.061 premature pasgeborenen gerandomiseerd tussen NIPPV en CPAP. In twee studies werd voor randomisatie surfactant via INSURE-procedure gegeven. In twee studies werd aan een deel van de patiënten surfactant gegeven voor randomisatie. In zes studies werd geen surfactant gegeven voor randomisatie. Een deel van de studies includeerde met name kinderen met hoog risico op BPD, met andere woorden: met een AD <30 weken. Een ander deel includeerde tot een AD van 35 weken. Er waren verschillen tussen de studies wat betreft al dan niet synchroniseren van de NIPPV, gebruikte interface en gebruikt apparaat.

 

In de studie van Oncel werden 200 kinderen met tekenen van RDS met een AD van 26 tot 32 weken gerandomiseerd tussen NIPPV en CPAP. In beide armen van de studie werd, indien nodig, surfactant gegeven middels LISA/MIST.

 

Indicatie voor de nasale beademing is het succesvol extuberen

Hiervoor werd de CR van Lemyre (2017) gebruikt, aangevuld met data van de RCT’s van Ribeiro (2017) en Komatsu (2016). In de CR werd het effect van NIPPV versus CPAP onderzocht bij premature pasgeborenen die na een periode van invasieve beademing gedetubeerd werden. Als primaire uitkomstmaat werd hierbij gekeken naar mate van additionele respiratoire ondersteuning. Secundair werd gekeken naar BPD, mortaliteit en mogelijke bijwerkingen. Er werden tien RCT’s opgenomen in de meta-analyse van de CR, waarin in totaal 1.431 premature pasgeborenen werden geïncludeerd. De inclusiecriteria van deze RCT’s varieerden. Zeven studies includeerde VLBW-kinderen, één studie alleen ELBW-kinderen en twee studies includeerden pasgeborenen met een AD <35 of 36 weken. Er waren eveneens verschillen in beademingsduur voor detubatie (<1 week tot 21 dagen), al dan niet gebruik van synchronisatie en gebruikte interface. In negen studies werd een conventioneel beademingsapparaat gebruikt voor het toedienen van NIPPV, slechts één studie maakte gebruik van een bilevel SiPAP-apparaat. Rescue-therapie met NIPPV was in de CPAP-groep slechts in drie studies toegestaan.

 

De studie van Ribeiro randomiseerde 101 pasgeborenen (AD ≤34 weken) met beademing en zo nodig surfactant vanwege RDS voor detubatie tussen drie verschillende interventies: NIPPV (niet gesynchroniseerd), bubbel-CPAP en CPAP via een beademingsapparaat. Gemiddeld werd drie tot vier dagen beademd voor detubatie. Primaire uitkomstmaat was de noodzaak tot herintubatie <48 uur na detubatie. Secundair werden BPD, mortaliteit en eventuele nadelige effecten gerapporteerd (Ribeiro, 2017).

 

Komatsu onderzocht het effect van NIPPV op de kans op een geslaagde detubatie door randomiseren van 72 premature pasgeborenen (AD <34 weken) tussen CPAP en NIPPV die invasief beademd waren na geboorte. Primaire uitkomstmaat was extubatiefalen in de eerste 72 uur na detubatie. Secundair werd BPD gerapporteerd (Komatsu, 2016).

 

Indicatie voor de nasale beademing is vervolgbehandeling van RDS na surfactant toediening

Er werd naar gekeken in de studie van Bhandari (2007). Deze feasability trial heeft 41 prematuren <32 weken AD gerandomiseerd tussen gesynchroniseerde nasale positieve drukbeademing en voortzetten van conventionele beademing voor de vervolgbehandeling van RDS na surfactanttoediening met als primaire uitkomstmaat dood/BPD bij 36 weken PML. Omdat conventionele beademing het risico op BPD en/of dood bij 36 weken PML verhoogt, is ervoor gekozen deze studie afzonderlijk te beschrijven.

 

Kwaliteit van het bewijs

Indicatie voor de nasale beademing is de primaire behandeling van RDS

De kwaliteit van het gevonden bewijs was zeer laag voor de uitkomstmaat BPD en laag voor de uitkomstmaat mortaliteit tijdens de looptijd van de studies. De kwaliteit van bewijs voor noodzaak tot intubatie is laag. Voor pneumothorax, IVH, NEC en ROP is de kwaliteit van bewijs zeer laag. Er werd afgewaardeerd vanwege risico op bias door gebrek aan blindering van interventie en vanwege imprecisie.

 

Indicatie voor de nasale beademing is het succesvol extuberen

De kwaliteit van het bewijs voor de uitkomstmaten BPD bij 36 weken PML, overlijden voor ontslag en noodzaak tot herintubatie was redelijk. Er werd afgewaardeerd voor het niet blinderen van de interventie. Voor de uitkomstmaten respiratoir falen na detubatie, gastro-intestinale perforatie, pneumothorax en NEC, is de kwaliteit van bewijs laag. Er werd naast risico op bias door gebrek aan blindering afgewaardeerd voor heterogeniteit en imprecisie.

 

Indicatie voor de nasale beademing is vervolgbehandeling van RDS na surfactant toediening

De kwaliteit van bewijs was voor alle uitkomstmaten laag. Er werd afgewaardeerd op basis van risico op bias door gebrek aan blindering en door imprecisie.

 

Gewenste effecten

Indicatie voor de nasale beademing is de primaire behandeling van RDS

Er is een significant positief effect op het voorkomen van respiratoir falen met noodzaak tot intubatie bij gebruik van NIPPV bij premature pasgeborenen met RDS (RR 0,72; 97% BI 0,60 tot 0,87). Ook op de cruciale uitkomstmaat BPD bij 36 weken PML wordt een significant positief effect gevonden (RR 0,74; 95% BI 0,54 tot 0,96). Er is geen effect op mortaliteit gevonden.

 

Indicatie voor de nasale beademing is het succesvol extuberen

Er wordt een significant effect gevonden van het gebruik van NIPPV na detubatie op het voorkomen van respiratoir falen na detubatie (RR 0,69; 95% BI 0,60 tot 0,79) en noodzaak tot herintubatie (RR 0,74; 95% BI 0,64 tot 0,85). Dit leidt niet tot een significant effect op het voorkomen van BPD. Mortaliteit is wel significant lager bij gebruik van NIPPV (RR 0,70; 95% BI 0,49 tot 0,99). Ook pneumothorax wordt minder frequent gezien in de kinderen gerandomiseerd voor NIPPV (RR 0,46; 95% BI 0,27 tot 0,79).

 

Indicatie voor de nasale beademing is vervolgbehandeling van RDS na surfactant toediening

In de groep gerandomiseerd voor NIPPV werd een significant lager voorkomen van BPD gerapporteerd (10 versus 33%; p 0,04) en van de gecombineerde uitkomstmaat dood en BPD (20 versus 52%; p 0,03). Alle overige uitkomstmaten waren niet significant verschillend.

 

Ongewenste effecten

Indicatie voor de nasale beademing is de primaire behandeling van RDS

Er werden geen verschillen in de belangrijke complicaties tussen de studiegroepen gevonden. Gastro-intestinale problematiek wordt wisselend en vaak niet kwantitatief weergegeven. In drie studies in de CR werd gastro-intestinale perforatie bijgehouden. Er werd geen enkele casus gerapporteerd. In de studie van Oncel werd één patiënt met gastro-intestinale perforatie gerapporteerd. Deze was gerandomiseerd in de CPAP-groep.

 

Indicatie voor de nasale beademing is het succesvol extuberen

Er werden geen verschillen gevonden in de complicaties NEC en gastro-intestinale perforatie, respectievelijk in acht en zeven studies gerapporteerd.

 

Indicatie voor de nasale beademing is vervolgbehandeling van RDS na surfactant toediening

Er werden geen significante verschillen gevonden in complicaties.

De volgende PICO werd opgesteld voor deze uitgangsvraag:

P Prematuren met een gestational age <32 weken.

I Niet invasieve beademing: NIPPV/NIPAP/NIMV/bifasische CPAP met of zonder synchronisatie.

C

a. invasieve beademing: CMV / HFV;

b. NCPAP.

O Incidentie van BPD, mortaliteit, indien geen BPD beschikbaar als uitkomstmaat: invasieve beademing, beademingsduur, nadelige effecten: luchtretentie, maagperforatie, lange termijn neurologische uitkomst.

 

De systematische literatuursearch werd gedaan van 1966 tot en met 2012. De search werd herhaald in 2019.

  1. [No authors listed] Early compared with delayed inhaled nitric oxide in moderately hypoxaemic neonates with respiratory failure: a randomised controlled trial. The Franco-Belgium Collaborative NO Trial Group. Lancet 1999;354(9184):1066-1071.
  2. [No authors listed] Elective high-frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Neonatology. 2013;103(1):7-8; discussion 8-9. doi: 10.1159/000338553. Epub 2012 Aug 30.
  3. [No authors listed] Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;105(2):295-310.
  4. Abd El-Fattah N, Nasef N, Al-Harrass MF, et al. Sustained lung inflation at birth for preterm infants at risk of respiratory distress syndrome: The proper pressure and duration. J Neonatal Perinatal Med. 2017;10(4):409-417.
  5. Abdel-Hady H, Shouman B, Aly H. Early weaning from CPAP to high-flow nasal cannula in preterm infants is associated with prolonged oxygen requirement: a randomized controlled trial. Early Hum Dev. 2011;87(3):205-208.
  6. AGREE Next Steps Consortium. Appraisal of Guidelines for Research & Evaluation (AGREE) II Instrument. AGREE. 2013. www.agreetrust.org.
  7. Albersheim SG, Solimano AJ, Sharma AK, et al. Randomized, double-blind, controlled trial of long-term diuretic therapy for bronchopulmonary dysplasia. J Pediatr. 1989;115(4):615-620.
  8. Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102(1):F17-F23. doi: 10.1136/archdischild-2015-310299. Epub 2016 Nov 15.
  9. Ali E, Abdel Wahed M, Alsalami Z, et al. New modalities to deliver surfactant in premature infants: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2016;29(21):3519-24. doi: 10.3109/14767058.2015.1136997. Epub 2016 Feb 10.
  10. Altman DG, Schulz KF, Moher D, et al. The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med. 2001;134:663–694.
  11. Aly H, Massaro AN, Patel K, et al. Is it safer to intubate premature infants in the delivery room? Pediatrics. 2005;115(6):1660-1665.
  12. Amatya S, Macomber M, Bhutada A, et al. Sudden versus gradual pressure wean from Nasal CPAP in preterm infants: a randomized controlled trial. J Perinatol. 2017;37(6):662-667. doi: 10.1038/jp.2017.10. Epub 2017 Feb 23.
  13. Ambalavanan N, Tyson JE, Kennedy KA, et al. Vitamin A supplementation for extremely low birth weight infants: outcome at 18 to 22 months. Pediatrics. 2005;115(3):e249-e254.
  14. Ambalavanan N, Wu TJ, Tyson JE, et al. A comparison of three vitamin A dosing regimens in extremely-low-birth-weight infants. J Pediatr. 2003;142(6):656-661.
  15. Anabrees J, Alfaleh K. Fluid restriction and prophylactic indomethacin versus prophylactic indomethacin alone for prevention of morbidity and mortality in extremely low birth weight infants. Cochrane Database Syst Rev. 2011;(7):CD007604.
  16. Andabaka T, Nickerson JW, Rojas-Reyes MX, et al. Monoclonal antibody for reducing the risk of respiratory syncytial virus infection in children. Cochrane Database Syst Rev. 2013;(4):CD006602. doi: 10.1002/14651858.CD006602.pub4. Review.
  17. Aquino SL, Schechter MS, Chiles C, et al. High-resolution inspiratory and expiratory CT in older children and adults with bronchopulmonary dysplasia. AJR Am J Roentgenol. 1999;173(4):963-967.
  18. Ardell S, Pfister RH, Soll R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2015;8:CD000144. doi: 10.1002/14651858.CD000144.pub3.
  19. Arjaans S, Zwart EAH, Ploegstra MJ, et al. Identification of gaps in the current knowledge on pulmonary hypertension in extremely preterm infants: A systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2018;32(3):258-267.
  20. Armanian AM, Badiee Z, Afghari R, et al. Reducing the incidence of chronic lung disease in very premature infants with aminophylline. Int J Prev Med. 2014;5(5):569-76.
  21. Armstrong DL, Penrice J, Bloomfield FH, et al. Follow up of a randomised trial of two different courses of dexamethasone for preterm babies at risk of chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 2002;86(2):F102-F107.
  22. Askie LM, Ballard RA, Cutter GR, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. Pediatrics. 2011;128(4):729-739.
  23. Askie LM, Darlow BA, Davis PG, et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants. Cochrane Database Syst Rev. 2017;4:CD011190. doi: 10.1002/14651858.CD011190.pub2. Review.
  24. Askie LM, Darlow BA, Finer N, et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA. 2018;319(21):2190-2201. doi: 10.1001/jama.2018.5725.
  25. Askie LM, Henderson-Smart DJ, et al. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003;349(10):959-967.
  26. Askie LM, Henderson-Smart DJ, Ko H. Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst Rev. 2009;(1):CD001077.
  27. Askie LM, Henderson-Smart DJ. Early versus late discontinuation of oxygen in preterm or low birth weight infants. Cochrane Database Syst Rev. 2000a;(2):CD001076.
  28. Askie LM, Henderson-Smart DJ. Gradual versus abrupt discontinuation of oxygen in preterm or low birth weight infants. Cochrane Database Syst Rev. 2000b;(2):CD001075.
  29. Attar MA, Donn SM. Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol. 2002;7(5):353-360.
  30. Aukland SM, Halvorsen T, Fosse KR, et al. High-resolution CT of the chest in children and young adults who were born prematurely: Findings in a population-based study. AJR Am J Roentgenol. 2006;187(4):1012-1018.
  31. Avery ME, Tooley WH, Keller JB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics. 1987;79(1):26-30.
  32. Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11:CD001456. doi: 10.1002/14651858.CD001456.pub2.
  33. Ballard HO, Anstead MI, Shook LA. Azithromycin in the extremely low birth weight infant for the prevention of bronchopulmonary dysplasia: a pilot study. Respir Res. 2007;8:41.
  34. Ballard HO, Shook LA, Bernard P, et al. Use of azithromycin for the prevention of bronchopulmonary dysplasia in preterm infants: a randomized, double-blind, placebo controlled trial. Pediatr Pulmonol. 2011;46(2):111-118.
  35. Ballard PL, Gonzales LW, Godinez RI, et al. Surfactant composition and function in a primate model of infant chronic lung disease: effects of inhaled nitric oxide. Pediatr Res. 2006a;59(1):157-162.
  36. Ballard RA, Truog WE, Cnaan A, et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med. 2006b;355(4):343-353.
  37. Bamat N, Fierro J, Wang Y, et al. Positive end-expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev. 2019;2:CD004500. doi: 10.1002/14651858.CD004500.pub3.
  38. Bancalari E, Claure N. Definitions and diagnostic criteria for bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):164-170.
  39. Bancalari E. Changes in the pathogenesis and prevention of chronic lung disease of prematurity. Am J Perinatol. 2001;18(1):1-9.
  40. Baraldi E, Bonetto G, Zacchello F, et al. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med. 2005;171(1):68-72.
  41. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357(19):1946-1955.
  42. Barker DJP. Mothers, babies and health in later life. [2nd edition]. 1998. London: Churchill Livingstone.
  43. Barrington K, Finer N. The natural history of the appearance of apnea of prematurity. Pediatr Res. 1991;29(4 Pt 1):372-375.
  44. Barrington KJ, Bull D, Finer NN. Randomized trial of nasal synchronized intermittent mandatory ventilation compared with continuous positive airway pressure after extubation of very low birth weight infants. Pediatrics. 2001;107(4):638-641.
  45. Barrington KJ, Finer N, Pennaforte T. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev. 2017;1:CD000509. doi: 10.1002/14651858.CD000509.pub5. Review.
  46. Barrington KJ, Finer N. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev. 2010;(12):CD000509.
  47. Barrington KJ, Fortin-Pellerin E, Pennaforte T. Fluid restriction for treatment of preterm infants with chronic lung disease. Cochrane Database Syst Rev. 2017;2(2):CD005389. Published 2017 Feb 8. doi:10.1002/14651858.CD005389.pub2
  48. Bassler D, Shinwell ES, Hallman M, et al. Long-Term Effects of Inhaled Budesonide for Bronchopulmonary Dysplasia. N Engl J Med. 2018;378(2):148-157. doi: 10.1056/NEJMoa1708831. PubMed PMID: 29320647.
  49. Baud O, Maury L, Lebail F, et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet. 2016;387(10030):1827-36. doi: 10.1016/S0140-6736(16)00202-6. Epub 2016 Feb 23.
  50. Baveja R, Christou H. Pharmacological strategies in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):209-218.
  51. Been JV, Lugtenberg MJ, Smets E, et al. Preterm birth and childhood wheezing disorders: A systematic review and meta-analysis. PLoS Med. 2014;11(1):e1001596.
  52. Bell EF, Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2014;(12):CD000503. doi: 10.1002/14651858.CD000503.pub3. Epub 2014 Dec 4. Review.
  53. Bell EF, Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2014;(12):CD000503. doi: 10.1002/14651858.CD000503.pub3. Epub 2014 Dec 4. Review.
  54. Bell EF, Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2008;(1):CD000503.
  55. Bell EF, Warburton D, Stonestreet BS, et al. Effect of fluid administration on the development of symptomatic patent ductus arteriosus and congestive heart failure in premature infants. New England Journal of Medicine. 1980;302:598-604.
  56. Bental RY, Cooper PA, Cummins RR, et al. Vitamin A therapy - effects on the incidence of bronchopulmonary dysplasia. South African Journal of Food Science and Nutrition. 1994;6(4):141-145.
  57. Benzies KM, Magill-Evans JE, Hayden KA, et al. Key components of early intervention programs for preterm infants and their parents: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2013;13Suppl 1: S10.
  58. Berg van den JP, Westerbeek EA, van der Klis FR, et al. Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early Human Development. 2011;(87):67-72.
  59. Bevilacqua G, Halliday H, Parmigiani S, et al. Randomized multicentre trial of treatment with porcine natural surfactant for moderately severe neonatal respiratory distress syndrome. The Collaborative European Multicentre Study Group. J Perinat Med. 1993;21(5):329-340.
  60. Bhandari V, Gavino RG, Nedrelow JH, et al. A randomized controlled trial of synchronized nasal intermittent positive pressure ventilation in RDS. J Perinatol. 2007;27(11):697-703.
  61. Bhuta T, Henderson-Smart DJ. Elective high frequency jet ventilation versus conventional ventilation for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2000;(2):CD000328.
  62. Bjorklund LJ, Ingimarsson J, Curstedt T, et al. Lung recruitment at birth does not improve lung function in immature lambs receiving surfactant. Acta Anaesthesiol Scand. 2001;45(8):986-993.
  63. Bjorklund LJ, Ingimarsson J, Curstedt T, et al. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res. 1997;42(3):348-355.
  64. Bland RD, Albertine KH, Carlton DP, et al. Inhaled nitric oxide effects on lung structure and function in chronically ventilated preterm lambs. Am J Respir Crit Care Med. 2005;172(7):899-906.
  65. Bloom DE, Cafiero ET, Jané-Llopis E, et al. The Global Economic Burden of Noncommunicable Diseases. World Economic Forum. Geneva. 2011.
  66. Bloomfield FH, Knight DB, Harding JE. Side effects of 2 different dexamethasone courses for preterm infants at risk of chronic lung disease: a randomized trial. J Pediatr. 1998;133(3):395-400.
  67. Bollen CW, Uiterwaal CS, van Vught AJ. Cumulative metaanalysis of high-frequency versus conventional ventilation in premature neonates. Am J Respir Crit Care Med. 2003;168(10):1150-1155.
  68. Brattström P, Russo C, Ley D, Bruschettini M. High-versus low-dose caffeine in preterm infants: a systematic review and meta-analysis. Acta Paediatr. 2019;108(3):401-410. doi: 10.1111/apa.14586. Epub 2018 Oct 30. Review.
  69. Brett J, Staniszewska S, Newburn M, et al. A systematic mapping review of effective interventions for communicating with, supporting and providing information to parents of preterm infants. BMJ Open. 2011;1(1):e000023.
  70. Brion LP, Primhak RA, Ambrosio-Perez I. Diuretics acting on the distal renal tubule for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2002;(1):CD001817.
  71. Broom M, Ying L, Wright A, et al. CeasIng Cpap At standarD criteriA (CICADA): impact on weight gain, time to full feeds and caffeine use. Arch Dis Child Fetal Neonatal Ed. 2014;99(5):F423-5. doi: 10.1136/archdischild-2013-304581. Epub 2014 May 8.
  72. Brostrom EB, Thunqvist P, Adenfelt G, et al. Obstructive lung disease in children with mild to severe BPD. Respir Med. 2010;104(3):362-370.
  73. Brudno DS, Parker DH, Slaton G. Response of pulmonary mechanics to terbutaline in patients with bronchopulmonary dysplasia. Am J Med Sci. 1989;297(3):166-168.
  74. Bruschettini M, O'Donnell CP, Davis PG, et al. Sustained versus standard inflations during neonatal resuscitation to prevent mortality and improve respiratory outcomes. Cochrane Database Syst Rev. 2017;7:CD004953. doi: 10.1002/14651858.CD004953.pub3. Review.
  75. Cabal LA, Larrazabal C, Ramanathan R, et al. Effects of metaproterenol on pulmonary mechanics, oxygenation, and ventilation in infants with chronic lung disease. J Pediatr. 1987;110(1):116-119.
  76. Carlo WA, Stark AR, Bauer C, et al. Effects of minimal ventilation in a multicenter randomized controlled trial of ventilator support and early corticosteroid therapy in extremely low birthweight infants. Pediatrics. 1999;104(3, Suppl):738-39.
  77. Carlton DP, Albertine KH, Cho SC, et al. Role of neutrophils in lung vascular injury and edema after premature birth in lambs. J Appl Physiol. 1997;83(4):1307-1317.
  78. Cassady G, Crouse DT, Kirklin JW, et al. A randomized, controlled trial of very early prophylactic ligation of the ductus arteriosus in babies who weighed 1000 g or less at birth. N Engl J Med. 1989;320(23):1511-1516.
  79. Cassell GH, Waites KB CD. Mycoplasmal infections. In: Remington JS, Klein JO editor(s). Infectious Diseases of the Fetus and Newborn Infant. 5th Edition. Philadelphia: Saunders. 2001.
  80. Cassell GH, Waites KB, Crouse DT. Perinatal mycoplasmal infections. Clin Perinatol. 1991;18(2):241-262.
  81. Castoldi F, Daniele I, Fontana P, et al. Lung recruitment maneuver during volume guarantee ventilation of preterm infants with acute respiratory distress syndrome. Am J Perinatol. 2011;28(7):521-528.
  82. Chen J, Jin L, Chen X. Efficacy and Safety of Different Maintenance Doses of Caffeine Citrate for Treatment of Apnea in Premature Infants: A Systematic Review and Meta-Analysis. Biomed Res Int. J Korean Med Sci. 2018;2018:9061234. doi: 10.1155/2018/9061234. eCollection 2018.
  83. Chen ML, Guo L, Smith LE, et al. High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis. Pediatrics. 2010;125(6):e1483-e1492.
  84. Chen X, Peng WS, Wang L, et al. [A randomized controlled study of nasal intermittent positive pressure ventilation in the treatment of neonatal respiratory distress syndrome]. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(9):713-7. Chinese.
  85. Chowdhury O, Patel DS, Hannam S, et al. Randomised trial of volume-targeted ventilation versus pressure-limited ventilation in acute respiratory failure in prematurely born infants. Neonatology. 2013;104(4):290-4. doi: 10.1159/000353956. Epub 2013 Oct 8.
  86. Clark RH, Gerstmann DR, Jobe AH, et al. Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr. 2001;139(4):478-486.
  87. Clyman R, Cassady G, Kirklin JK, et al. The role of patent ductus arteriosus ligation in bronchopulmonary dysplasia: reexamining a randomized controlled trial. J Pediatr. 2009;154(6):873-876.
  88. Clyman RI, Liebowitz M, Kaempf J, et al. PDA-TOLERATE Trial: An Exploratory Randomized Controlled Trial of Treatment of Moderate-to-Large Patent Ductus Arteriosus at 1 Week of Age. J Pediatr. 2019;205:41-48.e6. doi: 10.1016/j.jpeds.2018.09.012. Epub 2018 Oct 16.
  89. Collaborative Group for the Multicenter Study on Heated Humidified High-flow Nasal Cannula Ventilation. [Efficacy and safety of heated humidified high-flow nasal cannula for prevention of extubation failure in neonates]. Zhonghua Er Ke Za Zhi. 2014;52(4):271-6. Chinese.
  90. Cools F, Askie LM, Offringa M, et al. Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients' data. Lancet. 2010.
  91. Cools F, Henderson-Smart DJ, Offringa M, et al. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2009;(3):CD000104.
  92. Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015;(3):CD000104. doi: 10.1002/14651858.CD000104.pub4.
  93. Cotton RB, Sundell HW, Zeldin DC, et al. Inhaled nitric oxide attenuates hyperoxic lung injury in lambs. Pediatr Res. 2006;59(1):142-146.
  94. Courtney SE, Durand DJ, Asselin JM, et al. High- frequency oscillatory ventilation versus conventional mechanical ventilation for very- low-birth-weight infants. N Engl J Med. 2002;347(9):643-652.
  95. Crowther CA, McKinlay CJ, Middleton P, et al. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev. 2011;(6):CD003935.
  96. Crowther CA, McKinlay CJD, Middleton P, et al. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database of Systematic Reviews .2015;7. Art No CD003935.
  97. D'Angio CT. Active immunization of premature and low birth-weight infants: a review of immunogenicity, efficacy, and tolerability. Paediatr Drugs. 2007;9(1):17-32.
  98. Dani C, Bertini G, Pezzati M, et al. Inhaled nitric oxide in very preterm infants with severe respiratory distress syndrome. Acta Paediatr. 2006;95(9):1116-1123.
  99. Dani C, Bertini G, Reali MF, et al. Prophylaxis of patent ductus arteriosus with ibuprofen in preterm infants. Acta Paediatr. 2000;89(11):1369-1374.
  100. Darlow BA, Graham PJ, Rojas-Reyes MX. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst Rev. 2016;(8):CD000501. doi: 10.1002/14651858.CD000501.pub4. Review.
  101. Darlow BA, Graham PJ. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev. 2011;(10):CD000501.
  102. Davis JM, Sinkin RA, Aranda JV. Drug therapy for bronchopulmonary dysplasia. Pediatr Pulmonol. 1990;8(2):117-125.
  103. Davis PG, Henderson-Smart DJ. Nasal continuous positive airways pressure immediately after extubation for preventing morbidity in preterm infants. Cochrane Database Syst Rev. 2000;(2):CD000143.
  104. Davis PG, Lemyre B, De Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2001;(3):CD003212.
  105. Davis PG, Tan A, O'Donnell CP, et al. Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis. Lancet. 2004;364(9442):1329-1333.
  106. Dawson JA, Schmolzer GM, Kamlin CO, et al. Oxygenation with T-piece versus self- inflating bag for ventilation of extremely preterm infants at birth: a randomized controlled trial. J Pediatr. 2011;158(6):912-918.
  107. Denjean A, Diot P, Morra L, et al. Albuterol delivery in a model of mechanical ventilation. Comparison of a metered dose inhaler and nebulizer efficiency. American Journal of Respiratory and Critical Care Medicine. 1995.
  108. Denjean A, Paris-Llado J, Zupan V, et al. Inhaled salbutamol and beclomethasone for preventing broncho-pulmonary dysplasia: a randomised double-blind study. Eur J Pediatr. 1998;157(11):926-931.
  109. Di Fiore JM, Walsh M, Wrage L, et al. Low oxygen saturation target range is associated with increased incidence of intermittent hypoxemia. J Pediatr. 2012;161(6):1047-1052.
  110. Dilmen U, Özdemir R, Tatar Aksoy H, et al. Early regular versus late selective poractant treatment in preterm infants born between 25 and 30 gestational weeks: a prospective randomized multicenter study. J Matern Fetal Neonatal Med. 2014;27(4):411-5. doi: 10.3109/14767058.2013.818120. Epub 2013 Jul 30.
  111. Dinsmoor MJ, Ramamurthy RS, Gibbs RS. Transmission of genital mycoplasmas from mother to neonate in women with prolonged membrane rupture. Pediatr Infect Dis J. 1989;8(8):483-487.
  112. Donn SM, Sinha SK. Can mechanical ventilation strategies reduce chronic lung disease? Semin Neonatol. 2003;8(6):441-448.
  113. Doyle LW, Adams AM, Robertson C, et al. Increasing airway obstruction from 8 to 18 years in extremely preterm/low-birthweight survivors born in the surfactant era. Thorax. 2017a;72(8):712-719.
  114. Doyle LW, Cheong J, Hunt RW, et al. Caffeine and brain development in very preterm infants. Ann Neurol. 2010;68(5):734-742.
  115. Doyle LW, Cheong JL, Ehrenkranz RA, et al. Early (<8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017b;10:CD001146. doi: 10.1002/14651858.CD001146.pub5. Review. PubMed PMID: 29063585; PubMed Central PMCID: PMC6485683.
  116. Doyle LW, Cheong JL, Ehrenkranz RA, et al. Late (>7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017c;10:CD001145. doi: 10.1002/14651858.CD001145.pub4. Review. PubMed PMID: 29063594; PubMed Central PMCID: PMC6485440.
  117. Doyle LW, Davis PG, Morley CJ, et al. Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: a multicenter, international, randomized, controlled trial. Pediatrics. 2006a;117(1):75-83.
  118. Doyle LW, Faber B, Callanan C, et al. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006b;118(1098-4275; 1):108-113.
  119. Doyle LW, Halliday HL, Ehrenkranz RA, et al. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014;165(6):1258-60. doi: 10.1016/j.jpeds.2014.07.049. Epub 2014 Sep 10.
  120. Doyle LW, Halliday HL, Ehrenkranz RA, et al. Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk for chronic lung disease. Pediatrics. 2005;115(3):655-661.
  121. Dreyfuss D, Basset G, Soler P, et al. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132(4):880-884.
  122. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157(1):294-323.
  123. Duijts L, van Meel ER, Moschino L, et al. European respiratory society guideline on long term management of children with bronchopulmonary dysplasia. Eur Respir J. 2019.
  124. Duman N, Tuzun F, Sutcuoglu S, et al. Impact of volume guarantee on synchronized ventilation in preterm infants: a randomized controlled trial. Intensive Care Med. 2012;38(8):1358-64. doi: 10.1007/s00134-012-2601-5. Epub 2012 May 23.
  125. Dunn MS, Kaempf J, de KA, et al. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128(5):e1069- e1076.
  126. Dunn MS, Shennan AT, Hoskins EM, et al. Two-year follow-up of infants enrolled in a randomized trial of surfactant replacement therapy for prevention of neonatal respiratory distress syndrome. Pediatrics. 1988;82(4):543-547.
  127. Edwards DK, Colby TV, Northway WH. Radiographic-pathologic correlation in bronchopulmonary dysplasia. J Pediatr. 1979;95(0022-3476;5):834-836.
  128. Edwards DK, Dyer WM, Northway WH. Twelve years' experience with bronchopulmonary dysplasia. Pediatrics. 1977;59(0031-4005;6):839-846.
  129. Edwards MO, Kotecha SJ, Lowe J, et al. Effect of preterm birth on exercise capacity: A systematic review and meta-analysis. Pediatr Pulmonol. 2015;50(3):293-301.
  130. Ehrenberg HM, Mercer BM. Antibiotics and the management of preterm premature rupture of the fetal membranes. Clin Perinatol. 2001;28(4):807-818.
  131. Ehrenkranz RA, Walsh MC, Vohr BR, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116(6):1353-1360.
  132. El-Chimi MS, Awad HA, El-Gammasy TM, et al. Sustained versus intermittent lung inflation for resuscitation of preterm infants: a randomized controlled trial. J Matern Fetal Neonatal Med. 2017;30(11):1273-1278.
  133. Erdemir A, Kahramaner Z, Turkoglu E, et al. Effects of synchronized intermittent mandatory ventilation versus pressure support plus volume guarantee ventilation in the weaning phase of preterm infants*. Pediatr Crit Care Med. 2014;15(3):236-41. doi: 10.1097/PCC.0b013e3182a5570e.
  134. Escobedo MB, Aziz K, Kapadia VS,et al. American Heart Association Focused Update on Neonatal Resuscitation: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2019;140(24):e922-e930. doi: 10.1161/CIR.0000000000000729. Epub 2019 Nov 14.
  135. Escrig R, Arruza L, Izquierdo I, et al. Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective, randomized trial. Pediatrics. 2008;121(5):875-881.
  136. EURO-PERISTAT. Project with SCPE EE. European perinatal health report 2008. Centraal Buro voor Statistiek. Perinatale en zuigelingensterfte; zwangerschapsduur en geslacht Statline 2006 en 2007. 2013.
  137. Evans T, Whittingham K, Sanders M, et al. Are parenting interventions effective in improving the relationship between mothers and their preterm infants? Infant Behav Dev. 2014;37(2):131–154.
  138. Eze N, Murphy D, Dhar V, et al. Comparison of sprinting vs non-sprinting to wean nasal continuous positive airway pressure off in very preterm infants. J Perinatol. 2018;38(2):164-168. doi: 10.1038/jp.2017.161. Epub 2017 Oct 26.
  139. Fanaroff AA, Stoll BJ, Wright LL, et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am J Obstet Gynecol. 2007;196(2):147-148.
  140. Farrell PA, Fiascone JM. Bronchopulmonary dysplasia in the 1990s: a review for the pediatrician. Curr Probl Pediatr. 1997;27(4):129-163.
  141. Fawke J, Lum S, Kirkby J, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: The EPICure study. Am J Respir Crit Care Med. 2010;182(2):237-245.
  142. Feng ZT, Yang ZM, Gu DF, et al. [Clinical efficacy of heated humidified high-flow nasal cannula in preventing extubation failure in neonates: a Meta analysis]. Zhongguo Dang Dai Er Ke Za Zhi. 2015;17(12):1327-32. Chinese.
  143. Ferreira PJ, Bunch TJ, Albertine KH, et al. Circulating neutrophil concentration and respiratory distress in premature infants. J Pediatr. 2000;136(4):466-472.
  144. Filippone M, Bonetto G, Cherubin E, et al. Childhood course of lung function in survivors of bronchopulmonary dysplasia. JAMA. 2009;302(13):1418-1420.
  145. Finer N, Saugstad O, Vento M, et al. Use of oxygen for resuscitation of the extremely low birth weight infant. Pediatrics. 2010a;125(2):389-391.
  146. Finer NN, Bates R, Tomat P. Low-flow oxygen delivery via nasal cannula to neonates. Pediatr Pulmonol. 1996;21(1):48-51.
  147. Finer NN, Carlo WA, Duara S, et al. Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial. Pediatrics. 2004;114(3):651-657.
  148. Finer NN, Carlo WA, Walsh MC, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010b;362(21):1970-1979.
  149. Fischer HS, Schmölzer GM, Cheung PY, et al. Verlengde inflaties and avoiding mechanical ventilation to prevent death or bronchopulmonary dysplasia: a meta-analysis. Eur Respir Rev. 2018;27(150). pii: 180083. doi: 10.1183/16000617.0083-2018. Print 2018 Dec 31.
  150. Fleeman N, Mahon J, Bates V, et al. The clinical effectiveness and cost-effectiveness of heated humidified high-flow nasal cannula compared with usual care for preterm infants: systematic review and economic evaluation. Health Technol Assess. 2016;20(30):1-68. doi: 10.3310/hta20300. Review.
  151. Flors L, Mugler JP, Paget-Brown A, et al. Hyperpolarized helium-3 diffusion-weighted magnetic resonance imaging detects abnormalities of lung structure in children with bronchopulmonary dysplasia. J Thorac Imaging. 2017;32(5):323-332.
  152. Fok TF, Lam K, Ng PC, et al. Delivery of salbutamol to nonventilated preterm infants by metered-dose inhaler, jet nebulizer, and ultrasonic nebulizer. Eur Respir J. 1998;12(1):159-164.
  153. Fok TF, Monkman S, Dolovich M, et al. Efficiency of aerosol medication delivery from a metered dose inhaler versus jet nebulizer in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 1996;21(5):301-309.
  154. Fok TF. Adjunctive pharmacotherapy in neonates with respiratory failure. Semin Fetal Neonatal Med. 2009;14(1):49-55. doi: 10.1016/j.siny.2008.08.002. Epub 2008 Oct 11.
  155. Fowlie PW, Davis PG, McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev. 2010;(7):CD000174.
  156. Frank L. Antioxidants, nutrition, and bronchopulmonary dysplasia. Clin Perinatol. 1992;19(3):541-562.
  157. Galdes-Sebaldt M, Sheller JR, Grogaard J, et al. Prematurity is associated with abnormal airway function in childhood. Pediatr Pulmonol. 1989;7(4):259-264.
  158. Gao X, Yang B, Hei M, et al. [Application of three kinds of non-invasive positive pressure ventilation as a primary mode of ventilation in premature infants with respiratory distress syndrome: a randomized controlled trial]. Zhonghua Er Ke Za Zhi. 2014;52(1):34-40. Chinese.
  159. Gappa M, Gartner M, Poets CF, et al. Effects of salbutamol delivery from a metered dose inhaler versus jet nebulizer on dynamic lung mechanics in very preterm infants with chronic lung disease. Pediatr Pulmonol. 1997;23(6):442-448.
  160. Garite TJ, Kurtzman J, Maurel K, et al. Impact of a 'rescue course' of antenatal corticosteroids: a multicenter randomized placebo-controlled trial. Am J Obstet Gynecol. 2009;200(3):248-249.
  161. Garland SM, Murton LJ. Neonatal meningitis caused by Ureaplasma urealyticum. Pediatr Infect Dis J. 1987;6(9):868-870.
  162. Gharehbaghi MM, Peirovifar A, Ghojazadeh M, et al. Efficacy of azithromycin for prevention of bronchopulmonary dysplasia (BPD). Turk J Med Sci. 2012;42:1070–1075.
  163. Giannakopoulou C, Hatzidaki E, Korakaki E, et al. Comparative randomized study: administration of natural and synthetic surfactant to premature newborns with respiratory distress syndrome. Pediatr Int. 2002;44(2):117-121.
  164. Gibson AM, Reddington C, McBride L, et al. Lung function in adult survivors of very low birth weight, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(10):987-994.
  165. Glackin SJ, O'Sullivan A, George S, et al. High-flow nasal cannula versus NCPAP, duration to full oral feeds in preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2017;102(4):F329-F332. doi:
  166. Gladstone IM, Levine RL. Oxidation of proteins in neonatal lungs. Pediatrics. 1994;93(5):764-768.
  167. Goyal NK, Teeters A, Ammerman RT. Home visiting and outcomes of preterm infants: a systematic review. Pediatrics. 2013;132(3):502–516.
  168. Greenberg RG, Gayam S, Savage D, et al. Furosemide Exposure and Prevention of Bronchopulmonary Dysplasia in Premature Infants. J Pediatr. 2019;208:134-140.e2. doi: 10.1016/j.jpeds.2018.11.043. Epub 2018 Dec 20.
  169. Greenough A, Peacock J, Zivanovic S, et al. United Kingdom Oscillation Study: long-term outcomes of a randomised trial of two modes of neonatal ventilation. Health Technol Assess. 2014;18(41):v-xx, 1-95. doi: 10.3310/hta18410.
  170. Greenough A. Emerging drugs for the prevention of bronchopulmonary dysplasia. Expert Opin Emerg Drugs. 2008;13(3):537-546.
  171. Gregory GA, Kitterman JA, Phibbs RH, et al. Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure. N Engl J Med. 1971;284(24):1333-1340.
  172. Grigg J, Arnon S, Jones T, et al. Delivery of therapeutic aerosols to intubated babies. Arch Dis Child. 1992;67(1 Spec No):25-30.
  173. Guven S, Bozdag S, Saner H, et al. Early neonatal outcomes of volume guaranteed ventilation in preterm infants with respiratory distress syndrome. J Matern Fetal Neonatal Med. 2013;26(4):396-401. doi: 10.3109/14767058.2012.733778. Epub 2012 Oct 29.
  174. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-926.
  175. Hakulinen AL, Heinonen K, Lansimies E, et al. Pulmonary function and respiratory morbidity in school-age children born prematurely and ventilated for neonatal respiratory insufficiency. Pediatr Pulmonol. 1990;8(8755-6863; 4):226-232.
  176. Halim A, Shirazi H, Riaz S, et al. Less Invasive Surfactant Administration in Preterm Infants with Respiratory Distress Syndrome. J Coll Physicians Surg Pak. 2019;29(3):226-330. doi: 10.29271/jcpsp.2019.03.226.
  177. Halliday HL, Ehrenkranz RA, Doyle LW. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2010;(1):CD001146.
  178. Halliday HL, Ehrenkranz RA, Doyle LW. Late (>7 days) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2009;(1):CD001145.
  179. Hamon I, Fresson J, Nicolas MB, et al. Early inhaled nitric oxide improves oxidative balance in very preterm infants. Pediatr Res. 2005;57(5 Pt 1):637-643.
  180. Harling AE, Beresford MW, Vince GS, et al. Does the use of 50% oxygen at birth in preterm infants reduce lung injury? Arch Dis Child Fetal Neonatal Ed. 2005;90(5):F401-F405.
  181. Harvey CJ, O'Doherty MJ, Page CJ, et al. Effect of a spacer on pulmonary aerosol deposition from a jet nebuliser during mechanical ventilation. Thorax. 1995;50(1):50-53.
  182. Hasan SU, Potenziano J, Konduri GG, et al. Effect of Inhaled Nitric Oxide on Survival Without Bronchopulmonary Dysplasia in Preterm Infants: A Randomized Clinical Trial. JAMA Pediatr. 2017;171(11):1081-1089. doi: 10.1001/jamapediatrics.2017.2618.
  183. Hascoet JM, Fresson J, Claris O, et al. The safety and efficacy of nitric oxide therapy in premature infants. J Pediatr. 2005;146(3):318-323.
  184. Haynes RL, Folkerth RD, Keefe RJ, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol. 2003;62(5):441-450.
  185. Heath Jeffery RC, Broom M, Shadbolt B, et al. CeasIng Cpap At standarD criteriA (CICADA): Implementation improves neonatal outcomes. J Paediatr Child Health. 2016;52(3):321-6. doi: 10.1111/jpc.13087.
  186. Heiring C, Steensberg J, Bjerager M, et al. A Randomized Trial of Low-Flow Oxygen versus Nasal Continuous Positive Airway Pressure in Preterm Infants. Neonatology. 2015;108(4):259-65. doi: 10.1159/000437203. Epub 2015 Aug 28.
  187. Hellstrom A, Perruzzi C, Ju M, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci U S A. 2001;98(10):5804-5808.
  188. Henderson-Smart DJ, Cools F, Bhuta T, et al. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2007;(3):CD000104.
  189. Henderson-Smart DJ, Davis PG. Prophylactic methylxanthines for endotracheal extubation in preterm infants. Cochrane Database Syst Rev. 2010a;(12):CD000139.
  190. Henderson-Smart DJ, De Paoli AG. Prophylactic methylxanthine for prevention of apnoea in preterm infants. Cochrane Database Syst Rev. 2010b;(12):CD000432.
  191. Henderson-Smart DJ. Recurrent apnoea. Evidence Based Pediatrics. Evid Based Med. 2004.
  192. Hentschel J, Berger TM, Tschopp A, et al. Population- based study of bronchopulmonary dysplasia in very low birth weight infants in Switzerland. Eur J Pediatr. 2005;164(5):292-297.
  193. Hernandez LA, Peevy KJ, Moise AA, et al. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol. 1989;66(5):2364- 2368.
  194. Hibbs AM, Walsh MC, Martin RJ, et al. One-year respiratory outcomes of preterm infants enrolled in the Nitric Oxide (to prevent) Chronic Lung Disease trial. J Pediatr. 2008;153(4):525-529.
  195. Higgins RD, Bancalari E, Willinger M, et al. Executive summary of the workshop on oxygen in neonatal therapies: controversies and opportunities for research. Pediatrics. 2007;119(4):790-796.
  196. Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J Pediatr. 2018;197:300-308. doi: 10.1016/j.jpeds.2018.01.043. Epub 2018 Mar 16. No abstract available.
  197. Hilgendorff A, Reiss I, Gortner L, et al. Impact of airway obstruction on lung function in very preterm infants at term. Pediatr Crit Care Med. 2008;9(6):629-35. doi: 10.1097/PCC.0b013e31818d17c8.
  198. Hjalmarson O, Sandberg KL. Lung function at term reflects severity of bronchopulmonary dysplasia. J Pediatr. 2005;146(0022-3476;1):86-90.
  199. Ho JJ, Subramaniam P, Henderson-Smart DJ, et al. Continuous distending pressure for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2002;(2):CD002271.
  200. Hoffman DJ, Gerdes JS, Abbasi S. Pulmonary function and electrolyte balance following spironolactone treatment in preterm infants with chronic lung disease: a double-blind, placebo-controlled, randomized trial. J Perinatol. 2000;20(1):41-45.
  201. Holleman-Duray D, Kaupie D, Weiss MG. Heated humidified high-flow nasal cannula: use and a neonatal early extubation protocol. J Perinatol. 2007;27(12):776-781.
  202. Homaira N, Briggs N, Oei JL, et al. Impact of influenza on hospitalization rates in children with a range of chronic lung diseases. Influenza Other Respir Viruses. 2019;13(3):233-239. doi: 10.1111/irv.12633. Epub 2019 Jan 30
  203. Hulskamp G, Lum S, Stocks J, et al. Association of prematurity, lung disease and body size with lung volume and ventilation inhomogeneity in unsedated neonates: A multicentre study. Thorax. 2009;64(1468-3296;3):240-245.
  204. Hundscheid T, Onland W, van Overmeire B, et al. Early treatment versus expectative management of patent ductus arteriosus in preterm infants: a multicentre, randomised, non-inferiority trial in Europe (BeNeDuctus trial). BMC Pediatr. 2018;18(1):262. doi: 10.1186/s12887-018-1215-7.
  205. Hunt KA, Ling R, White M, et al. Verlengde inflaties during delivery suite stabilisation in prematurely-born infants – A randomised trial. Early Hum Dev. 2019;130:17-21.
  206. Hutzal CE, Boyle EM, Kenyon SL, et al. Use of antibiotics for the treatment of preterm parturition and prevention of neonatal morbidity: a metaanalysis. Am J Obstet Gynecol. 2008;199(6):620-628.
  207. Hynan MT, Hall SL. Psychosocial program standards for NICU parents. J Perinatology. 2015;35:S1 – S4.
  208. Ikegami M, Kallapur S, Michna J, et al. Lung injury and surfactant metabolism after hyperventilation of premature lambs. Pediatr Res. 2000;47(3):398-404.
  209. Ingimarsson J, Bjorklund LJ, Curstedt T, et al. A lung recruitment maneuver immediately before rescue surfactant therapy does not affect the lung mechanical response in immature lambs with respiratory distress syndrome. Acta Anaesthesiol Scand. 2003;47(8):968-972.
  210. Ingimarsson J, Bjorklund LJ, Curstedt T, et al. Incomplete protection by prophylactic surfactant against the adverse effects of large lung inflations at birth in immature lambs. Intensive Care Med. 2004;30(7):1446-1453.
  211. Isayama T, Chai-Adisaksopha C, McDonald SD. Noninvasive Ventilation With vs Without Early Surfactant to Prevent Chronic Lung Disease in Preterm Infants: A Systematic Review and Meta-analysis. JAMA Pediatr. 2015;169(8):731-9. doi: 10.1001/jamapediatrics.2015.0510. Review.
  212. Isayama T, Iwami H, McDonald S, et al. Association of Noninvasive Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review and Meta-analysis. JAMA. 2016;316(6):611-24. doi: 10.1001/jama.2016.10708. Review. Erratum in: JAMA. 2016 Sep 13;316(10):1116. PubMed PMID: 27532916.
  213. Isayama T, Lee SK, Mori R, et al. Comparison of mortality and morbidity of very low birth weight infants between Canada and Japan. Pediatrics. 2012;130(4):e957-e965.
  214. Isayama T, Lee SK, Yang J, et al. Revisiting the Definition of Bronchopulmonary Dysplasia: Effect of Changing Panoply of Respiratory Support for Preterm Neonates. JAMA Pediatr. 2017;171(3):271-279. doi: 10.1001/jamapediatrics.2016.4141.
  215. Iyer NP, Mhanna MJ. The role of surfactant and non-invasive mechanical ventilation in early management of respiratory distress syndrome in premature infants. World J Pediatr. 2014;10(3):204-10. doi: 10.1007/s12519-014-0494-9. Epub 2014 Aug 15. Review.
  216. Jensen CF, Sellmer A, Ebbesen F, et al. Sudden vs Pressure Wean From Nasal Continuous Positive Airway Pressure in Infants Born Before 32 Weeks of Gestation: A Randomized Clinical Trial. JAMA Pediatr. 2018;172(9):824-831. doi: 10.1001/jamapediatrics.2018.2074.
  217. Jackson JK, Ford SP, Meinert KA, et al. Standardizing nasal cannula oxygen administration in the neonatal intensive care unit. Pediatrics. 2006;118 Suppl 2:S187- S196.
  218. Jacob SV, Coates AL, Lands LC, et al. Long-term pulmonary sequelae of severe bronchopulmonary dysplasia. J Pediatr. 1998;133(2):193-200.
  219. Jacob SV, Lands LC, Coates AL, et al. Exercise ability in survivors of severe bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;155(6):1925-1929.
  220. Jardine L, Davies MW. Withdrawal of neonatal continuous positive airway pressure: current practice in Australia. Pediatr Int. 2008;50(4):572-575.
  221. Jardine LA, Inglis GD, Davies MW. Strategies for the withdrawal of nasal continuous positive airway pressure (NCPAP) in preterm infants. Cochrane Database Syst Rev. 2011;(2):CD006979.
  222. Jasani B, Nanavati R, Kabra N, et al. Comparison of non-synchronized nasal intermittent positive pressure ventilation versus nasal continuous positive airway pressure as post-extubation respiratory support in preterm infants with respiratory distress syndrome: a randomized controlled trial. J Matern Fetal Neonatal Med. 2016;29(10):1546-51. doi: 10.3109/14767058.2015.1059809. Epub 2015 Jul 28.
  223. Jensen EA, Dysart K, Gantz MG, et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am J Respir Crit Care Med. 2019;200(6):751-759. doi: 10.1164/rccm.201812-2348OC.
  224. Jiravisitkul P, Rattanasiri S, Nuntnarumit P. Randomised controlled trial of sustained lung inflation for resuscitation of preterm infants in the delivery room. Resuscitation. 2017;111:68-73.
  225. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723-1729.
  226. Jobe AH, Ikegami M. Mechanisms initiating lung injury in the preterm. Early Hum Dev. 1998a;53(1):81-94.
  227. Jobe AH, Kramer BW, Moss TJ, et al. Decreased indicators of lung injury with continuous positive expiratory pressure in preterm lambs. Pediatr Res. 2002;52(3):387-392.
  228. Jobe AH, Wada N, Berry LM, et al. Single and repetitive maternal glucocorticoid exposures reduce fetal growth in sheep. Am J Obstet Gynecol. 1998;178(5):880-885.
  229. Jobe AH. Transition/adaptation in the delivery room and less RDS: "Don't just do something, stand there!". J Pediatr. 2005;147(3):284-286.
  230. John HB, Philip RM, Santhanam S, et al. Activity based group therapy reduces maternal anxiety in the Neonatal Intensive Care Unit - a prospective cohort study. Early Hum Dev. 2018;123:17–21.
  231. Jonsson B, Rylander M, Faxelius G. Ureaplasma urealyticum, erythromycin and respiratory morbidity in high-risk preterm neonates. Acta Paediatr. 1998;87(10):1079- 1084.
  232. Joshi VH, Bhuta T. Rescue high frequency jet ventilation versus conventional ventilation for severe pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2006;(1):CD000437.
  233. Kahramaner Z, Erdemir A, Turkoglu E, et al. Unsynchronized nasal intermittent positive pressure versus nasal continuous positive airway pressure in preterm infants after extubation. J Matern Fetal Neonatal Med. 2014;27(9):926-9. doi: 10.3109/14767058.2013.846316. Epub 2013 Oct 17.
  234. Kang WQ, Xu BL, Liu DP, et al. [Efficacy of heated humidified high-flow nasal cannula in preterm infants aged less than 32 weeks after ventilator weaning]. Zhongguo Dang Dai Er Ke Za Zhi. 2016;18(6):488-91. Chinese.
  235. Kao LC, Durand DJ, McCrea RC, et al. Randomized trial of long-term diuretic therapy for infants with oxygen-dependent bronchopulmonary dysplasia. J Pediatr. 1994;124(5 Pt 1):772-781.
  236. Kattwinkel J, Perlman JM, Aziz K, et al. Neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics. 2010;126(5):e1400-e1413.
  237. Kavvadia V, Greenough A, Dimitriou G, et al. Randomized trial of two levels of fluid input in the perinatal period – effect on fluid balance, electrolyte and metabolic disturbances in ventilated VLBW infants. Acta Paediatrica. 2000;89:237-41.
  238. Kendig JW, Ryan RM, Sinkin RA, et al. Comparison of two strategies for surfactant prophylaxis in very premature infants: a multicenter randomized trial. Pediatrics. 1998;101(6):1006-1012.
  239. Kenyon S, Boulvain M, Neilson JP. Antibiotics for preterm rupture of membranes. Cochrane Database Syst Rev. 2013;(12):CD001058. doi: 10.1002/14651858.CD001058.pub3. Review.
  240. Kenyon S, Boulvain M, Neilson JP. Antibiotics for preterm rupture of membranes. Cochrane Database Syst Rev. 2010;(8):CD001058.
  241. Kenyon S, Taylor DJ, Tarnow-Mordi WO. ORACLE--antibiotics for preterm prelabour rupture of the membranes: short-term and long-term outcomes. Acta Paediatr Suppl. 2002;91(437):12-15.
  242. Kenyon SL, Taylor DJ, Tarnow-Mordi W. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group. Lancet. 2001;357(9261):979-988.
  243. Khalaf MN, Brodsky N, Hurley J, et al. A prospective randomized, controlled trial comparing synchronized nasal intermittent positive pressure ventilation versus nasal continuous positive airway pressure as modes of extubation. Pediatrics. 2001;108(1):13-17.
  244. Khandaker G, Zurynski Y, Ridley G, et al. Clinical epidemiology and predictors of outcome in children hospitalised with influenza A(H1N1)pdm09 in 2009: a prospective national study. Influenza Other Respir Viruses. 2014;8(6):636-45. doi: 10.1111/irv.12286. Epub 2014 Sep 27.
  245. Kiatchoosakun P, Jirapradittha J, Panthongviriyakul MC, et al. Vitamin A supplementation for prevention of bronchopulmonary dysplasia in very-low-birth-weight premature Thai infants: a randomized trial. J Med Assoc Thai. 2014;97 Suppl 10:S82-8.
  246. Kinsella JP, Cutter GR, Steinhorn RH, et al. Noninvasive inhaled nitric oxide does not prevent bronchopulmonary dysplasia in premature newborns. J Pediatr. 2014;165(6):1104-1108.e1. doi: 10.1016/j.jpeds.2014.06.018. Epub 2014 Jul 22.
  247. Kinsella JP, Cutter GR, Walsh WF, et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med. 2006;355(4):354-364.
  248. Kinsella JP, Steinhorn RH, Krishnan US, et al. Recommendations for the Use of Inhaled Nitric Oxide Therapy in Premature Newborns with Severe Pulmonary Hypertension. J Pediatr. 2016;170:312-4. doi: 10.1016/j.jpeds.2015.11.050. Epub 2015 Dec 15.
  249. Kinsella JP, Walsh WF, Bose CL, et al. Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial. Lancet. 1999;354(9184):1061-1065.
  250. Kirpalani H, Koren G, Schmidt B, et al. Respiratory response and pharmacokinetics of intravenous salbutamol in infants with bronchopulmonary dysplasia. Crit Care Med. 1990;18(12):1374-1377.
  251. Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS; NIPPV Study Group. A trial comparing noninvasive ventilation strategies in preterm infants. N Engl J Med. 2013;369(7):611-20. doi: 10.1056/NEJMoa1214533.
  252. Kirpalani H, Ratcliffe SJ, Keszler M, et al. Effect of Verlengde inflaties vs Intermittent Positive Pressure Ventilation on Bronchopulmonary Dysplasia or Death Among Extremely Preterm Infants: The SAIL Randomized Clinical Trial. JAMA. 2019;321(12):1165-1175.
  253. Klingenberg C, Wheeler KI, McCallion N, et al. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017;10:CD003666. doi: 10.1002/14651858.CD003666.pub4.
  254. Kluckow M, Jeffery M, Gill A, et al. A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed. 2014;99(2):F99-F104. doi: 10.1136/archdischild-2013-304695. Epub 2013 Dec 6.
  255. Koldewijn K, van Wassenaer A, Wolf MJ, et al. A neurobehavioral intervention and assessment program in very low birth weight infants: outcome at 24 months. Pediatr. 2010;156(3):359-65. doi: 10.1016/j.jpeds.2009.09.009. Epub 2009 Nov 2.
  256. Koldewijn K, Wolf MJ, van Wassenaer A, et al. The Infant Behavioral Assessment and Intervention Program for very low birth weight infants at 6 months corrected age. J Pediatr. 2009;154(1):33-38.e2. doi: 10.1016/j.jpeds.2008.07.039. Epub 2008 Sep 10.
  257. Komatsu DF, Diniz EM, Ferraro AA, et al. Randomized controlled trial comparing nasal intermittent positive pressure ventilation and nasal continuous positive airway pressure in premature infants after tracheal extubation. Rev Assoc Med Bras. 2016;62(6):568-574. doi: 10.1590/1806-9282.62.06.568.
  258. Korhonen P, Laitinen J, Hyodynmaa E, et al. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. Acta Paediatr. 2004;93(0803-5253; 3):316-321.
  259. Kotecha S, Clemm H, Halvorsen T, et al. Bronchial hyper-responsiveness in preterm-born subjects: A systematic review and meta-analysis. Pediatr Allergy Immunol. 2018;29(7):715-725.
  260. Kotecha SJ, Edwards MO, Watkins WJ, et al. Effect of bronchodilators on forced expiratory volume in 1 s in preterm-born participants aged 5 and over: A systematic review. Neonatology. 2015;107(3):231-240.
  261. Kotecha SJ, Edwards MO, Watkins WJ, et al. Effect of preterm birth on later FEV1: A systematic review and meta-analysis. Thorax. 2013;68(8):760-766.
  262. Kraljevic M, Warnock FF. Early educational and behavioral RCT interventions to reduce maternal symptoms of psychological trauma following preterm birth: a systematic review. J Perinat Neonatal Nurs. 2013;27(4):311-27. Review.
  263. Krausse R, Schubert S. In-vitro activities of tetracyclines, macrolides, fluoroquinolones and clindamycin against Mycoplasma hominis and Ureaplasma ssp. isolated in Germany over 20 years. Clin Microbiol Infect. 2010;16(11):1649-1655.
  264. Krishnan U, Feinstein JA, Adatia I, et al. Evaluation and management of pulmonary hypertension in children with bronchopulmonary dysplasia. J Pediatr. 2017;188:24-34.e1.
  265. Kua KP, Lee SW. Systematic review and meta-analysis of clinical outcomes of early caffeine therapy in preterm neonates. Br J Clin Pharmacol. 2017;83(1):180-191. doi: 10.1111/bcp.13089. Epub 2016 Sep 30. Review.
  266. Kugelman A, Feferkorn I, Riskin A, et al. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study. J Pediatr. 2007;150(5):521-6, 526.
  267. Kumar M, Avasthi S, Ahuja S, et al. Unsynchronized Nasal Intermittent Positive Pressure Ventilation to prevent extubation failure in neonates: a randomized controlled trial. Indian J Pediatr. 2011;78(7):801-806.
  268. Kuo HT, Lin HC, Tsai CH, et al. A follow-up study of preterm infants given budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants. J Pediatr. 2010;156(4):537-541.
  269. Latzin P, Roth S, Thamrin C, et al. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants. PLoS One. 2009;4(1932-6203;2):e4635.
  270. Laughon M, Allred EN, Bose C, et al. Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics. 2009;123(4):1124-1131.
  271. Lemons JA, Bauer CR, Oh W, et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics. 2001;107(1):E1.
  272. Lemyre B, Davis PG, De Paoli AG, et al. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2:CD003212. doi: 10.1002/14651858.CD003212.pub3. Review.
  273. Lemyre B, Davis PG, De Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for apnea of prematurity. Cochrane Database Syst Rev. 2002;(1):CD002272.
  274. Lemyre B, Laughon M, Bose C, et al. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016;12:CD005384. doi: 10.1002/14651858.CD005384.pub2. Review.
  275. Lin XZ, Chen HQ, Zheng Z, et al. [Therapeutic effect of early administration of oral ibuprofen in very low birth weight infants with patent ductus arteriosus]. Zhongguo Dang Dai Er Ke Za Zhi. 2012;14(7):502-5. Chinese.
  276. Lin YJ, Markham NE, Balasubramaniam V, et al. Inhaled nitric oxide enhances distal lung growth after exposure to hyperoxia in neonatal rats. Pediatr Res. 2005;58(1):22- 29.
  277. Lindner W, Hogel J, Pohlandt F. Sustained pressure-controlled inflation or intermittent mandatory ventilation in preterm infants in the delivery room? A randomized, controlled trial on initial respiratory support via nasopharyngeal tube. Acta Paediatr. 2005;94(3):303-309.
  278. Lindner W, Vossbeck S, Hummler H, et al. Delivery room management of extremely low birth weight infants: spontaneous breathing or intubation? Pediatrics. 1999;103(5 Pt 1):961-967.
  279. Lista G, Boni L, Scopesi F, et al. Sustained lung inflation at birth for preterm infants: a randomized clinical trial. Pediatrics. 2015;135(2):e457-64.
  280. Lista G, Castoldi F, Fontana P, et al. Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes. Pediatr Pulmonol. 2006;41(4):357-363.
  281. Lista G, Castoldi F, Fontana P, et al. Nasal continuous positive airway pressure (CPAP) versus bi-level nasal CPAP in preterm babies with respiratory distress syndrome: a randomised control trial. Arch Dis Child Fetal Neonatal Ed. 2010;95(2):F85-F89.
  282. Lloyd J, Askie L, Smith J, et al. Supplemental oxygen for the treatment of prethreshold retinopathy of prematurity. Cochrane Database Syst Rev. 2003;(2):CD003482.
  283. Lui K, Jones LJ, Foster JP, et al. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst Rev. 2018;5:CD010239. doi: 10.1002/14651858.CD010239.pub2.
  284. Lum S, Kirkby J, Welsh L, et al. Nature and severity of lung function abnormalities in extremely pre-term children at 11 years of age. Eur Respir J. 2011;37(5):1199-1207.
  285. Lyon AJ, McColm J, Middlemist L, et al. Randomised trial of erythromycin on the development of chronic lung disease in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998;78(1):F10-F14.
  286. Mabanta CG, Pryhuber GS, Weinberg GA, et al. Erythromycin for the prevention of chronic lung disease in intubated preterm infants at risk for, or colonized or infected with Ureaplasma urealyticum. Cochrane Database Syst Rev. 2003;(4):CD003744. Review.
  287. Mactier H, McCulloch DL, Hamilton R, et al. Vitamin A supplementation improves retinal function in infants at risk of retinopathy of prematurity.J Pediatr. 2012;160(6):954-9.e1.
  288. Mai XM, Gaddlin PO, Nilsson L, et al. Asthma, lung function and allergy in 12-year-old children with very low birth weight: A prospective study. Pediatr Allergy Immunol. 2003;14(3):184-192.
  289. Malmberg LP, Mieskonen S, Pelkonen A, et al. Lung function measured by the oscillometric method in prematurely born children with chronic lung disease. Eur Respir J. 2000;16(4):598-603.
  290. Malviya M, Ohlsson A, Shah S. Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2008;(1):CD003951.
  291. Maniscalco WM, Watkins RH, Pryhuber GS, et al. Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol. 2002;282(4):L811-L823.
  292. Manley BJ, Dold SK, Davis PG, et al. High-flow nasal cannulae for respiratory support of preterm infants: a review of the evidence. Neonatology. 2012;102(4):300-8. doi: 10.1159/000341754. Epub 2012 Sep 6. Review.
  293. Mariani G, Cifuentes J, Carlo WA. Randomized trial of permissive hypercapnia in preterm infants. Pediatrics. 1999;104:1082-8.
  294. Martin RJ, Mhanna MJ, Haxhiu MA. The role of endogenous and exogenous nitric oxide on airway function. Semin Perinatol. 2002;26(6):432-438.
  295. Maymon E, Chaim W, Sheiner E, et al. A review of randomized clinical trials of antibiotic therapy in preterm premature rupture of the membranes. Arch Gynecol Obstet. 1998;261(4):173-181.
  296. McCann EM, Lewis K, Deming DD, et al. Controlled trial of furosemide therapy in infants with chronic lung disease. J Pediatr. 1985;106(6):957- 962.
  297. McCormack WM, Rosner B, Alpert S, et al. Vaginal colonization with mycoplasma hominis and ureaplasma urealyticum. Sex Transm Dis. 1986a;13(2):67-70.
  298. McCormack WM. Ureaplasma urealyticum: ecologic niche and epidemiologic considerations. Pediatr Infect Dis. 1986b;5(6 Suppl):S232-S233.
  299. McCurnin DC, Pierce RA, Chang LY, et al. Inhaled NO improves early pulmonary function and modifies lung growth and elastin deposition in a baboon model of neonatal chronic lung disease. Am J Physiol Lung Cell Mol Physiol. 2005;288(3):L450-L459.
  300. McEvoy C, Schilling D, Peters D, et al. Respiratory compliance in preterm infants after a single rescue course of antenatal steroids: a randomized controlled trial. Am J Obstet Gynecol. 2010;202(6):544-549.
  301. McGregor J, Casey J. Enhancing infant-parent bonding using kangaroo care: a structured review. Evidence based midwifery. 2012;10(2)50-6.
  302. McGregor ML, Bremer DL, Cole C, et al. Retinopathy of prematurity outcome in infants with prethreshold retinopathy of prematurity and oxygen saturation >94% in room air: the high oxygen percentage in retinopathy of prematurity study. Pediatrics. 2002;110(3):540-544.
  303. Meneses J, Bhandari V, Alves JG, et al. Noninvasive ventilation for respiratory distress syndrome: a randomized controlled trial. Pediatrics. 2011;127(2):300-307.
  304. Meneses J, Bhandari V, Alves JG. Nasal intermittent positive-pressure ventilation vs nasal continuous positive airway pressure for preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Pediatr Adolesc Med. 2012;166(4):372-376.
  305. Mercer BM, Miodovnik M, Thurnau GR, et al. Antibiotic therapy for reduction of infant morbidity after preterm premature rupture of the membranes. A randomized controlled trial. National Institute of Child Health and Human Development Maternal- Fetal Medicine Units Network. JAMA. 1997;278(12):989-995.
  306. Mercier JC, Hummler H, Durrmeyer X, et al. Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomised controlled trial. Lancet. 2010;376(9738):346-354.
  307. Merz U, Peschgens T, Kusenbach G, et al. Early versus late dexamethasone treatment in preterm infants at risk for chronic lung disease: a randomized pilot study. Eur J Pediatr. 1999;158(4):318-322.
  308. Mestan KK, Marks JD, Hecox K, et al. Neurodevelopmental outcomes of premature infants treated with inhaled nitric oxide. N Engl J Med. 2005;353(1):23-32.
  309. Mirnia K, Heidarzadeh M, Hosseini M, et al. Comparison outcome of surfactant administration via tracheal catheterization during spontaneous breathing with InSurE. Med J Islamic World Acad Sci 2013;21:4, 143–8.
  310. Miyanohara T, Ushikai M, Matsune S, et al. Effects of clarithromycin on cultured human nasal epithelial cells and fibroblasts. Laryngoscope. 2000;110(1):126-131.
  311. Moretti C, Giannini L, Fassi C, et al. Nasal flow-synchronized intermittent positive pressure ventilation to facilitate weaning in very low-birthweight infants: unmasked randomized controlled trial. Pediatr Int. 2008;50(1):85-91.
  312. Morley CJ, Davis PG, Doyle LW, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700-708.
  313. Mosalli R, Alfaleh K. Prophylactic surgical ligation of patent ductus arteriosus for prevention of mortality and morbidity in extremely low birth weight infants. Cochrane Database Syst Rev. 2008;(1):CD006181.
  314. Moschino L, Stocchero M, Filippone M, et al. Longitudinal assessment of lung function in survivors of bronchopulmonary dysplasia from birth to adulthood. the padova BPD study. Am J Respir Crit Care Med. 2018;198(1):134-137.
  315. Mulder EE, Lopriore E, Rijken M, et al. Changes in respiratory support of preterm infants in the last decade: are we improving? Neonatology. 2012;101(4):247-53. doi: 10.1159/000334591. Epub 2012 Jan 4.
  316. Muscedere JG, Mullen JB, Gan K, et al. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994;149(5):1327- 1334.
  317. Naik AS, Kallapur SG, Bachurski CJ, et al. Effects of ventilation with different positive end-expiratory pressures on cytokine expression in the preterm lamb lung. Am J Respir Crit Care Med. 2001;164(3):494-498.
  318. Nair V, Swarnam K, Rabi Y, et al. Effect of Nasal Continuous Positive Airway Pressure (NCPAP) Cycling and Continuous NCPAP on Successful Weaning: A Randomized Controlled Trial. Indian J Pediatr. 2015;82(9):787-93. doi: 10.1007/s12098-015-1721-7. Epub 2015 Mar 19.
  319. Narang I, Baraldi E, Silverman M, et al. Airway function measurements and the long-term follow-up of survivors of preterm birth with and without chronic lung disease. Pediatr Pulmonol. 2006;41(6):497-508.
  320. Narang I, Rosenthal M, Cremonesini D, et al. Longitudinal evaluation of airway function 21 years after preterm birth. Am J Respir Crit Care Med. 2008;178(1):74-80.
  321. Narang I. Review series: What goes around, comes around: Childhood influences on later lung health? long-term follow-up of infants with lung disease of prematurity. Chron Respir Dis. 2010;7(4):259-269.
  322. Narayanan M, Beardsmore CS, Owers-Bradley J, et al. Catch-up alveolarization in ex-preterm children: Evidence from (3)he magnetic resonance. Am J Respir Crit Care Med. 2013;187(10):1104-1109.
  323. Narayanan M, Owers-Bradley J, et al. Alveolarization continues during childhood and adolescence: New evidence from helium-3 magnetic resonance. Am J Respir Crit Care Med. 2012;185(2):186-191.
  324. Nayeri FS, Esmaeilnia Shirvani T, Aminnezhad M, et al. Comparison of INSURE method with conventional mechanical ventilation after surfactant administration in preterm infants with respiratory distress syndrome: therapeutic challenge. Acta Med Iran. 2014;52(8):596-600.
  325. Nederlandse Vereniging voor Obstetrie en Gynaecologie, Nederlandse Vereniging voor Kindergeneeskunde. Richtlijn Perinataal Beleid bij Extreme Vroeggeboorte. 2013a.
  326. Nederlandse Vereniging voor Obstetrie en Gynaecologie. RICHTLIJN DREIGENDE VROEGGEBOORTE. 2013b.
  327. Ng G, da Silva O, Ohlsson A. Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2016;12:CD003214. doi: 10.1002/14651858.CD003214.pub3. Review.
  328. Ng G, Da SO, Ohlsson A. Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2012;6:CD003214.
  329. Ngan AY, Cheung PY, Hudson-Mason A, et al. Using exhaled CO2 to guide initial respiratory support at birth: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2017;102(6):F525-F531.
  330. Northway WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. N Engl J Med. 1967;276(7):357-368.
  331. O’Hara MW, McCabe JE. Postpartum depression: current status and future directions. Annu Rev Clin Psychol. 2013;9:379–407.
  332. O'Brien K, Campbell C, Brown L, et al. Infant flow biphasic nasal continuous positive airway pressure (BP- NCPAP) vs. infant flow NCPAP for the facilitation of extubation in infants'
  333. Odd DE, Armstrong DL, Teele RL, et al. A randomized trial of two dexamethasone regimens to reduce side-effects in infants treated for chronic lung disease of prematurity. J Paediatr Child Health. 2004;40(5-6):282-289.
  334. O'Donnell C, Davis P, Morley C. Positive end-expiratory pressure for resuscitation of newborn infants at birth. Cochrane Database Syst Rev. 2004;(4):CD004341.
  335. O'Donnell SM, Curry SJ, Buggy NA, et al. The NOFLO trial: low-flow nasal prongs therapy in weaning nasal continuous positive airway pressure in preterm infants. J Pediatr. 2013;163(1):79-83. doi: 10.1016/j.jpeds.2012.12.007. Epub 2013 Jan 11.
  336. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst Rev. 2018;4:CD010061. doi: 10.1002/14651858.CD010061.pub3. Review.
  337. Ohlsson A, Shah SS. Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2020a;1:CD004213. doi: 10.1002/14651858.CD004213.pub5.
  338. Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev. 2020b;2:CD003481. doi: 10.1002/14651858.CD003481.pub8. Review.
  339. Oncel MY, Arayici S, Uras N, et al. Nasal continuous positive airway pressure versus nasal intermittent positive-pressure ventilation within the minimally invasive surfactant therapy approach in preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2016;101(4):F323-8. doi: 10.1136/archdischild-2015-308204. Epub 2015 Nov 9.
  340. Onland W, Cools F, Kroon A, et al. Effect of Hydrocortisone Therapy Initiated 7 to 14 Days After Birth on Mortality or Bronchopulmonary Dysplasia Among Very Preterm Infants Receiving Mechanical Ventilation: A Randomized Clinical Trial. JAMA. 2019;321(4):354-363. doi: 10.1001/jama.2018.21443. PubMed PMID: 30694322; PubMed Central PMCID: PMC6439762.
  341. Onland W, De Jaegere AP, Offringa M, et al. Effects of higher versus lower dexamethasone doses on pulmonary and neurodevelopmental sequelae in preterm infants at risk for chronic lung disease: a meta-analysis. Pediatrics. 2008;122(1):92- 101.
  342. Onland W, De Jaegere AP, Offringa M, et al. Systemic corticosteroid regimens for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017;1:CD010941. doi: 10.1002/14651858.CD010941.pub2. Review. PubMed PMID: 28141913; PubMed Central PMCID: PMC6464844.
  343. Onland W, Offringa M, De Jaegere AP, et al. Finding the optimal postnatal dexamethasone regimen for preterm infants at risk of bronchopulmonary dysplasia: a systematic review of placebo-controlled trials. Pediatrics. 2009;123(1):367-377.
  344. Onland W, Offringa M, van KA. Late (>/= 7 days) inhalation corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2012;4:CD002311.
  345. Onland W, van Kaam AH, De Jaegere AP, et al. Open-label glucocorticoids modulate dexamethasone trial results in preterm infants. Pediatrics. 2010;126(4):e954-e964.
  346. Owen LS, Morley CJ, Davis PG. Neonatal nasal intermittent positive pressure ventilation: what do we know in 2007? Arch Dis Child Fetal Neonatal Ed. 2007;92(5):F414-F418.
  347. Owen LS, Morley CJ, Dawson JA, et al. Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2011;96(6):F422-F428.
  348. Ozdemir R, Erdeve O, Dizdar EA, et al. Clarithromycin in preventing bronchopulmonary dysplasia in Ureaplasma urealyticum-positive preterm infants. Pediatrics. 2011;128(6):e1496-e1501.
  349. Pace C, Spittle A, Molesworth CM, et al. Evolution of depression and anxiety symptoms in mothers and fathers of very infants born preterm during the newborn period – a longitudinal study. JAMA Pediatr. 2016;170:863–870.
  350. Pakvasa MA, Saroha V, Patel RM. Optimizing Caffeine Use and Risk of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review, Meta-analysis, and Application of Grading of Recommendations Assessment, Development, and Evaluation Methodology. Clin Perinatol. 2018;45(2):273-291. doi: 10.1016/j.clp.2018.01.012. Epub 2018 Mar 7.
  351. Palta M, Sadek M, Barnet JH, et al. Evaluation of criteria for chronic lung disease in surviving very low birth weight infants. newborn lung project. J Pediatr. 1998;132(1):57-63.
  352. Papagaroufalis C, Cairis M, Pantazatou E, et al. A trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. Pediatr.Res. 1988;23:518A.
  353. Park HW, Lim G, Chung SH, et al. Early Caffeine Use in Very Low Birth Weight Infants and Neonatal Chen J, Jin L, Chen X. Outcomes: A Systematic Review and Meta-Analysis. 2015; 30(12): 1828–1835.
  354. Patrianakos-Hoobler AI, Marks JD, Msall ME, et al. Safety and efficacy of inhaled nitric oxide treatment for premature infants with respiratory distress syndrome: follow-up evaluation at early school age. Acta Paediatr. 2011;100(4):524- 528.
  355. Pearson E, Bose C, Snidow T, et al. Trial of vitamin A supplementation in very low birth weight infants at risk for bronchopulmonary dysplasia. J Pediatr. 1992;121(3):420-427.
  356. Peevy KJ, Hernandez LA, Moise AA, et al. Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern. Crit Care Med. 1990;18(6):634-637.
  357. Peltoniemi OM, Kari MA, Tammela O, et al. Randomized trial of a single repeat dose of prenatal betamethasone treatment in imminent preterm birth. Pediatrics. 2007;119(2):290-298.
  358. Peng W, Zhu H, Shi H, et al. Volume-targeted ventilation is more suitable than pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2014;99(2):F158-65. doi: 10.1136/archdischild-2013-304613. Epub 2013 Nov 25.
  359. Pfenninger J, Aebi C. Respiratory response to salbutamol (albuterol) in ventilator- dependent infants with chronic lung disease: pressurized aerosol delivery versus intravenous injection. Intensive Care Med. 1993;19(5):251-255.
  360. Pfister RE, Aeschbach V, Niksic-Stuber V, et al. Safety of DTaP- based combined immunization in very-low-birth-weight premature infants: frequent but mostly benign cardiorespiratory events. J Pediatr. 2004;145(1):58-66.
  361. Pfister RH, Soll R, Wiswell TE. Protein-containing synthetic surfactant versus protein- free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2009;(4):CD006180.
  362. Pfister RH, Soll RF, Wiswell T. Protein containing synthetic surfactant versus animal derived surfactant extract for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2007;(4):CD006069.
  363. Pierrehumbert B, Nicole A, Muller-Nix C, et al.. Parental post-traumatic reactions after premature birth: implications for sleeping and eating problems in the infant. Arch Dis Child Fetal Neonatal Ed. 2003;88:F400–F404.
  364. Pillekamp F, Hermann C, Keller T, et al. Factors influencing apnea and bradycardia of prematurity - implications for neurodevelopment. Neonatology. 2007;91(3):155-161.
  365. Policy Statement. Updated Guidance for Palivizumab Prophylaxis Among Infants and Young Children at Increased Risk of Hospitalization for Respiratory Syncytial Virus Infection. Committee on infectious diseases and bronchiolitis guidelines committee.
  366. Pons JM, Tebe C, Paladio N, et al. Meta-analysis of passive immunoprophylaxis in paediatric patients at risk of severe RSV infection. Acta Paediatr. 2011;100(3):324-329.
  367. Probyn ME, Hooper SB, Dargaville PA, et al. Effects of tidal volume and positive end-expiratory pressure during resuscitation of very premature lambs. Acta Paediatr. 2005;94(12):1764-1770.
  368. Procaskey A, White H, Simoneau T, et al. The optimization of home oxygen weaning in premature infants trial: Design, rationale, methods, and lessons learned. Contemp Clin Trials. 2018;75:72-77. doi: 10.1016/j.cct.2018.08.001. Epub 2018 Aug 11.
  369. Puthussery S, Chutiyami M, Tseng PC, et al. Effectiveness of early intervention programs for parents of preterm infants: a meta-review of systematic reviews. BMC Pediatr. 2018;18(1):223. doi: 10.1186/s12887-018-1205-9.
  370. Rabi Y, Rabi D, Yee W. Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation. 2007;72(3):353-363.
  371. Rabi Y, Singhal N, Nettel-Aguirre A. Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study. Pediatrics. 2011;128(2):e374-e381.
  372. Rajamani S, Dothey C, Super D, et al. Early inhaled beclomethasone does not alter the courses of lung disease in very low birth weigth (VLBW) infants at risk for bronchopulmonary dysplasia (BPD). Ped Research. 1998.
  373. Ramanathan R, Sekar KC, Rasmussen M, et al. Nasal intermittent positive pressure ventilation after surfactant treatment for respiratory distress syndrome in preterm infants <30 weeks' gestation: a randomized, controlled trial. J Perinatol. 2012;32(5):336-343.
  374. Ramanathan R, Siassi, Assi B, et al. Comparison of two dosage regimens of dexamethasone for early treatment of chronic lung disease in very low birth weight (VLBW). Pediatrics. 1994.
  375. Rastogi S, Wong W, Gupta A, et al. Gradual versus sudden weaning from nasal CPAP in preterm infants: a pilot randomized controlled trial. Respir Care. 2013;58(3):511-6.
  376. Ravishankar C, Nafday S, Green RS, et al. A trial of vitamin A therapy to facilitate ductal closure in premature infants. J Pediatr. 2003;143(5):644-648.
  377. Rennie JM, Cooke RW. Prolonged low dose indomethacin for persistent ductus arteriosus of prematurity. Arch Dis Child. 1991;66(1 Spec No):55-58.
  378. Resch B, Kurath-Koller S, Eibisberger M, et al. Prematurity and the burden of influenza and respiratory syncytial virus disease. World J Pediatr. 2016;12(1):8-18. doi: 10.1007/s12519-015-0055-x. Epub 2015 Nov 19. Review.
  379. Ribeiro MKA, Alcântara-Silva TRM, Oliveira JCM, et al. Music therapy intervention in cardiac autonomic modulation, anxiety, and depression in mothers of preterms: randomized controlled trial. BMC Psychol. 2018;6(1):57.
  380. Ribeiro SNS, Fontes MJF, Bhandari V, et al. Noninvasive Ventilation in Newborns ≤ 1,500 g after Tracheal Extubation: Randomized Clinical Trial. Am J Perinatol. 2017;34(12):1190-1198. doi: 10.1055/s-0037-1602141. Epub 2017 Apr 18.
  381. Rietveld E, Steyerberg EW, Polder JJ, et al. Passive immunisation against respiratory syncytial virus: a cost-effectiveness analysis. Arch Dis Child. 2010;95(7):493-498.
  382. Roberton NR. Does CPAP work when it really matters. Acta Paediatr. 1993;82(2):206- 207.
  383. Roberts D, Brown J, Medley N, et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database of Systematic Reviews. 2017;3. Art No CD004454.
  384. Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454.
  385. Rojas MA, Lozano JM, Rojas MX, et al. Very early surfactant without mandatory ventilation in premature infants treated with early continuous positive airway pressure: a randomized, controlled trial. Pediatrics. 2009;123(1):137-142.
  386. Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012;3:CD000510.
  387. Rojas-Reyes MX, Orrego-Rojas PA. Rescue high-frequency jet ventilation versus conventional ventilation for severe pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015;(10):CD000437. doi: 10.1002/14651858.CD000437.pub3.
  388. Ronkainen E, Dunder T, Peltoniemi O, et al. New BPD predicts lung function at school age: Follow-up study and meta-analysis. Pediatr Pulmonol. 2015;50(11):1090-1098.
  389. Saarenpaa HK, Tikanmaki M, Sipola-Leppanen M, et al. Lung function in very low birth weight adults. Pediatrics. 2015;136(4):642-650.
  390. Sai Sunil KM, Dutta S, Kumar P. Early nasal intermittent positive pressure ventilation versus continuous positive airway pressure for respiratory distress syndrome. Acta Paediatr. 2009;98(9):1412-1415.
  391. Salvo V, Lista G, Lupo E, et al. Noninvasive ventilation strategies for early treatment of RDS in preterm infants: an RCT. Pediatrics. 2015;135(3):444-51. doi: 10.1542/peds.2014-0895. Epub 2015 Feb 9.
  392. Salvo V, Zimmermann LJ, Gavilanes AW, et al. First intention high-frequency oscillatory and conventional mechanical ventilation in premature infants without antenatal glucocorticoid prophylaxis. Pediatr Crit Care Med. 2012;13(1):72-79.
  393. Sanchez PJ, Regan JA. Vertical transmission of Ureaplasma urealyticum from mothers to preterm infants. Pediatr Infect Dis J. 1990;9(6):398-401.
  394. Sandri F, Plavka R, Ancora G, et al. Prophylactic or early selective surfactant combined with nCPAP in very preterm infants. Pediatrics. 2010;125(6):e1402-e1409.
  395. Sarafidis K, Stathopoulou T, Agakidou E, et al. Comparable effect of conventional ventilation versus early high-frequency oscillation on serum CC16 and IL-6 levels in preterm neonates. J Perinatol. 2011;31(2):104-111.
  396. Saslow JG, Aghai ZH, Nakhla TA, et al. Work of breathing using high-flow nasal cannula in preterm infants. J Perinatol. 2006;26(8):476-480.
  397. Saugstad OD, Aune D. In search of the optimal oxygen saturation for extremely low birth weight infants: a systematic review and meta-analysis. Neonatology. 2011;100(1):1-8.
  398. Saugstad OD. Bronchopulmonary dysplasia and oxidative stress: are we closer to an understanding of the pathogenesis of BPD? Acta Paediatr. 1997;86(12):1277-1282.
  399. Saugstad OD. Optimal oxygenation at birth and in the neonatal period. Neonatology. 2007;91(4):319-322.
  400. Schmidt B, Anderson PJ, Doyle LW, et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA. 2012;307(3):275-282.
  401. Schmidt B, Roberts R, Millar D, et al. Evidence-based neonatal drug therapy for prevention of bronchopulmonary dysplasia in very-low-birth-weight infants. Neonatology. 2008;93(4):284-287.
  402. Schmidt B, Roberts RS, Anderson PJ, et al. Academic Performance, Motor Function, and Behavior 11 Years After Neonatal Caffeine Citrate Therapy for Apnea of Prematurity: An 11-Year Follow-up of the CAP Randomized Clinical Trial. JAMA Pediatr. 2017;171(6):564-572. doi: 10.1001/jamapediatrics.2017.0238.
  403. Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112-2121.
  404. Schmidt B, Roberts RS, Davis P, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357(19):1893-1902.
  405. Schmidt B, Whyte RK, Asztalos EV, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 2013;309(20):2111-20. doi: 10.1001/jama.2013.5555.
  406. Schmölzer GM, Kumar M, Pichler G, et al. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ. 2013;347:f5980. doi: 10.1136/bmj.f5980. Review. Erratum in: BMJ. 2014;348:g58.
  407. Schmolzer GM, Te Pas AB, Davis PG, et al. Reducing lung injury during neonatal resuscitation of preterm infants. J Pediatr. 2008;153(6):741-745.
  408. Schreiber MD, Gin-Mestan K, Marks JD, et al. Inhaled nitric oxide in premature infants with the respiratory distress syndrome. N Engl J Med. 2003;349(22):2099-2107.
  409. Schwaberger B, Pichler G, Avian A, et al. Do Sustained Lung Inflations during Neonatal Resuscitation Affect Cerebral Blood Volume in Preterm Infants? A Randomized Controlled Pilot Study. PLoS One. 2015;10(9):e0138964.
  410. Seckl JR, Cleasby M, Nyirenda MJ. Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int. 2000;57(4):1412-1417.
  411. Seger N, Soll R. Animal derived surfactant extract for treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2009;(2):CD007836.
  412. Sgandurra G, Beani E, Inguaggiato E, et al. Effects on Parental Stress of Early Home-Based CareToy Intervention in Low-Risk Preterm Infants. Neural Plast. 2019;2019:7517351.
  413. Shaffer ML, Baud O, Lacaze-Masmonteil T, et al. Effect of Prophylaxis for Early Adrenal Insufficiency Using Low-Dose Hydrocortisone in Very Preterm Infants: An Individual Patient Data Meta-Analysis. J Pediatr. 2019;207:136-142.e5. doi: 10.1016/j.jpeds.2018.10.004. Epub 2018 Nov 8.
  414. Shah SS, Ohlsson A, Halliday HL, et al. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2017a;10:CD002058. doi: 10.1002/14651858.CD002058.pub3. Review. PubMed PMID: 29041034; PubMed Central PMCID: PMC6485718.
  415. Shah SS, Ohlsson A, Halliday HL, et al. Inhaled versus systemic corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2012a;5:CD002058.
  416. Shah SS, Ohlsson A, Halliday HL, et al. Inhaled versus systemic corticosteroids for the treatment of chronic lung disease in ventilated very low birth weight preterm infants. Cochrane Database Syst Rev. 2012b;5:CD002057.
  417. Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for the treatment of bronchopulmonary dysplasia in ventilated very low birth weight preterm infants. Cochrane Database Syst Rev. 2017b;10:CD002057. doi: 10.1002/14651858.CD002057.pub4. Review. PubMed PMID: 29035425; PubMed Central PMCID: PMC6485655.
  418. Shah VS, Ohlsson A, Halliday HL, et al. Early administration of inhaled corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2012c;5:CD001969.
  419. Shah VS, Ohlsson A, Halliday HL, et al. Early administration of inhaled corticosteroids for preventing chronic lung disease in very low birth weight preterm neonates. Cochrane Database Syst Rev. 2017c;1:CD001969. doi: 10.1002/14651858.CD001969.pub4. Review. PubMed PMID: 28052185; PubMed Central PMCID: PMC6464720.
  420. Shen S, Campitelli MA, Calzavara A, et al. Seasonal influenza vaccine effectiveness in pre- and fullterm children aged 6-23 months over multiple seasons. Vaccine. 2013;31:2974-2978.
  421. Shenai JP, Chytil F, Stahlman MT. Vitamin A status of neonates with bronchopulmonary dysplasia. Pediatr Res. 1985;19(2):185-188.
  422. Shenai JP, Kennedy KA, Chytil F, et al. Clinical trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. J Pediatr. 1987;111(2):269-277.
  423. Shennan AT, Dunn MS, Ohlsson A, et al. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 1988;82(4):527-532.
  424. Shi Y, Tang S, Zhao J, et al. A prospective, randomized, controlled study of NIPPV versus nCPAP in preterm and term infants with respiratory distress syndrome. Pediatr Pulmonol. 2014;49(7):673-8. doi: 10.1002/ppul.22883. Epub 2013 Sep 4.
  425. Shoemaker MT, Pierce MR, Yoder BA, et al. High-flow nasal cannula versus nasal CPAP for neonatal respiratory disease: a retrospective study. J Perinatol. 2007;27(2):85-91
  426. Short EJ, Klein NK, Lewis BA, et al. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics. 2003;112(5):e359.
  427. Siew ML, Te Pas AB, Wallace MJ, et al. Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth. J Appl Physiol. 2009;106(5):1487-1493.
  428. Silveira CS, Leonardi KM, Melo AP, et al. Response of Preterm Infants to 2 Noninvasive Ventilatory Support Systems: Nasal CPAP and Nasal Intermittent Positive-Pressure Ventilation. Respir Care. 2015;60(12):1772-6. doi: 10.4187/respcare.03565. Epub 2015 Sep 15.
  429. Silvers KM, Gibson AT, Russell JM, et al. Antioxidant activity, packed cell transfusions, and outcome in premature infants. Arch Dis Child Fetal Neonatal Ed. 1998;78(3):F214-F219.
  430. Simpson SJ, Logie KM, O'Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax. 2017;72(8):702-711.
  431. Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: A longitudinal cohort study. Lancet Child Adolesc Health. 2018;2(5):350-359.
  432. Singh SD, Bowe L, Clarke P, et al. Is decreasing pressure or increasing time off the better strategy in weaning VLBW infants from nasal CPAP. European Journal of Pediatrics, Book of Abstracts European Academy of Pediatrics. 2006;165:48.
  433. Smart KA, Lanctot KL, Paes BA. The cost effectiveness of palivizumab: a systematic review of the evidence. J Med Econ. 2010;13(3):453-463.
  434. Smith LJ, van Asperen PP, McKay KO, et al. Reduced exercise capacity in children born very preterm. Pediatrics. 2008;122(2):e287-93.
  435. Smyth JA, Tabachnik E, Duncan WJ, et al. Pulmonary function and bronchial hyperreactivity in long-term survivors of bronchopulmonary dysplasia. Pediatrics. 1981;68(0031-4005; 3):336-340.
  436. Sobotka KS, Hooper SB, Allison BJ, et al. An initial verlengde inflatie improves the respiratory and cardiovascular transition at birth in preterm lambs. Pediatr Res. 2011;70(1):56-60.
  437. Soe A, Hodgkinson J, Jani B, et al. Nasal continuous positive airway pressure weaning in preterm infants. European Journal of Paediatrics, Book of Abstracts European Academy of Paediatrics. 2006;165:48-9.
  438. Soll R, Ozek E. Multiple versus single doses of exogenous surfactant for the prevention or treatment of neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2009;(1):CD000141.
  439. Soll R, Ozek E. Prophylactic protein free synthetic surfactant for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2010;(1):CD001079.
  440. Soll RF, Morley CJ. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2001;(2):CD000510.
  441. Soll RF. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2000a;(2):CD000144.
  442. Soll RF. Prophylactic natural surfactant extract for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2000b;(2):CD000511.
  443. Soll RF. Prophylactic synthetic surfactant for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2000c;(2):CD001079.
  444. Soonsawad S, Tongsawang N, Nuntnarumit P. Heated Humidified High-Flow Nasal Cannula for Weaning from Continuous Positive Airway Pressure in Preterm Infants: A Randomized Controlled Trial. Neonatology. 2016;110(3):204-9. doi: 10.1159/000446063. Epub 2016 May 25.
  445. Sorensen JK, Buchvald F, Berg AK, et al. Ventilation inhomogeneity and NO and CO diffusing capacity in ex-premature school children. Respir Med. 2018;140:94-100.
  446. Sosenko IR, Fajardo MF, Claure N, et al. Timing of patent ductus arteriosus treatment and respiratory outcome in premature infants: a double-blind randomized controlled trial. J Pediatr. 2012;160(6):929-35.e1. doi: 10.1016/j.jpeds.2011.12.031. Epub 2012 Jan 28.
  447. Sosulski R, Abbasi S, Fox WW. Therapeutic value of terbutaline in bronchopulmonary dysplasia. Pediatric Research. 1982.
  448. Spittle A, Orton J, Anderson PJ, et al. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev. 2015;(11):CD005495. doi: 10.1002/14651858.CD005495.pub4. Review.
  449. Spittle AJ, McGinley JL, Thompson D, et al. Motor Trajectories From Birth to 5 Years of Children Born at Less Than 30 Weeks' Gestation: Early Predictors and Functional Implications. Protocol for a Prospective Cohort Study. Supplementary data in appendix. J Physiother. 2016;62(4):222-3.
  450. Spittle AJ, Treyvaud K, Lee KJ, et al. The role of social risk in an early preventative care programme for infants born very preterm: a randomized controlled trial. Dev Med Child Neurol. 2018;60(1):54–62.
  451. Sreenan C, Lemke RP, Hudson-Mason A, et al. High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics. 2001;107(5):1081-1083.
  452. Stenson BJ, Tarnow-Mordi WO, Darlow BA, et al. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368(22):2094-104. doi: 10.1056/NEJMoa1302298. Epub 2013 May 5.
  453. Stevens TP, Harrington EW, Blennow M, et al. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007;(4):CD003063.
  454. Stewart A, Brion LP. Intravenous or enteral loop diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2011;(9):CD001453.
  455. Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443-456.
  456. Su PH, Chen JY. Inhaled nitric oxide in the management of preterm infants with severe respiratory failure. J Perinatol. 2008;28(2):112-116.
  457. Subhedar NV, Ryan SW, Shaw NJ. Open randomised controlled trial of inhaled nitric oxide and early dexamethasone in high risk preterm infants. Arch Dis Child Fetal Neonatal Ed. 1997;77(3):F185-F190.
  458. Sun H, Cheng R, Kang W, et al. High-frequency oscillatory ventilation versus synchronized intermittent mandatory ventilation plus pressure support in preterm infants with severe respiratory distress syndrome. Respir Care. 2014;59(2):159-69. doi: 10.4187/respcare.02382. Epub 2013 Jun 13.
  459. Sun H, Cheng R, Wang Z. EARLY VITAMIN A SUPPLEMENTATION IMPROVES THE OUTCOME OF RETINOPATHY OF PREMATURITY IN EXTREMELY PRETERM INFANTS. Retina. 2019. doi: 10.1097/IAE.0000000000002543. [Epub ahead of print]
  460. Sweet DG, Halliday HL. A risk-benefit assessment of drugs used for neonatal chronic lung disease. Drug Saf. 2000;22(5):389-404.
  461. Tammela OKT, Koivisto ME. Fluid restriction for preventing bronchopulmonary dysplasia? Reduced fluid intake during the first weeks of life improves the outcome of low-birthweight infants. Acta Paediatrica. 1992;81:207-12.
  462. Tang J, Reid S, Lutz T, et al. Randomised controlled trial of weaning strategies for preterm infants on nasal continuous positive airway pressure. BMC Pediatr. 2015;15:147. doi: 10.1186/s12887-015-0462-0.
  463. Tang JR, Seedorf GJ, Muehlethaler V, et al. Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol. 2010;299(6):L735-L748.
  464. Tapia JL, Urzua S, Bancalari A, et al. Randomized trial of early bubble continuous positive airway pressure for very low birth weight infants. J Pediatr. 2012;161(1):75- 80.
  465. Tarnow-Mordi WO, Darlow B, Doyle L. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;363(13):1285-1286.
  466. Te Pas AB, Siew M, Wallace MJ, et al. Effect of verlengde inflatie length on establishing functional residual capacity at birth in ventilated premature rabbits. Pediatr Res. 2009a;66(3):295-300.
  467. Te Pas AB, Siew M, Wallace MJ, et al. Establishing functional residual capacity at birth: the effect of verlengde inflatie and positive end-expiratory pressure in a preterm rabbit model. Pediatr Res. 2009b;65(5):537-541.
  468. Te Pas AB, Spaans VM, Rijken M, et al. Early nasal continuous positive airway pressure and low threshold for intubation in very preterm infants. Acta Paediatr. 2008;97(8):1049-1054.
  469. Te Pas AB, Walther FJ. A randomized, controlled trial of delivery-room respiratory management in very preterm infants. Pediatrics. 2007;120(2):322-329.
  470. The Netherlands Perinatal Registry. 2009.
  471. Theron AJ, Feldman C, Anderson R. Investigation of the anti-inflammatory and membrane-stabilizing potential of spiramycin in vitro. J Antimicrob Chemother. 2000;46(2):269-271.
  472. Thome UH, Genzel-Boroviczeny O, Bohnhorst B, et al. Neurodevelopmental outcomes of extremely low birthweight infants randomised to different PCO2 targets: the PHELBI follow-up study. Arch Dis Child Fetal Neonatal Ed. 2017;102(5):F376-F382. doi: 10.1136/archdischild-2016-311581. Epub 2017 Jan 13.
  473. Thome UH, Genzel-Boroviczeny O, Bohnhorst B, et al. Permissive hypercapnia in extremely low birthweight infants (PHELBI): a randomised controlled multicentre trial. Lancet Respir Med. 2015;3(7):534-43. doi: 10.1016/S2213-2600(15)00204-0. Epub 2015 Jun 15.
  474. Tin W, Milligan DW, Pennefather P, et al. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F106-F110.
  475. Toce SS, Farrell PM, Leavitt LA, et al. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child. 1984;138(6):581-585.
  476. Todd DA, Wright A, Broom M, et al. Methods of weaning preterm babies <30 weeks gestation off CPAP: a multicentre randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2012;97(4):F236-40. doi: 10.1136/adc.2011-300133. Epub 2012 May 18.
  477. Tonson la Tour A, Spadola L, Sayegh Y, et al. Chest CT in bronchopulmonary dysplasia: Clinical and radiological correlations. Pediatr Pulmonol. 2012.
  478. Tooley J, Dyke M. Randomized study of nasal continuous positive airway pressure in the preterm infant with respiratory distress syndrome. Acta Paediatr. 2003;92(10):1170-1174.
  479. Travers CP, Carlo WA, McDonald SA, et al. Mortality and pulmonary outcomes of extremely preterm infants exposed to antenatal corticosteroids. Am J Obstet Gynecol. 2018a;218(1):130.e1-130.e13. doi: 10.1016/j.ajog.2017.11.554. Epub 2017 Nov 11.
  480. Travers CP, Carlo WA, Nakhmani A, et al. Environmental or Nasal Cannula Supplemental Oxygen for Preterm Infants: A Randomized Cross-Over Trial. J Pediatr. 2018b;200:98-103. doi: 10.1016/j.jpeds.2018.03.010. Epub 2018 Apr 25.
  481. Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians. 1998;110(6):482-488.
  482. Treyvaud K, Anderson V A, Lee K J, et al. Parental mental health and early social-emotional development of children born very preterm. Journal of Pediatric Psychology. 2010:35(7):768-77.
  483. Treyvaud K, Spittle A, Anderson PJ, et al. A multilayered approach is needed in the NICU to support parents after the preterm birth of their infant. Early Human Development. 2019;139:104838.
  484. Treyvaud K. Parent and family outcomes following very preterm or very low birth weight birth: a review. Semin Fetal Neonatal Med. 2014;19:131–135.
  485. Truffert P, Paris-Llado J, Escande B, et al. Neuromotor outcome at 2 years of very preterm infants who were treated with high-frequency oscillatory ventilation or conventional ventilation for neonatal respiratory distress syndrome. Pediatrics. 2007;119(4):e860-e865.
  486. Trzaski JM, Hagadorn JI, Hussain N, et al. Predictors of successful discontinuation of supplemental oxygen in very low-birth-weight infants with bronchopulmonary dysplasia approaching neonatal intensive care unit discharge. Am J Perinatol. 2012;29(2):79-86. doi: 10.1055/s-0031-1295646. Epub 2011 Nov 30.
  487. Tully JG. Current status of the mollicute flora of humans. Clin Infect Dis. 1993;17 Suppl 1:S2-S9.
  488. Tyson JE, Wright LL, Oh W, et al. Vitamin A supplementation for extremely-low-birth- weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med. 1999;340(25):1962-1968.
  489. Udomittipong K, Sly PD, Patterson HJ, et al. Forced oscillations in the clinical setting in young children with neonatal lung disease. Eur Respir J. 2008;31(1399-3003;6):1292-1299.
  490. Um-Bergstrom P, Hallberg J, Pourbazargan M, et al. Pulmonary outcomes in adults with a history of bronchopulmonary dysplasia differ from patients with asthma. Respir Res. 2019;20(1):102-019-1075-1.
  491. Van den Dungen FA, van Veenendaal MB, Mulder AL. Clinical practice: neonatal resuscitation. A Dutch consensus. Eur J Pediatr. 2010;169(5):521-527.
  492. Van Hus J, Jeukens-Visser M, Koldewijn K, et al. Early intervention leads to long-term developmental improvements in very preterm infants, especially infants with bronchopulmonary dysplasia. Acta Paediatr. 2016;105(7):773-81. doi: 10.1111/apa.13387. Epub 2016 Apr 22.
  493. Van Kaam AH, De JA, Haitsma JJ, van Aalderen WM, et al. Positive pressure ventilation with the open lung concept optimizes gas exchange and reduces ventilator-induced lung injury in newborn piglets. Pediatr Res. 2003;53(2):245-253.
  494. Van Mastrigt E, Kakar E, Ciet P, et al. Structural and functional ventilatory impairment in infants with severe bronchopulmonary dysplasia. Pediatr Pulmonol. 2017;52(8):1029-1037.
  495. Van Mastrigt E, Logie K, Ciet P, et al. Lung CT imaging in patients with bronchopulmonary dysplasia: A systematic review. Pediatr Pulmonol. 2016;51(9):975-986.
  496. Van Meurs KP, Hintz SR, Ehrenkranz RA, et al. Inhaled nitric oxide in infants >1500 g and <34 weeks gestation with severe respiratory failure. J Perinatol. 2007;27(6):347- 352.
  497. Van Meurs KP, Wright LL, Ehrenkranz RA, et al. Inhaled nitric oxide for premature infants with severe respiratory failure. N Engl J Med. 2005;353(1):13-22.
  498. Vanderveen DK, Mansfield TA, Eichenwald EC. Lower oxygen saturation alarm limits decrease the severity of retinopathy of prematurity. J AAPOS. 2006;10(5):445-448.
  499. Vanpee M, Walfridsson-Schultz U, Katz-Salamon M, et al. Resuscitation and ventilation strategies for extremely preterm infants: a comparison study between two neonatal centers in Boston and Stockholm. Acta Paediatr. 2007;96(1):10-16.
  500. Vaucher YE, Peralta-Carcelen M, Finer NN, et al. Neurodevelopmental outcomes in the early CPAP and pulse oximetry trial. N Engl J Med. 2012;367(26):2495-504. doi: 10.1056/NEJMoa1208506.
  501. Vento M, Moro M, Escrig R, et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics. 2009;124(3):e439-e449.
  502. Vento M, Saugstad OD. Oxygen supplementation in the delivery room: updated information. J Pediatr. 2011;158(2 Suppl):e5-e7.
  503. Vento M, Saugstad OD. Resuscitation of the term and preterm infant. Semin Fetal Neonatal Med. 2010;15(4):216-222.
  504. Verder H, Albertsen P, Ebbesen F, et al. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks' gestation. Pediatrics. 1999;103(2):E24.
  505. Verder H. Nasal CPAP has become an indispensable part of the primary treatment of newborns with respiratory distress syndrome. Acta Paediatr. 2007;96(4):482-484.
  506. Verkerk G, Jeukens-Visser M, Houtzager B, et al. The infant behavioral assessment and intervention program in very low birth weight infants; outcome on executive functioning, behaviour and cognition at preschool age. Early Hum Dev. 2012;88(8):699-705. doi: 10.1016/j.earlhumdev.2012.02.004. Epub 2012 Mar 10.
  507. Vliegenthart R, Miedema M, Hutten GJ, et al. High versus standard dose caffeine for apnoea: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2018;103(6):F523-F529. doi: 10.1136/archdischild-2017-313556. Epub 2018 Feb 7. Review.
  508. Vogelsang A, van Lingen RA, Slootstra J, et al. Antioxidant role of plasma carotenoids in bronchopulmonary dysplasia in preterm infants. Int J Vitam Nutr Res. 2009;79(5- 6):288-296.
  509. Vohr B R, Wright L L, Dusick AM, et al. Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network 1993-1994. Pediatrics. 2000;105(6):1216-26.
  510. Vollsaeter M, Roksund OD, Eide GE, et al. Lung function after preterm birth: Development from mid-childhood to adulthood. Thorax. 2013;68(8):767-776.
  511. Vrijlandt EJ, Boezen HM, Gerritsen J, et al. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150(3):256-261.
  512. Vrijlandt EJ, Gerritsen J, Boezen HM, et al. Gender differences in respiratory symptoms in 19-year-old adults born preterm. Respir Res. 2005;6:117.
  513. Vrijlandt EJ, Gerritsen J, Boezen HM, et al. Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med. 2006;173(8):890-896.
  514. Vrijlandt EJ, Kerstjens JM, Duiverman EJ, et al. Moderately preterm children have more respiratory problems during their first 5 years of life than children born full term. Am J Respir Crit Care Med. 2013;187(11):1234-1240.
  515. Wada K, Jobe AH, Ikegami M. Tidal volume effects on surfactant treatment responses with the initiation of ventilation in preterm lambs. J Appl Physiol. 1997;83(4):1054-1061.
  516. Waites KB, Crouse DT, Philips JB, III, et al. Ureaplasmal pneumonia and sepsis associated with persistent pulmonary hypertension of the newborn. Pediatrics. 1989;83(1):79-85.
  517. Walkup LL, Woods JC. Newer imaging techniques for bronchopulmonary dysplasia. Clin Perinatol. 2015;42(4):871-887.
  518. Walsh M, Laptook A, Kazzi SN, et al. A cluster-randomized trial of benchmarking and multimodal quality improvement to improve rates of survival free of bronchopulmonary dysplasia for infants with birth weights of less than 1250 grams. Pediatrics. 2007;119(5):876-890.
  519. Walsh MC, Hibbs AM, Martin CR, et al. Two-year neurodevelopmental outcomes of ventilated preterm infants treated with inhaled nitric oxide. J Pediatr. 2010;156(4):556- 561.
  520. Walsh MC, Morris BH, Wrage LA, et al. Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr. 2005;146(6):798-804.
  521. Wang C, Guo L, Chi C, et al. Mechanical ventilation modes for respiratory distress syndrome in infants: a systematic review and network meta-analysis. Crit Care. 2015;19:108. doi: 10.1186/s13054-015-0843-7.
  522. Wang CL, Anderson C, Leone TA, et al. Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics. 2008;121(6):1083- 1089.
  523. Wang LA, Smith PB, Laughon M, et al. Prolonged furosemide exposure and risk of abnormal newborn hearing screen in premature infants. Early Hum Dev. 2018;125:26-30. doi: 10.1016/j.earlhumdev.2018.08.009. Epub 2018 Sep 4.
  524. Wapner RJ, Sorokin Y, Mele L, et al. Long-term outcomes after repeat doses of antenatal corticosteroids. N Engl J Med. 2007;357(12):1190-1198.
  525. Wardle SP, Hughes A, Chen S, et al. Randomised controlled trial of oral vitamin A supplementation in preterm infants to prevent chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 2001;84(1):F9-F13.
  526. Ware J, Taeusch HW, Soll RF, et al. Health and developmental outcomes of a surfactant controlled trial: follow-up at 2 years. Pediatrics. 1990;85(6):1103-1107.
  527. Weisz DE, More K, McNamara PJ, et al. PDA ligation and health outcomes: a meta-analysis. Pediatrics. 2014;133(4):e1024-46. doi: 10.1542/peds.2013-3431. Epub 2014 Mar 17. Review.
  528. Werkman SH, Peeples JM, Cooke RJ, et al. Effect of vitamin A supplementation of intravenous lipids on early vitamin A intake and status of premature infants. Am J Clin Nutr. 1994;59(3):586-592.
  529. Wheeler K, Klingenberg C, McCallion N, et al. Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev. 2010;(11):CD003666.
  530. Wilkinson D, Andersen C, O'Donnell CP, et al. High-flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2011;(5):CD006405.
  531. Wilkinson D, Andersen C, O'Donnell CP, et al. High-flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016;2:CD006405. doi: 10.1002/14651858.CD006405.pub3. Review.
  532. Wong P, Murray C, Louw J, et al. Adult bronchopulmonary dysplasia: Computed tomography pulmonary findings. J Med Imaging Radiat Oncol. 2011;55(4):373-378.
  533. Wong PM, Lees AN, Louw J, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J. 2008;32(1399-3003; 2):321-328.
  534. Wood N, Siegrist CA. Neonatal immunization: where do we stand? Curr Opin Infect Dis. 2011;24(3):190-195.
  535. Woodgate PG, Davies MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev. 2001;(2):CD002061.
  536. Wright KW, Sami D, Thompson L, et al. A physiologic reduced oxygen protocol decreases the incidence of threshold retinopathy of prematurity. Trans Am Ophthalmol Soc. 2006;104:78-84.
  537. Wu R, Li SB, Tian ZF, et al. Lung recruitment maneuver during proportional assist ventilation of preterm infants with acute respiratory distress syndrome. J Perinatol. 2014;34(7):524-7. doi: 10.1038/jp.2014.53. Epub 2014 Apr 3.
  538. Wu W, Shi Y, Li F, et al. Surfactant administration via a thin endotracheal catheter during spontaneous breathing in preterm infants. Pediatr Pulmonol. 2017;52(6):844-854. doi: 10.1002/ppul.23651. Epub 2017 Feb 2. Review. PubMed PMID: 28152280.
  539. Yang CY, Yang MC, Chu SM, et al. A randomized pilot study comparing the role of PEEP, O2 flow, and high-flow air for weaning of ventilatory support in very low birth weight infants. Pediatr Neonatol. 2018;59(2):198-204. doi: 10.1016/j.pedneo.2017.02.005. Epub 2017 Sep 6.
  540. Yeh TF, Lin HC, Chang CH, et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics. 2008;121(5):e1310-e1318.
  541. Yoder BA, Stoddard RA, Li M, et al. Heated, humidified high-flow nasal cannula versus nasal CPAP for respiratory support in neonates. Pediatrics. 2013;131(5):e1482-90. doi: 10.1542/peds.2012-2742. Epub 2013 Apr 22.
  542. Yost CC. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2000.
  543. Zalewska-Kaszubska J, Gorska D. Anti-inflammatory capabilities of macrolides. Pharmacol Res. 2001;44(6):451-454.
  544. Zavorsky GS, Kryder JR, Jacob SV, et al. Exercise capacity of children with pediatric lung disease. Clin Invest Med. 2009;32(6):E302.
  545. Zhanel GG, Dueck M, Hoban DJ, et al. Review of macrolides and ketolides: focus on respiratory tract infections. Drugs. 2001;61(4):443-498.
  546. Zhang X, Kurtz M, Lee SY, et al. Early Intervention for Preterm Infants and Their Mothers: A Systematic Review J Perinat Neonatal Nurs. 2014;18 (11):1-14.
  547. Zhao Y, Tian X, Liu G. [Clinical effectiveness of different doses of caffeine for primary apnea in preterm infants]. Zhonghua Er Ke Za Zhi. 2016;54(1):33-6. doi: 10.3760/cma.j.issn.0578-1310.2016.01.008. Chinese.
  548. Zivanovic S, Peacock J, Alcazar-Paris M, et al. Late outcomes of a randomized trial of high-frequency oscillation in neonates. N Engl J Med. 2014 Mar 20;370(12):1121-1130. doi: 10.1056/NEJMoa1309220.
  549. Zupancic JA, Hibbs AM, Palermo L, et al. Economic evaluation of inhaled nitric oxide in preterm infants undergoing mechanical ventilation. Pediatrics. 2009;124(5):1325- 1332.

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 11-03-2021

Laatst geautoriseerd  : 11-03-2021

Geplande herbeoordeling  : 01-01-2027

Initiatief en autorisatie

Initiatief:
  • Nederlandse Vereniging voor Kindergeneeskunde
Geautoriseerd door:
  • Nederlandse Vereniging voor Kindergeneeskunde
  • Nederlandse Vereniging voor Obstetrie en Gynaecologie
  • Verpleegkundigen en Verzorgenden Nederland
  • Care4Neo (voorheen Vereniging van Ouders van Couveusekinderen - VOC)
  • Longfonds

Doel en doelgroep

Doel

De doelen van deze richtlijn zijn:

  • het uniform en beter identificeren van patiënten met BPD;
  • formuleren van aanbevelingen ten aanzien van preventieve en therapeutische evidence-based behandeling;
  • het beter registreren van patiënten met BPD.

 

Doelgroep

De doelgroep omvat pasgeborenen met een verhoogd risico op BPD, namelijk prematuren met een AD <32 weken die nog niet de gecorrigeerde leeftijd van 36 weken hebben bereikt, maar wel pulmonale morbiditeit hebben. Dit uit zich in: beademingsbehoefte en/of CPAP-behoefte en/of extra O2-behoefte en/of hypercapnie en/of tachydyspneu. De doelgroep omvat eveneens zuigelingen met een vastgestelde BPD.

Samenstelling werkgroep

Kernwerkgroep

  • Mw. drs. M. van de Loo, kinderarts-neonatoloog, Emma Kinderziekenhuis Amsterdam UMC, NVK, projectleider
  • Dhr. prof. dr. A.H.L.C. van Kaam, kinderarts-neonatoloog, Emma Kinderziekenhuis Amsterdam UMC, NVK, voorzitter
  • Dhr. dr. W. Onland, kinderarts-neonatoloog, Emma Kinderziekenhuis Amsterdam UMC, sectie neonatologie, NVK

 

Werkgroep

  • Mw. M. Barnhoorn, projectleider, Longfonds
  • Mw. dr. A.C.M. Dassel, kinderarts-neonatoloog, Deventer Ziekenhuizen, sectie neonatologie, NVK
  • Mw. G. Hoekman, ouder, Longfonds
  • Dhr. dr. M.J.K. de Kleine, kinderarts-neonatoloog n.p., Care4Neo (voorheen VOC)
  • Dhr. dr. B.W.W. Kramer, kinderarts-neonatoloog, Maastricht Universitair Medisch Centrum sectie neonatologie, NVK
  • Dhr. dr. A. Kroon, kinderarts-neonatoloog, Erasmus MC – Sophia Kinderziekenhuis, sectie neonatologie, NVK
  • Mw. P.W. Mansvelt, verpleegkundig specialist, Radboudumc afdeling neonatologie, V&VN
  • Dhr. drs. P.R. Matthijsse, kinderarts-neonatoloog, Radboudumc, sectie neonatologie, NVK
  • Mw. dr. M. Pijnenburg, kinderarts-pulmonoloog, Erasmus MC en Sophia Kinderziekenhuis, sectie kinderlongziekten, NVK
  • Mw. drs. A.J. Sprij, kinderarts-neonatoloog, Hagaziekenhuis en locatie Juliana Kinderziekenhuis, sectie neonatologie, NVK
  • Mw. dr. R.N.G.B. Tan, kinderarts-neonatoloog, Willem-Alexander KJC en LUMC, sectie neonatologie, NVK
  • Mw. dr. J.L.E. Vrijlandt, kinderarts-pulmonoloog, Beatrix Kinderziekenhuis UMCG, sectie kinderlongziekten, NVK

 

Meelezer namens NVOG

  • Mw. dr. C.J. Bax, gynaecoloog-perinatoloog, Amsterdam UMC, NVOG

 

Met dank voor hulp en/of advies

  • Mw. Drs. E.J.S. Jansen, kinderarts-fellow neonatologie, Isala ziekenhuis Zwolle
  • Mw. H. Ahmed, student geneeskunde, Universiteit van Amsterdam
  • Dhr. prof. dr. R.M.F. Berger, kindercardioloog, Beatrix Kinderziekenhuis en UMCG

Belangenverklaringen

De werkgroepleden hebben een belangenverklaring ingevuld waarin zij hun banden met de farmaceutische industrie hebben aangegeven. De verklaringen liggen ter inzage bij de NVK.

Inbreng patiëntenperspectief

Het perspectief van patiënten/ouders wat betreft de zorg rondom BPD was in de eerste versie van de richtlijn gewaarborgd door een focusgroepbijeenkomst te hebben met ouders van patiënten met BPD. Daarnaast was in de werkgroep Care4Neo (voorheen de VOC) vertegenwoordigd. Voor de update van de richtlijn is de deelname van patiëntenvertegenwoordigers in de werkgroep verder uitgebreid. Naast een afgevaardigde van Care4Neo namen ook een ouder en een medewerker van het Longfonds deel aan de werkgroep. Er werd opnieuw een focusgroepbijeenkomst gehouden. Hier wordt meer in detail op ingegaan in de module 'Begeleiding ouders'.

Methode ontwikkeling

Evidence based

Implementatie

In de verschillende fasen van de ontwikkeling van het concept van de richtlijn is zoveel mogelijk rekening gehouden met de implementatie van de richtlijn en de daadwerkelijke uitvoerbaarheid van de aanbevelingen. De definitieve richtlijn is onder de verenigingen verspreid en via de website van de NVK en de Richtlijnendatabase elektronisch beschikbaar gesteld. Op wetenschappelijke bijeenkomsten van de betrokken wetenschappelijke verenigingen zijn de aanbevelingen van de richtlijn gepresenteerd. Verder zal er patiëntenvoorlichtingsmateriaal worden ontwikkeld ter ondersteuning van de richtlijn op de website thuisarts.nl.

Werkwijze

De ontwikkeling van de richtlijn BPD is gefinancierd door de SKMS. Gedurende de periode oktober 2011 tot september 2013 is aan de ontwikkeling van de eerste versie van de richtlijn gewerkt door leden van de (kern)werkgroep. Allereerst werd door de leden van de werkgroep een knelpuntenanalyse uitgevoerd om de huidige werkwijze ten aanzien van de diagnostiek en behandeling bij BPD in Nederland in kaart te brengen. Op basis van de resultaten van de knelpuntenanalyse werden met de werkgroep de uitgangsvragen opgesteld. Vervolgens werd per vraag een uitgebreid literatuuronderzoek uitgevoerd.

 

De update van de richtlijn werd gedurende de periode van mei 2018 tot mei 2020 geschreven. Omdat er een budget beschikbaar was voor de update van in totaal 13 uitgangsvragen, werd eerst door de werkgroep vastgesteld welke uitgangsvragen de hoogste prioriteit hadden voor de update. De werkgroep is er in geslaagd alle uitgangsvragen te updaten en twee nieuwe uitgangsvragen te ontwikkelen. Voor de update van de bestaande uitgangsvragen werd het literatuuronderzoek met de eerder gebruikte zoektermen herhaald om te zoeken naar studies die zijn verschenen na de ontwikkeling van de eerste versie van de richtlijn. Voor de nieuwe vragen werd een uitgebreid literatuuronderzoek gedaan.

 

Zoeken (inter)nationale richtlijnen

In eerste instantie werd gezocht naar evidence-based richtlijnen. Hierbij werd gebruik gemaakt van de volgende databases: National Guideline Clearinghouse, de GIN-database en Medline. Ook werd gezocht naar nationale medisch specialistische richtlijnen. De gevonden richtlijnen werden op kwaliteit beoordeeld door de kernwerkgroepleden met behulp van AGREE II (2013). De met AGREE vastgestelde domeinscores werden gebruikt als houvast voor de beoordeling van de richtlijn.

 

Zoeken artikelen

In de Cochrane database of systematic reviews, de DARE en het CCTR, beide eveneens van Cochrane, werd een algemene search uitgevoerd voor alle uitgangsvragen tegelijk. In Medline werd vervolgens een literatuursearch per uitgangsvraag of per set van uitgangsvragen uitgevoerd. Per uitgangsvraag werd beschreven welke zoektermen zijn gebruikt, welke zoekperiode en welke in- en exclusiecriteria werden aangehouden. Gedetailleerde informatie over de gebruikte zoektermen en de selectie van de artikelen is terug te vinden in de bijlage van de de richtlijn BPD.

 

Eerst werd gezocht naar de hoogste mate van bewijs: systematische reviews en gerandomiseerd en gecontroleerd onderzoek. Als dat niets opleverde werd verder gezocht naar observationele artikelen (prospectief en retrospectief cohortonderzoek en patiënt-controleonderzoek). Er werd niet gezocht naar onderzoek van een lager niveau van bewijs, zoals case studies en dierexperimenteel onderzoek. Alleen literatuur die voldoende valide en toepasbaar was, werd meegenomen in de richtlijn. Bij de resultaten is per uitgangsvraag de precieze PICO uitgeschreven en zijn specifieke aandachtspunten bij de methodiek toegelicht.

 

Beoordeling artikelen met GRADE

De methodologische kwaliteit van de geïncludeerde artikelen werd met de GRADE-methode beoordeeld om de kwaliteit van evidence transparant weer te geven. Aan het begin van het richtlijntraject werden uitkomstmaten gedefinieerd. Resultaten werden per uitkomstmaat samengevat, waarbij tevens de overall kwaliteit van de onderliggende bewijslast (evidence) werd aangegeven. Bij de beoordeling werd gebruik gemaakt van de software GRADE-pro. Met behulp van dit programma werd bij elke uitgangsvraag een tabel met bevindingen (summary of findings) en een tabel met de beoordeling van het bewijs (GRADE evidence profile) gemaakt. Deze tabellen zijn per uitgangsvraag te vinden in de Bijlagen bij de richtlijn BPD.

 

GRADE kent vier niveaus: high, moderate, low en very low. Per uitkomstmaat werd voor de kwaliteit van het bewijs met behulp van GRADE-pro een GRADE-niveau toegekend.

 

High ofwel hoog

Wanneer de kwaliteit van bewijs voor een uitkomst als high ofwel hoog geclassificeerd werd, wil dit zeggen dat het onwaarschijnlijk is dat toekomstig onderzoek de schatting van de uitkomst zal veranderen. Met andere woorden: er is veel vertrouwen in de juistheid van de schatting van de uitkomst.

 

Moderate ofwel matig

Wanneer de kwaliteit van bewijs voor een uitkomst als moderate ofwel matig geclassificeerd werd, wil dit zeggen dat het waarschijnlijk is dat toekomstig onderzoek effect heeft op het vertrouwen in de schatting van de uitkomst en zou de schatting van de uitkomst kunnen veranderen. Met andere woorden; er is matig vertrouwen in de juistheid van de schatting van de uitkomst.

 

Low ofwel laag

Wanneer de kwaliteit van bewijs voor een uitkomst als low ofwel laag geclassificeerd werd, wil dit zeggen dat het heel waarschijnlijk is dat toekomstig onderzoek effect heeft op het vertrouwen in de schatting van de uitkomst en zal deze schatting waarschijnlijk veranderen. Met andere woorden; er is beperkt vertrouwen in de juistheid van de schatting van de uitkomst.

 

Very low ofwel zeer laag

Een very low ofwel zeer lage classificatie wil zeggen dat er veel onzekerheid is over de juistheid van de uitkomst.

 

De onderzoeksopzet is een belangrijke factor binnen GRADE. Gerandomiseerde en gecontroleerde studies krijgen daarom in beginsel de kwalificatie hoog. Er zijn vijf factoren die kunnen zorgen voor een lagere kwalificatie:

  1. beperkingen in de onderzoeksopzet;
  2. inconsistentie: onverklaarde heterogeniteit van de resultaten;
  3. indirectheid: de populatie, interventie, controle en uitkomst (PICO) waarop de evidence gebaseerd is, wijken op een of meer punten af van de PICO die men wil onderzoeken. Ook het gebruik van surrogaatmarkers valt onder indirectheid;
  4. imprecisie: wijde betrouwbaarheidsintervallen rond een geschat effect duiden op onzekerheid in de grootte van het effect. Er is sprake van imprecisie bij een te kleine steekproef (lage statistische power), weinig gebeurtenissen (events) en een betrouwbaarheidsinterval dat wel statistisch significant is, maar zowel in het gebied van klinische relevantie als in het gebied van een verwaarloosbaar effect ligt;
  5. publicatiebias.

 

Observationele studies daarentegen krijgen in beginsel de kwalificatie laag. Er zijn drie factoren die kunnen zorgen voor een hogere kwalificatie:

  1. groot effect;
  2. aanwezigheid van dosisresponsrelatie;
  3. confounding die het werkelijke effect onderschat of een in werkelijkheid niet bestaand effect overschat.

Iedere beperkende of bevorderende factor kan leiden tot het verlagen of verhogen van de classificatie met een of twee niveaus. Indien de resultaten niet gepoold konden worden, werd volstaan met een globale inschatting van de kwaliteit van de onderliggende bewijslast. Voor een uitgebreidere beschrijving van GRADE verwijst de werkgroep naar https://www.gradeworkinggroup.org/ en het artikel van Guyatt (2008).

 

Bij de start van de ontwikkeling van de eerste versie van de richtlijn is er door de werkgroep voor gekozen om uitgangsvragen te beantwoorden die het gehele spectrum van BPD omvatten. Omdat dit meer uitgangsvragen opleverde dan door de epidemiologen die de richtlijn ondersteunden uitgewerkt konden worden, werden de vragen verdeeld over alle werkgroepleden. Voor een uniforme beoordeling door alle werkgroepleden van de kwaliteit van bewijs met behulp van GRADE-pro, werden de hieronder genoemde afspraken gemaakt.

 

Beoordelen van beperkingen in de onderzoeksopzet

Blindering interventie

Afgesproken werd altijd af te waarderen bij niet geblindeerd zijn van de interventie, ook als dit niet mogelijk was omwille van het soort interventie. Niet blinderen van de interventie kan in alle gevallen effect hebben op de resultaten van de studie. In iedere module werd in de paragraaf Van bewijs naar aanbeveling, indien nodig, meegenomen dat de kwaliteit van de evidence niet hoger kon vanwege de beperkingen opgelegd door het soort interventie en werd toegelicht waarom de werkgroep deze mening was toegedaan.

 

Blindering uitkomst

Indien de uitkomstmaat mortaliteit niet geblindeerd werd vastgesteld, werd hiervoor niet afgewaardeerd, omdat dit een harde uitkomstmaat is. Indien de uitkomstmaat BPD niet geblindeerd werd vastgesteld, werd wel afgewaardeerd.

 

Cumuleren beperkingen in de onderzoeksopzet (bias)

Indien er een tot twee beperkingen waren in de onderzoeksopzet, werd de kwaliteit van bewijs met één niveau afgewaardeerd. Indien er drie tot vier beperkingen waren in de onderzoeksopzet, werd de kwaliteit van bewijs met twee niveaus afgewaardeerd. Indien er onvoldoende informatie beschikbaar was in de studies om vast te stellen of er beperkingen waren in de onderzoeksopzet, werd de kwaliteit van bewijs afgewaardeerd, maar minder streng, dus niet alleen op basis van een onbekende factor van -1 naar -2 niveaus.

 

Beoordelen van imprecisie

Indien het aantal gebeurtenissen (events) <300 bedroeg, werd afgewaardeerd. Indien het 95% BI rondom het RR zowel geen effect als een klinisch relevant effect omvatte, werd eveneens afgewaardeerd. Het aantal gebeurtenissen boven de 300 is een kwaliteitscriterium dat in de neonatologie, met relatief kleine aantallen patiënten, in het merendeel van de studies niet gehaald wordt. Ook de door GRADE voorgestelde drempel van 25% voor een klinisch relevant effect werd als te hoog gezien. Omdat de beoordeling van imprecisie volgens deze criteria in de ogen van de werkgroep onevenredig bij kon dragen aan verlies van kwaliteit van de beschikbare studies, werd afgesproken slechts met één niveau af te waarderen voor imprecisie, ook als beide criteria niet voldaan waren.

 

Voor de update was geen epidemioloog beschikbaar in de werkgroep. Er werd gekozen om het herhalen van het literatuuronderzoek, het beoordelen van de kwaliteit van bewijs en het updaten van de richtlijntekst te laten uitvoeren door de leden van de kernwerkgroep. De overige werkgroepleden hebben aan de hand van de gevonden nieuwe literatuur bijgedragen aan het formuleren van de conclusies en de aanbevelingen. Voor het uitwerken van twee nieuwe uitgangsvragen werden de taken als volgt verdeeld: één vraag werd uitgewerkt door de patiëntenvertegenwoordigers in de werkgroep en één vraag werd uitgewerkt door de projectleider.

 

Van bewijs naar aanbevelingen

Tijdens voornamelijk telefonische vergaderingen van de werkgroep werd de evidence in de context van de dagelijkse praktijk besproken en werden de voor- en nadelen van de verschillende beleidsopties afgewogen. Voor het komen tot een aanbeveling zijn er naast het wetenschappelijk bewijs vaak andere factoren van belang, bijvoorbeeld: patiëntenvoorkeuren, beschikbaarheid van speciale technieken of expertise, organisatorische aspecten, maatschappelijke consequenties en veiligheid of kosten. Deze aspecten vallen onder de paragraaf Van bewijs naar aanbevelingen. De uiteindelijk geformuleerde aanbeveling is het resultaat van het beschikbare bewijs uit de literatuur in combinatie met deze aspecten.

 

De aanbevelingen zijn onder te verdelen in:

  • De werkgroep beveelt een interventie aan. Dit betekent dat de werkgroep van mening is dat het beschikbare bewijs voldoende is om alleen of in combinatie met andere aspecten, zoals eerder benoemd, te concluderen dat deze interventie zeker genoeg een positief effect oplevert voor de patiënt om aanbeveling te rechtvaardigen.
  • De werkgroep kan een interventie niet aanbevelen. Dit betekent dat de werkgroep van mening is dat er onvoldoende bewijs of overige aspecten zijn om zeker genoeg te zijn dat de interventie een positief effect oplevert voor de patiënt. Er is echter ook onvoldoende bewijs om de interventie af te raden.
  • De werkgroep raadt de interventie af. Dit betekent dat er ofwel in de ogen van de werkgroep voldoende bewijs is dat de interventie niet het beoogde effect zal opleveren, ofwel dat het effect onvoldoende bewezen is en de (potentiële) nadelen/bijwerkingen van de interventie niet opwegen tegen de kans op effect.

 

Bij iedere aanbeveling wordt verder aangegeven of het een sterke of een zwakke aanbeveling is. De sterkte van de aanbeveling wordt bepaald door de kwaliteit van het bewijs, de balans tussen gewenste en ongewenste effecten, het patiëntenperspectief, professioneel perspectief, middelenbeslag, organisatie van zorg en maatschappelijk perspectief. Toelichting bij de bepaling van de sterkte van de aanbevelingen is terug te vinden in de bijlage van deze module (zie Bijlagen bij de richtlijn BPD).

 

De werkgroep wil, wellicht ten overvloede, benadrukken dat alle aanbevelingen betrekking hebben op het effect van de interventie op de reductie van het risico op of op de behandeling van BPD. Over toepassen van interventies beschreven in de richtlijn voor andere indicaties dan BPD laat de werkgroep zich niet uit. Het is aan de behandelend arts om daarover te beslissen.

Volgende:
Surfactant