Bacteriële CZS infecties

Initiatief: SWAB Aantal modules: 9

Nosocomiale bacteriële meningitis

Uitgangsvraag

Epidemiology and empirical antibiotic treatment of nosocomial and posttraumatic bacterial meningitis.

Aanbeveling

Nosocomial meningitis associated with external or internal ventricular drains should be empirically treated with vancomycin plus either ceftazidime or meropenem.

 

Postoperative bacterial meningitis should be treated with flucloxacillin combined with ceftazidime, or with meropenem monotherapy.

 

Posttraumatic bacterial meningitis due to a skull base fracture should be treated with a third generation cephalosporin.

 

Posttraumatic bacterial meningitis due to open skull fractures should be empirically treated with a third generation cephalosporin (ceftriaxone or cefotaxime).

Overwegingen

For this module no considerations have been formulated. 

Onderbouwing

Level 2

Bacterial meningitis related to external and internal ventricular drains, and postoperative  bacterial meningitis is caused by Staphylococcus spp. in 50-60% of cases

 

B Vinchon (2006)45, Conen (2008)46, Walters (1984)47, Filka (1999)48, Kestle (2006)49, Sacar (2006)50, McClelland (2007)52, Aucoin (1986)53, Kourbeti (2007)54, Federico

(2001)55, Wang (2005)56, Zarrouk (2007)57

 

Level 4

Bacterial meningitis following severe head trauma due to skull base fractures is mostly caused by S. pneumoniae, H. influenzae and group A streptococci and bacterial meningitis due to open skull fractures is mostly caused by skin flora (staphylococci).

 

 

*

No studies have been performed on empirical antibiotic therapy for nosocomial bacterial meningitis

What is the epidemiology and empirical treatment of bacterial meningitis related to external CSF drainage?

External ventricular and lumbar drains are used for monitoring  intracranial pressure and temporary diversion of CSF, or as part of treatment of infected internal catheters.4 The risk of infection of external ventricular catheters is reported to be approximately 8%, while infection of external lumbar catheters has been estimated to occur in 5%.34 Most common pathogens in infections of external CSF catheters are staphylococci, which are cultured in approximately 60% of cases. Common staphylococcal species are coagulase-negative staphylococci, mostly S. epidermidis, and S. aureus ( table 2).35-44 Other common pathogens are Klebsiella pneumoniae, Enterobacter species, Enterococcus faecalis, Acinetobacter species and Pseudomonas aeruginosa. Multiple uncommon pathogens can be found in external CSF catheter infection and therefore empirical antibiotic coverage should be broad. A combination of vancomycin plus either ceftazidime or meropenemshould be used (Table 1).4

 

What is the epidemiology and empirical treatment of bacterial meningitis related to internal CSF drainage?

The reported incidence of meningitis associated with internal ventricular or lumbar catheters ranges from 4 to 17%.4,45,46  Approximately 60% of cases are caused by Staphylococcus species, and other frequent pathogens are Escherichia coli, K. pneumoniae, E. faecalis and Acinetobacter species (table 3).45-50 Mixed infections were described in 17% of cases in a recent Swiss study including 71 patients.46 Because of the wide range of pathogens and the occurrence of mixed infections the antibiotic coverage should be broad and should consist of vancomycin plus either ceftazidime or meropenem(Table 1).4

 

What is the epidemiology and empirical treatment of bacterial meningitis related to postoperative bacterial meningitis?

Bacterial meningitis is a serious complication of neurosurgical procedures and occurs in 0.8-1.5% of patients who undergo craniotomy.4,51,52 Development of bacterial meningitis has been associated with concomitant infection of the site of incision and duration of operation > 4 hours.4 One third of meningitis cases develop within the first week after the operation, one third in the second week and one third after the second week.51 Most cases are caused by Staphylococcus species (coagulase negative staphylococci, mostly S. epidermidis and S. aureus; Supplementary table 452-57). E. coli, K. pneumoniae, Enterobacter spp, Serratia spp, Acinetobacter spp, and P. aeruginosa were all found in approximately 5% of cases. Frequent causes of community-acquired bacterial meningitis such as Streptococcus pneumoniae and Haemophilus influenzae occur infrequently in postoperative bacterial meningitis. Because the significance of coagulase negative staphylococci is not evident in the patients without internal or external drains, and vancomycin is inferior to β-lactam antibiotics in S.aureus infections, empirical therapy should consist of flucloxacillin combined with ceftazidime, or meropenem monotherapy.

 

What is the epidemiology and empirical treatment of posttraumatic bacterial meningitis?

 The incidence of meningitis after moderate and severe head trauma is estimated at 1.4%.4,58 In patients with open cranial fractures the rate of meningitis is higher at 2-11%. Data on causative microorganisms in posttraumatic bacterial meningitis are scarce (table 5).58 Posttraumatic meningitis following skull base fractures are caused by microorganisms that colonize the nasopharynx (S. pneumoniae, H. influenzae and Group A streptococci),4while bacterial meningitis following an impression fracture of the skull will be likely caused by skin flora (staphylococci). Also in these patients the significance of coagulase negative staphylococci is not evident in the absence of internal or external drains, and vancomycin is inferior to β-lactam antibiotics in S.aureus infections. Therefore, empirical therapy in patients with skull base fractures consists of a third generation cephalosporin, and  patients with bacterial meningitis following open skull fractures should likewise be treated with a third generation cephalosporin (ceftriaxone or cefotaxime)(Table 1).

 

Table 1. Empirical treatment of nosocomial bacterial meningitis in different subgroupsa

Pathogenesis

Common bacterial pathogens

Antimicrobial therapya

Postneurosurgery

Ventricular or lumbar catheter

Aerobic gram-negative bacilli, S. aureus, CNSb  

CNSbS. aureus, aerobic gramnegative bacilli, Propionibacterium acnes

 

Flucloxacillin plus either ceftazidime, or meropenem monotherapyc,d

Vancomycin plus either ceftazidime or meropenemc,d

 

 

Penetrating trauma

S. aureus, CNSb, aerobic gramnegative bacilli

Third-generation cephalosporind,e

Basilar skull fracture

(early)

S. pneumoniaeH. influenzae, group

A ß–hemolytic streptococci

Third-generation cephalosporind,e

 

aThe preferred daily dosages of antimicrobial agents in adult patients with normal renal and hepatic function are as follows: vancomycin 1000 mg every 12 hours, to be adjusted to maintain a serum vancomycin trough concentration of 15-20 µg/ml, ceftazidime 2 grams every 8 hours, meropenem 2 grams every 8 hours; in patients with severe penicillin and/or cephalosporin allergy, ciprofloxacin 400 mg every 8 hours can be used for treatment of infection caused by gram-negative bacilli; ceftriaxone 2 grams every 12 hours, cefotaxime 2 grams every 4 hours;

bCoagulase-negative Staphylococcus (mostly S. epidermidis) cChoice of specific agent should be based on local antimicrobial susceptibility of aerobic gram-negative bacilli; dFor patients with severe allergy to penicillin and/or cephalosporins, a fluoroquinolone with in vitro activity against P. aeruginosa should be utilized;  eCeftriaxone or cefotaxime.

 

Table 2 Bacterial meningitis in patients with external CSF drains

Study

Mayhall116 Stenager117 Ohrstrom118

Coplin119    Lyke120      Wong121      Pfisterer122 Park123        Arabi124           Leverstein125 Schade126 Total (%)

Study period 

Country

1979-1981

US

1984

Denmark

1981-1986

Denmark

1992-1995

US

1995-1998

US

1998-2000

China

1993-1995

Austria

1995-2003

US

1999-2002

SaudiArabia

2004-2006

NL 

1999-2003

NL

 

 

Gram-positive bacteria 

 

 

 

 

 

 

 

 

 

 

 

 

Streptococcus pyogenes

1

 

 

  1

 

 

 

 

 

 

 

2 (0.7%)

Streptococcus mitis 

1

 

 

 

 

 

 

 

 

 

 

1 (0.4%)

Streptococcus morbillorum

 

 

 

 

 

 

1

 

 

 

 

1 (0.4%)

Streptococcus sppa

 

1

 

 

 

 

1

 

1

 

 

3 (1.1%)

Enterococcus faecalis

1

1

 

 

 

 

2

 

2

5

2

13 (4.8%)

Staphylococcus aureus

1

 

9

2

 

 

5

 

1

10

6

34 (12.6%)

Staphylococcus epidermidis

 

12

 

 

 

 

16

 

 

 

 

28 (9.4%)

CNSb  

6

 

15

6

2

2

1

31

3

20

9

95 (35.3%)

Staphylococcus saprophyticus

 

 

 

 

 

 

1

 

 

 

 

1 (0.4%)

Corynebacterium spp.

 

 

 

1

 

 

2

2

 

 

 

5 (1.9%)

Bacillus spp.

 

 

 

 

 

 

 

1

 

2

1

4 (1.5%)

Gram-negative bacteria

 

 

 

 

 

 

 

 

 

 

 

 

 

Escherichia coli

1

 

 

 

 

 

 

 

 

3

1

5 (1.9%)

Klebsiella pneumoniae

1

 

2

1

4

 

2

1

 

2

1

14 (5.2%)

Enterobacter spp.

2

 

 

1

2

 

4

1

4

2

 

16 (5.9%)

Serratia spp.

1

 

 

 

1

 

 

1

 

 

 

3 (1.1%)

Proteus spp.

 

 

 

 

1

 

 

1

 

 

1

3 (1.1%)

Acinetobacter spp.

2

1

1

1

 

2

1

1

6

 

1

16 (5.9%)

Pseudomonas

aeruginosa

 

 

 

1

 

 

2

2

2

1

 

8 (3.0%)

Flavobacterium spp.

 

 

 

 

 

 

 

1

 

 

 

1 (0.4%)

Mixed

 

 

 

1

 

 

 

4

 

1

 

6 (2.2%)

Other

1

 

 

 

1

 

6

2

 

 

 

10 (3.7%)

Total 

19

16

27

13

11

6

44

51

19

46

22

269

 aNot specified,bCoagulase-negative Staphylococcus

 

Table 3 Bacterial meningitis in patients with internal CSF drains

Study

Walters127

 Filka128       

Vinchon45

Kestle129

Sacar130

Conen46

Study period 

1960-1979

1990-1997

1985-2005

2001-2004

2000-2004

1996-2006  

Country

Canada

Slovakia

France

US

Turkey

Switzerland 

Gram-positive bacteria

Streptococcus pneumoniae

 

 

 

 

 

2

 

 

 

 

 

 

 

2 (0.3%)

Streptococcus agalactiae

 

1

 

 

 

 

1 (0.2%)

Streptococcusa

 

1

 

 

 

3

4 (0.6%)

Enterococcus faecalis 

24

4

11

 

1

1

41 (6.3%)

Staphylococcus aureus

77

7

23

9

6

14

136 (20.9%)

CNSb

 

28

 

 

 

29

57 (8.8%)

Staphylococcus epidermidis

128

 

36

34

3

 

201 (30.9%)

Listeria monocytogenes

 

 

1

 

 

 

1 (0.2%)

Gram-negative bacteria

Neisseria meningitidis 

 

 

 

 

 

1

 

 

 

 

 

 

 

1 (0.2%)

Haemophilus influenzae

 

 

7

 

 

 

7 (1.1%)

Flavobacterium spp.

 

 

 

 

1

 

1 (0.2%)

Escherichia coli

48

 

 

 

1

 

49 (7.5%)

Klebsiella pneumoniae

43

 

 

 

1

 

44 (6.8%)

Enterobacter spp.

 

1

 

 

1

3

5 (0.8%)

Acinetobacter spp.

 

6

 

 

4

 

10 (1.5%)

Pseudomonas aeruginosa

19

4

 

 

2

 

25 (3.8%)

Gram negative rodsa

 

 

19

 

 

 

19 (2.9%)

Mixed

 

 

 

 

 

12

12 (1.8%)

Other

8

 

 

27

 

 

35 (5.4%)

Total number of episodes

222

33

102

70

20

71

518 

Total cultured bacteria

347

53

102

70

20

83

651

 aNot specified,bCoagulase-negative Staphylococcus

 

Table 4 Postoperative bacterial meningitis

Study 

McLelland III52

Aucoin131

Kourbeti132

Federico133

Wang134

Zarrouk135

 

Study period 

1991-2005

1976-1981

1996-2000

1989-1997

1986-2001

1998-2005

 

Country

USA

USA

USA

Italy

Taiwan

France

 

Gram-positive bacteria

Streptococcus pneumoniae

 

 

 

 

 

 

 

 

 

3

 

2

 

5 (3.0%)

Streptococcus spp.a

 

 

 

 

3

2

5 (3.0%)

Enterococcus faecalis

 

 

1

 

1

 

2 (1.2%)

Staphylococcus aureus

8

2

2

9

13

5

39 (23.2%)

CNSb

 

1

5

 

7

3

16 (9.5%)

Staphylococcus epidermidis

 

 

 

19

 

 

19 (11.3%)

Corynebacterium

 

 

 

2

 

 

2 (1.2%)

Propionibacterium acnes

4

 

 

 

 

 

4 (2.4%)

Bacillus spp.

 

 

1

 

1

 

2 (1.2%)

Gram-negative bacteria

Haemophilus influenzae

 

 

 

 

 

1

 

 

 

1

 

2

 

4 (2.4%)

Escherichia coli

 

1

 

 

5

2

8 (4.8%)

Klebsiella pneumoniae

 

4

 

 

3

1

8 (4.8%)

Klebsiella oxytoca

 

 

 

 

1

 

1 (0.6%)

Enterobacter spp.

 

1

 

1

3

1

6 (3.6%)

Serratia spp.

 

1

2

3

1

1

8 (4.8%)

Proteus spp.

 

 

 

 

1

 

1 (0.6%)

Morganella morganii

 

 

 

 

1

1

2 (1.2%)

Acinetobacter spp.

 

 

1

4

4

 

9 (5.4%)

Pseudomonas aeruginosa 

1

 

1

1

5

 

8 (4.8%)

Mixed

2

2

3

7

5

 

19 (11.3%)

 aNot specified, bCoagulase-negative Staphylococcus

 

Table 5 Posttraumatic bacterial meningitis

Study

Baltas58

Country

Greece

Study period

1987-1992

Gram-positive

Staphylococcus haemolyticus

 

1

Staphylococcus cohnii 

1

Staphylococcus epidermidis 

1

Streptococcus  pneumoniae 

1

Gram-negative

Escherichia coli

 

2

Klebsiella pneumoniae

2

Acinetobacter anitratus

2

Total

11 

 

  1. CBO. Kwaliteitsinstituut voor de Gezondheidszorg CBO, Handleiding voor werkgroepleden. http://www.cbo.nl/Downloads/222/EBRO_handl_totaal.pdf
  2. van de Beek D, Weisfelt M, de Gans J, Tunkel AR, Wijdicks EF. Drug Insight: adjunctive therapies in adults with bacterial meningitis. Nat Clin Pract Neurol 2006; 2: 504-16.
  3. van de Beek D, Brouwer MC, de Gans J et al. Richtlijn bacteriele meningitis. Utrecht: Nederlandse Vereniging voor Neurologie; 2011.
  4. van de Beek D, Drake JM, Tunkel AR. Nosocomial bacterial meningitis. N Engl J Med 2010; 362: 146-54.
  5. Bohr V, Rasmussen N, Hansen B et al. 875 cases of bacterial meningitis: diagnostic procedures and the impact of preadmission antibiotic therapy. Part III of a three-part series. J Infect 1983; 7: 193-202.
  6. Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 2010; 23: 467-92.
  7. Spanos A, Harrell FE, Jr., Durack DT. Differential diagnosis of acute meningitis. An analysis of the predictive value of initial observations. JAMA 1989; 262: 2700-7.
  8. Tunkel AR. Brain abscess. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practive of infectious diseases. 7 ed. Philadelphia: Churchill livingstone; 2010. p. 1265-78.
  9. Kastenbauer S, Pfister HW, Wispelwey B, Scheld WM. Brain abscess. In: Scheld WM, Whitley RJ, Marra CM, editors. Infections of the central nervous system. 3 ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 479-507.
  10. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 2004; 351: 1849-59.
  11. Brouwer MC, Heckenberg SG, de GJ, Spanjaard L, Reitsma JB, van de Beek D. Nationwide implementation of adjunctive dexamethasone therapy for pneumococcal meningitis. Neurology 2010.
  12. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF. Community-acquired bacterial meningitis in adults. N Engl J Med 2006; 354: 44-53.
  13. Garges HP, Moody MA, Cotten CM et al. Neonatal meningitis: what is the correlation among cerebrospinal fluid cultures, blood cultures, and cerebrospinal fluid parameters? Pediatrics 2006; 117: 1094-100.
  14. Hristeva L, Booy R, Bowler I, Wilkinson AR. Prospective surveillance of neonatal meningitis. Arch Dis Child 1993; 69: 14-8.
  15. Holt DE, Halket S, de LJ, Harvey D. Neonatal meningitis in England and Wales: 10 years on. Arch Dis Child Fetal Neonatal Ed 2001; 84: F85-F89.
  16. Galiza EP, Heath PT. Improving the outcome of neonatal meningitis. Curr Opin Infect Dis 2009; 22: 229-34.
  17. Heath PT, Nik Yusoff NK, Baker CJ. Neonatal meningitis. Arch Dis Child Fetal Neonatal Ed 2003; 88: F173-F178.
  18. Siegal T, Pfeffer MR, Steiner I. Antibiotic therapy for infected Ommaya reservoir systems. Neurosurgery 1988; 22: 97-100.
  19. Cooper MD, Keeney RE, Lyons SF, Cheatle EL. Synergistic effects of ampicillin-aminoglycoside combinations on group B streptococci. Antimicrob Agents Chemother 1979; 15: 484-6.
  20. Netherlands Reference Laboratory for Bacterial Meningitis (AMC/RIVM). Bacterial meningitis in the Netherlands Annual report 2010. Amsterdam: University of Amsterdam; 2011.
  21. Odio CM, Puig JR, Feris JM et al. Prospective, randomized, investigator-blinded study of the efficacy and safety of meropenem vs. cefotaxime therapy in bacterial meningitis in children. Meropenem Meningitis Study Group. Pediatr Infect Dis J 1999; 18: 581-90.
  22. Brouwer MC, Heckenberg SG, de Gans J, Spanjaard L, Reitsma JB, van de Beek D. Nationwide implementation of adjunctive dexamethasone therapy for pneumococcal meningitis. Neurology 2010; 75: 1533-9.
  23. Heckenberg SG, de Gans J, Brouwer MC et al. Clinical features, outcome, and meningococcal genotype in 258 adults with meningococcal meningitis: a prospective cohort study. Medicine (Baltimore) 2008; 87: 185-92.
  24. Brouwer MC, van de Beek D, Heckenberg SG, Spanjaard L, de Gans J. Community-acquired Listeria monocytogenes meningitis in adults. Clin Infect Dis 2006; 43: 1233-8.
  25. Karageorgopoulos DE, Valkimadi PE, Kapaskelis A, Rafailidis PI, Falagas ME. Short versus long duration of antibiotic therapy for bacterial meningitis: a meta-analysis of randomised controlled trials in children. Arch Dis Child 2009; 94: 607-14.
  26. van de Beek D, Brouwer MC. No difference between short-course and long-course antibiotics for bacterial meningitis in children, but available evidence limited. Evid Based Med 2010; 15: 6-7.
  27. Molyneux E, Nizami SQ, Saha S et al. 5 versus 10 days of treatment with ceftriaxone for bacterial meningitis in children: a double-blind randomised equivalence study. Lancet 2011; 377: 1837-45.
  28. Tunkel AR, Hartman BJ, Kaplan SL et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004; 39: 1267-84.
  29. van der Meer H, van ZA, Spanjaard L, Van FM. [An infant with meningitis caused by resistant pneumococcus: infection despite vaccination]. Ned Tijdschr Geneeskd 2012; 156: A3806.
  30. Mitja O, Pigrau C, Ruiz I et al. Predictors of mortality and impact of aminoglycosides on outcome in listeriosis in a retrospective cohort study. J Antimicrob Chemother 2009; 64: 416-23.
  31. Lorber B. Listeriosis. Clin Infect Dis 1997; 24: 1-9.
  32. Red Book: 2009 report of the committee on infectious diseases. 28 ed. Elk Grove Village, IL, USA: American Academy of Pediatrics; 2009.
  33. Falagas ME, Bliziotis IA, Tam VH. Intraventricular or intrathecal use of polymyxins in patients with Gram-negative meningitis: a systematic review of the available evidence. Int J Antimicrob Agents 2007; 29: 9-25.
  34. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES, Jr. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 2008; 62 Suppl 2: 688-700.
  35. Mayhall CG, Archer NH, Lamb VA et al. Ventriculostomy-related infections. A prospective epidemiologic study. N Engl J Med 1984; 310: 553-9.
  36. Stenager E, Gerner-Smidt P, Kock-Jensen C. Ventriculostomy-related infections--an epidemiological study. Acta Neurochir (Wien ) 1986; 83: 20-3.
  37. Coplin WM, Avellino AM, Kim DK, Winn HR, Grady MS. Bacterial meningitis associated with lumbar drains: a retrospective cohort study. J Neurol Neurosurg Psychiatry 1999; 67: 468-73.
  38. Lyke KE, Obasanjo OO, Williams MA, O'Brien M, Chotani R, Perl TM. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin Infect Dis 2001; 33: 2028-33.
  39. Wong GK, Poon WS, Wai S, Yu LM, Lyon D, Lam JM. Failure of regular external ventricular drain exchange to reduce cerebrospinal fluid infection: result of a randomised controlled trial. J Neurol Neurosurg Psychiatry 2002; 73: 759-61.
  40. Pfisterer W, Muhlbauer M, Czech T, Reinprecht A. Early diagnosis of external ventricular drainage infection: results of a prospective study. J Neurol Neurosurg Psychiatry 2003; 74: 929-32.
  41. Park P, Garton HJ, Kocan MJ, Thompson BG. Risk of infection with prolonged ventricular catheterization. Neurosurgery 2004; 55: 594-9.
  42. Arabi Y, Memish ZA, Balkhy HH et al. Ventriculostomy-associated infections: incidence and risk factors. Am J Infect Control 2005; 33: 137-43.
  43. Schade RP, Schinkel J, Visser LG, Van Dijk JM, Voormolen JH, Kuijper EJ. Bacterial meningitis caused by the use of ventricular or lumbar cerebrospinal fluid catheters. J Neurosurg 2005; 102: 229-34.
  44. Ohrstrom JK, Skou JK, Ejlertsen T, Kosteljanetz M. Infected ventriculostomy: bacteriology and treatment. Acta Neurochir (Wien ) 1989; 100: 67-9.
  45. Vinchon M, Dhellemmes P. Cerebrospinal fluid shunt infection: risk factors and long-term follow-up. Childs Nerv Syst 2006; 22: 692-7.
  46. Conen A, Walti LN, Merlo A, Fluckiger U, Battegay M, Trampuz A. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11year period. Clin Infect Dis 2008; 47: 73-82.
  47. Walters BC, Hoffman HJ, Hendrick EB, Humphreys RP. Cerebrospinal fluid shunt infection. Influences on initial management and subsequent outcome. J Neurosurg 1984; 60: 1014-21.
  48. Filka J, Huttova M, Tuharsky J, Sagat T, Kralinsky K, Krcmery V, Jr. Nosocomial meningitis in children after ventriculoperitoneal shunt insertion. Acta Paediatr 1999; 88: 576-8.
  49. Kestle JR, Garton HJ, Whitehead WE et al. Management of shunt infections: a multicenter pilot study. J Neurosurg 2006; 105: 177-81.
  50. Sacar S, Turgut H, Toprak S et al. A retrospective study of central nervous system shunt infections diagnosed in a university hospital during a 4-year period. BMC Infect Dis 2006; 6:43.: 43.
  51. Korinek AM, Baugnon T, Golmard JL, van Effenterre R, Coriat P, Puybasset L. Risk factors for adult nosocomial meningitis after craniotomy: role of antibiotic prophylaxis. Neurosurgery 2008; 62 Suppl 2: 532-9.
  52. McClelland S, III, Hall WA. Postoperative central nervous system infection: incidence and associated factors in 2111 neurosurgical procedures. Clin Infect Dis 2007; 45: 55-9.
  53. Aucoin PJ, Kotilainen HR, Gantz NM, Davidson R, Kellogg P, Stone B. Intracranial pressure monitors. Epidemiologic study of risk factors and infections. Am J Med 1986; 80: 369-76.
  54. Kourbeti IS, Jacobs AV, Koslow M, Karabetsos D, Holzman RS. Risk factors associated with postcraniotomy meningitis. Neurosurgery 2007; 60: 317-25.
  55. Federico G, Tumbarello M, Spanu T et al. Risk factors and prognostic indicators of bacterial meningitis in a cohort of 3580 postneurosurgical patients. Scand J Infect Dis 2001; 33: 533-7.
  56. Wang KW, Chang WN, Huang CR et al. Post-neurosurgical nosocomial bacterial meningitis in adults: microbiology, clinical features, and outcomes. J Clin Neurosci 2005; 12: 647-50.
  57. Zarrouk V, Vassor I, Bert F et al. Evaluation of the management of postoperative aseptic meningitis. Clin Infect Dis 2007; 44: 1555-9.
  58. Baltas I, Tsoulfa S, Sakellariou P, Vogas V, Fylaktakis M, Kondodimou A. Posttraumatic meningitis: bacteriology, hydrocephalus, and outcome. Neurosurgery 1994; 35: 422-6.
  59. Infection in neurosurgery working party of the british society for antimicrobial chemotherapy. The management of neurosurgical patients with postoperative bacterial or aseptic meningitis or external ventricular drain-associated ventriculitis. Infection in Neurosurgery Working Party of the British Society for Antimicrobial Chemotherapy. Br J Neurosurg 2000; 14: 7-12.
  60. Schreffler RT, Schreffler AJ, Wittler RR. Treatment of cerebrospinal fluid shunt infections: a decision analysis. Pediatr Infect Dis J 2002; 21: 632-6.
  61. Kim BN, Peleg AY, Lodise TP et al. Management of meningitis due to antibiotic-resistant Acinetobacter species. Lancet Infect Dis 2009; 9: 245-55.
  62. Pfausler B, Spiss H, Beer R et al. Treatment of staphylococcal ventriculitis associated with external cerebrospinal fluid drains: a prospective randomized trial of intravenous compared with intraventricular vancomycin therapy. J Neurosurg 2003; 98: 1040-4.
  63. Beller AJ, Sahar A, Praiss I. Brain abscess. Review of 89 cases over a period of 30 years. J Neurol Neurosurg Psychiatry 1973; 36: 757-68.
  64. Berlit P, Fedel C, Tornow K, Schmiedek P. [Bacterial brain abscess--experiences with 67 patients]. Fortschr Neurol Psychiatr 1996; 64: 297-306.
  65. Carpenter J, Stapleton S, Holliman R. Retrospective analysis of 49 cases of brain abscess and review of the literature. Eur J Clin Microbiol Infect Dis 2007; 26: 1-11.
  66. Hakan T, Ceran N, Erdem I, Berkman MZ, Goktas P. Bacterial brain abscesses: an evaluation of 96 cases. J Infect 2006; 52: 359-66.
  67. Tattevin P, Bruneel F, Clair B et al. Bacterial brain abscesses: a retrospective study of 94 patients admitted to an intensive care unit (1980 to 1999). Am J Med 2003; 115: 143-6.
  68. Smith SJ, Ughratdar I, MacArthur DC. Never go to sleep on undrained pus: a retrospective review of surgery for intraparenchymal cerebral abscess. Br J Neurosurg 2009; 23: 412-7.
  69. Al Masalma M, Armougom F, Scheld WM et al. The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing. Clin Infect Dis 2009; 48: 1169-78.
  70. de Lastours V, Kalamarides M, Leflon V et al. Optimization of bacterial diagnosis yield after needle aspiration in immunocompetent adults with brain abscesses. Neurosurgery 2008; 63: 362-7.
  71. Cavusoglu H, Kaya RA, Turkmenoglu ON, Colak I, Aydin Y. Brain abscess: analysis of results in a series of 51 patients with a combined surgical and medical approach during an 11-year period. Neurosurg Focus 2008; 24: E9.
  72. Goodkin HP, Harper MB, Pomeroy SL. Intracerebral abscess in children: historical trends at Children's Hospital Boston. Pediatrics 2004; 113: 1765-70.
  73. Le Moal G, Landron C, Grollier G et al. Characteristics of brain abscess with isolation of anaerobic bacteria. Scand J Infect Dis 2003; 35: 318-21.
  74. Sennaroglu L, Sozeri B. Otogenic brain abscess: review of 41 cases. Otolaryngol Head Neck Surg 2000; 123: 751-5.
  75. Barlas O, Sencer A, Erkan K, Eraksoy H, Sencer S, Bayindir C. Stereotactic surgery in the management of brain abscess. Surg Neurol 1999; 52: 404-10.
  76. Mamelak AN, Mampalam TJ, Obana WG, Rosenblum ML. Improved management of multiple brain abscesses: a combined surgical and medical approach. Neurosurgery 1995; 36: 76-85.
  77. O'Donoghue MA, Green HT, Shaw MD. Cerebral abscess on Merseyside 1980-1988. J Infect 1992; 25: 163-72.
  78. Tekkok IH, Erbengi A. Management of brain abscess in children: review of 130 cases over a period of 21 years. Childs Nerv Syst 1992; 8: 411-6.
  79. Renier D, Flandin C, Hirsch E, Hirsch JF. Brain abscesses in neonates. A study of 30 cases. J Neurosurg 1988; 69: 877-82.
  80. Chun CH, Johnson JD, Hofstetter M, Raff MJ. Brain abscess. A study of 45 consecutive cases. Medicine (Baltimore) 1986; 65: 415-31.
  81. Brook I. Bacteriology of intracranial abscess in children. J Neurosurg 1981; 54: 484-8.
  82. Shahzad K, Hamid MH, Khan MA, Malik N, Maqbool S. Brain abscess in children. J Coll Physicians Surg Pak 2005; 15: 609-11.
  83. de Louvois, ., Gortavai P, Hurley R. Bacteriology of abscesses of the central nervous system: a multicentre prospective study. Br Med J 1977; 2: 981-4.
  84. Jansson AK, Enblad P, Sjolin J. Efficacy and safety of cefotaxime in combination with metronidazole for empirical treatment of brain abscess in clinical practice: a retrospective study of 66 consecutive cases. Eur J Clin Microbiol Infect Dis 2004; 23: 7-14.
  85. Bartt R. Listeria and atypical presentations of Listeria in the central nervous system. Semin Neurol 2000; 20: 361-73.
  86. Roche M, Humphreys H, Smyth E et al. A twelve-year review of central nervous system bacterial abscesses; presentation and aetiology. Clin Microbiol Infect 2003; 9: 803-9.
  87. Mampalam TJ, Rosenblum ML. Trends in the management of bacterial brain abscesses: a review of 102 cases over 17 years. Neurosurgery 1988; 23: 451-8.
  88. Bagdatoglu H, Ildan F, Cetinalp E et al. The clinical presentation of intracranial abscesses. A study of seventy-eight cases. J Neurosurg Sci 1992; 36: 139-43.
  89. Miller ES, Dias PS, Uttley D. CT scanning in the management of intracranial abscess: a review of 100 cases. Br J Neurosurg 1988; 2: 439-46.
  90. Tonon E, Scotton PG, Gallucci M, Vaglia A. Brain abscess: clinical aspects of 100 patients. Int J Infect Dis 2006; 10: 103-9.
  91. Gomez J, Garcia-Vazquez E, Martinez PM et al. [Brain abscess. The experience of 30 years]. Med Clin (Barc ) 2008; 130: 736-9.
  92. Lunardi P, Acqui M, Ferrante L, Mastronardi L, Fortuna A. Non-traumatic brain abscess. Neurosurg Rev 1993; 16: 189-96.
  93. Nicolosi A, Hauser WA, Musicco M, Kurland LT. Incidence and prognosis of brain abscess in a defined population: Olmsted County, Minnesota, 1935-1981. Neuroepidemiology 1991; 10: 122-31.
  94. Richards J, Sisson PR, Hickman JE, Ingham HR, Selkon JB. Microbiology, chemotherapy and mortality of brain abscess in Newcastle-upon-Tyne between 1979 and 1988. Scand J Infect Dis 1990; 22: 511-8.
  95. Svanteson B, Nordstrom CH, Rausing A. Non-traumatic brain abscess. Epidemiology, clinical symptoms and therapeutic results. Acta Neurochir (Wien ) 1988; 94: 57-65.
  96. Danziger A, Price H, Schechter MM. An analysis of 113 intracranial infections. Neuroradiology 1980; 19: 31-4.
  97. Hilmani S, Riyahi S, Ibahioin K, Naja A, El KA, El AA. [Brain abscess (80 cases)]. Neurochirurgie 2009; 55: 40-4.
  98. Morgan H, Wood MW, Murphey F. Experience with 88 consecutive cases of brain abscess. J Neurosurg 1973; 38: 698-704.
  99. Carey ME, Chou SN, French LA. Long-term neurological residua in patients surviving brain abscess with surgery. J Neurosurg 1971; 34: 652-6.
  100. Rish BL, Caveness WF, Dillon JD, Kistler JP, Mohr JP, Weiss GH. Analysis of brain abscess after penetrating craniocerebral injuries in Vietnam. Neurosurgery 1981; 9: 535-41.
  101. Gruszkiewicz J, Doron Y, Peyser E, Borovich B, Schachter J, Front D. Brain abscess and its surgical management. Surg Neurol 1982; 18: 7-17.
  102. Bradley PJ, Manning KP, Shaw MD. Brain abscess secondary to otitis media. J Laryngol Otol 1984; 98: 1185-91.
  103. Ersahin Y, Mutluer S, Guzelbag E. Brain abscess in infants and children. Childs Nerv Syst 1994; 10: 1859.
  104. Schliamser SE, Backman K, Norrby SR. Intracranial abscesses in adults: an analysis of 54 consecutive cases. Scand J Infect Dis 1988; 20: 1-9.
  105. Mathisen GE, Meyer RD, George WL, Citron DM, Finegold SM. Brain abscess and cerebritis. Rev Infect Dis 1984; 6 Suppl 1: S101-S106.
  106. Shaw MD, Russell JA. Cerebellar abscess. A review of 47 cases. J Neurol Neurosurg Psychiatry 1975; 38: 429-35.
  107. Nielsen H. Cerebral abscess in children. Neuropediatrics 1983; 14: 76-80.
  108. Hirsch JF, Roux FX, Sainte-Rose C, Renier D, Pierre-Kahn A. Brain abscess in childhood. A study of 34 cases treated by puncture and antibiotics. Childs Brain 1983; 10: 251-65.
  109. Moss SD, McLone DG, Arditi M, Yogev R. Pediatric cerebral abscess. Pediatr Neurosci 1988; 14: 291-6.
  110. Fischer EG, McLennan JE, Suzuki Y. Cerebral abscess in children. Am J Dis Child 1981; 135: 746-9.
  111. Dohrmann PJ, Elrick WL. Observations on brain abscess. Review of 28 cases. Med J Aust 1982; 2: 81-3.
  112. Sharma R, Mohandas K, Cooke RP. Intracranial abscesses: changes in epidemiology and management over five decades in Merseyside. Infection 2009; 37: 39-43.
  113. van Alphen HA, Dreissen JJ. Brain abscess and subdural empyema. Factors influencing mortality and results of various surgical techniques. J Neurol Neurosurg Psychiatry 1976; 39: 481-90.
  114. Al MM, Armougom F, Scheld WM et al. The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing. Clin Infect Dis 2009; 48: 1169-78.
  115. de LJ, Gortvai P, Hurley R. Antibiotic treatment of abscesses of the central nervous system. Br Med J 1977; 2: 985-7.
  116. Mayhall CG, Archer NH, Lamb VA et al. Ventriculostomy-related infections. A prospective epidemiologic study. N Engl J Med 1984; 310: 553-9.
  117. Stenager E, Gerner-Smidt P, Kock-Jensen C. Ventriculostomy-related infections--an epidemiological study. Acta Neurochir (Wien ) 1986; 83: 20-3.
  118. Ohrstrom JK, Skou JK, Ejlertsen T, Kosteljanetz M. Infected ventriculostomy: bacteriology and treatment. Acta Neurochir (Wien ) 1989; 100: 67-9.
  119. Coplin WM, Avellino AM, Kim DK, Winn HR, Grady MS. Bacterial meningitis associated with lumbar drains: a retrospective cohort study. J Neurol Neurosurg Psychiatry 1999; 67: 468-73.
  120. Lyke KE, Obasanjo OO, Williams MA, O'Brien M, Chotani R, Perl TM. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin Infect Dis 2001; 33: 2028-33.
  121. Wong GK, Poon WS, Wai S, Yu LM, Lyon D, Lam JM. Failure of regular external ventricular drain exchange to reduce cerebrospinal fluid infection: result of a randomised controlled trial. J Neurol Neurosurg Psychiatry 2002; 73: 759-61.
  122. Pfisterer W, Muhlbauer M, Czech T, Reinprecht A. Early diagnosis of external ventricular drainage infection: results of a prospective study. J Neurol Neurosurg Psychiatry 2003; 74: 929-32.
  123. Park P, Garton HJ, Kocan MJ, Thompson BG. Risk of infection with prolonged ventricular catheterization. Neurosurgery 2004; 55: 594-9.
  124. Arabi Y, Memish ZA, Balkhy HH et al. Ventriculostomy-associated infections: incidence and risk factors. Am J Infect Control 2005; 33: 137-43.
  125. Leverstein-van Hall MA, Hopmans TE, van der Sprenkel JW et al. A bundle approach to reduce the incidence of external ventricular and lumbar drain-related infections. J Neurosurg 2010; 112: 345-53.
  126. Schade RP, Schinkel J, Visser LG, Van Dijk JM, Voormolen JH, Kuijper EJ. Bacterial meningitis caused by the use of ventricular or lumbar cerebrospinal fluid catheters. J Neurosurg 2005; 102: 229-34.
  127. Walters BC, Hoffman HJ, Hendrick EB, Humphreys RP. Cerebrospinal fluid shunt infection. Influences on initial management and subsequent outcome. J Neurosurg 1984; 60: 1014-21.
  128. Filka J, Huttova M, Tuharsky J, Sagat T, Kralinsky K, Krcmery V, Jr. Nosocomial meningitis in children after ventriculoperitoneal shunt insertion. Acta Paediatr 1999; 88: 576-8.
  129. Kestle JR, Garton HJ, Whitehead WE et al. Management of shunt infections: a multicenter pilot study. J Neurosurg 2006; 105: 177-81.
  130. Sacar S, Turgut H, Toprak S et al. A retrospective study of central nervous system shunt infections diagnosed in a university hospital during a 4-year period. BMC Infect Dis 2006; 6:43.: 43.
  131. Aucoin PJ, Kotilainen HR, Gantz NM, Davidson R, Kellogg P, Stone B. Intracranial pressure monitors. Epidemiologic study of risk factors and infections. Am J Med 1986; 80: 369-76.
  132. Kourbeti IS, Jacobs AV, Koslow M, Karabetsos D, Holzman RS. Risk factors associated with postcraniotomy meningitis. Neurosurgery 2007; 60: 317-25.
  133. Federico G, Tumbarello M, Spanu T et al. Risk factors and prognostic indicators of bacterial meningitis in a cohort of 3580 postneurosurgical patients. Scand J Infect Dis 2001; 33: 533-7.
  134. Wang KW, Chang WN, Huang CR et al. Post-neurosurgical nosocomial bacterial meningitis in adults: microbiology, clinical features, and outcomes. J Clin Neurosci 2005; 12: 647-50.
  135. Zarrouk V, Vassor I, Bert F et al. Evaluation of the management of postoperative aseptic meningitis. Clin Infect Dis 2007; 44: 1555-9.

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 01-01-2012

Laatst geautoriseerd  : 01-01-2012

Geplande herbeoordeling  :

Initiatief en autorisatie

Initiatief:
  • Stichting Werkgroep Antibioticabeleid
Geautoriseerd door:
  • Nederlandse Vereniging voor Kindergeneeskunde
  • Nederlandse Vereniging voor Medische Microbiologie
  • Nederlandse Vereniging voor Neurochirurgie
  • Nederlandse Vereniging voor Neurologie

Algemene gegevens

The Dutch Working Party on Antibiotic Policy (SWAB; Stichting Werkgroep Antibiotica Beleid), established by the Dutch Society for Infectious Diseases (VIZ), the Dutch Society of Medical Microbiology (NVMM) and the Dutch Society for Hospital Pharmacists (NVZA), develops evidence-based guidelines for the use of antibiotics in hospitalized patients in order to optimize the quality of prescribing, thus, contributing to the containment of antimicrobial drug costs and resistance. By means of the development of national guidelines, SWAB offers local antibiotic and formulary committees a guideline for the development of their own, local antibiotic policy.  These are the first SWAB guidelines on bacterial central nervous system infections. It is developed according to the Evidence Based Guideline Development method (EBRO; www.cbo.nl). The AGREE criteria

(www.agreecollaboration.org) provided a structured framework both for the development and the assessment of the draft guideline. 

 

Relationship between the SWAB Guidelines and the 2012 Guidelines on Meningitis by the Dutch Society for Neurology (Nederlandse Vereniging voor Neurologie)

The SWAB guidelines cover the antimicrobial therapy in children and adults with bacterial meningitis, brain abscesses and tuberculous meningitis. They do not cover other treatment components of bacterial meningitis, such as corticosteroids, osmotic agents and anticoagulants.2 This is discussed extensively in the 2012 guidelines by the Dutch Society for Neurology (Nederlandse Vereniging voor Neurologie). The Nederlandse Vereniging voor Neurologie guidelines adopted the SWAB guidelines on meningitis to be the treatment part of their meningitis guidelines.

Doel en doelgroep

Core issues on cryptococcal meningitis are extensively discussed in the 2008 SWAB guidelines on fungal infections. Diagnostics for bacterial meningitis are briefly discussed in the introduction, but not systematically reviewed in these guidelines. Encephalitis falls outside the scope of these guidelines.

For this guideline we made a distinction based on the setting in which bacterial meningitis was acquired: community-acquired versus nosocomial. Further, we provide recommendations for empirical antimicrobial therapy for clinical subgroups of bacterial meningitis patients. The choice of initial antimicrobial therapy for these subgroups is based on the bacteria most commonly causing the disease, taking into account the patient’s age and clinical setting, and patterns of antimicrobial susceptibility. After the results of culture and susceptibility testing have become available, antimicrobial therapy can be modified for optimal treatment. 

Samenstelling werkgroep

Preparatory Committee: Dr. M.C. Brouwer, Drs. S.G.B. Heckenberg, Dr. G.T.J. van Well (Nederlandse Vereniging voor Kindergeneeskunde), Dr. A. Brouwer (Vereniging voor Infectieziekten), Dr. E.J. Delwel (Nederlandse Vereniging voor Neurochirurgie), Dr. L. Spanjaard (Nederlandse Vereniging voor Medisch Microbiologie), Prof. dr. D. van de Beek (Nederlandse Vereniging voor Neurologie), Prof. dr. J.M. Prins (SWAB).

Methode ontwikkeling

Evidence based

Werkwijze

Twelve key questions were formulated concerning the antibiotic treatment of bacterial central nervous system infections. Using several data sources (see data sources) conclusions were drawn, with their specific level of evidence, according to the CBO grading system adopted by SWAB (Table 1).1

Subsequently, specific recommendations were formulated. Each key question will be answered in a separate chapter. 

 

Table 1a

Methodological quality of individual studies.1

 

 

Intervention

Etiology, prognosis

A1 

Systematic review of at least two independent A2-level studies 

A2 

Randomised Controlled Trial (RCT) of sufficient methodological quality and power 

Prospective cohort study with sufficient power and with adequate confounding corrections 

Comparative Study lacking the same quality

as mentioned at A2 (including patientcontrol and cohort studies) 

Prospective cohort study lacking the same quality as mentioned at A2, retrospective cohort study or patient-control study 

Non-comparative study 

Expert opinion 

 

Table 1b

Level of evidence of conclusions

 

 

Conclusions based on 

Study of level A1 or at least two independent studies of level A2 

One study of level A2 or at least two independent studies of level B 

One study of level B or C 

Expert opinion 

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Behandeling van postoperative meningitis