Anesthesie bij obesitas

Initiatief: NVA Aantal modules: 19

Bloeddrukmeting

Uitgangsvraag

Hoe dient bloeddruk te worden gemeten bij volwassen patiënten met obesitas die een chirurgische ingreep ondergaan?

 

De uitgangsvraag omvat de volgende deelvragen:

  1. Wat is de plaats van een bloeddrukmeting met een band om de vinger?
  2. Wat is de plaats van een bloeddrukmeting met een band om de onderarm?
  3. Wat is de plaats van een bloeddrukmeting met een band om de bovenarm?

Aanbeveling

Gebruik een bloeddrukband waarvan de lengte van het opblaasgedeelte van de bloeddrukband een lengte heeft van minimaal 80% van de bovenarmomtrek.

 

Verricht peroperatieve non-invasieve bloeddrukmetingen aan de onderarm in plaats van de bovenarm indien de bovenarmtrek >37,5 cm is (doorgaans bij een BMI van ≥40 kg/m2).

Overwegingen

Voor- en nadelen van de interventie en de kwaliteit van het bewijs

Er is een systematische review uitgevoerd naar effecten van het gebruik van verschillende methoden (‘finger cuff’, boven arm ‘cuff’ en onderarm ‘cuff’) van bloeddrukmeting op complicaties en keuze van behandeling bij volwassen patiënten met obesitas die een chirurgische behandeling ondergaan onder algehele, regionale of spinale anesthesie. Daarnaast zijn de klinimetrische eigenschappen van de verschillende methoden van bloeddrukmeting onderzocht.

Voor de cruciale uitkomstmaten complicaties en therapeutische interventies naar aanleiding van verschillen in gemeten bloeddruk werd geen literatuur gevonden. Er bestaat een kennislacune over het effect van verschillende type meetinstrumenten om de bloeddruk te meten op klinische uitkomstmaten.

De belangrijke uitkomstmaten konden wel enige richting geven aan de klinische besluitvorming. Er werd geen literatuur gevonden ten aanzien van het effect van het gebruik van verschillende meetinstrumenten op kosten en ten aanzien van de betrouwbaarheid (test-hertest overeenkomst en meetfout), maar wel ten aanzien van de validiteit (tabel 7) en responsiviteit (tabel 8) wanneer non-invasieve methoden van bloeddrukmeting werden vergeleken met een meting middels intra-arteriële lijn. De bewijskracht werd voornamelijk verlaagd vanwege het relatief kleine aantal patiënten waarover de meeteigenschappen bepaald werden. In enkele gevallen kon de bewijskracht niet bepaald worden vanwege inconsistente resultaten, of werd aanvullend afgewaardeerd voor risk of bias vanwege gebrek aan studies met hoge kwaliteit die geschikte uitkomstmaten rapporteren.

 

Tabel 7: Validiteit meetinstrumenten

Type meetinstrument

Type bloeddruk

Conclusie

Bewijskracht

‘Finger cuff’

Systolisch

Waarschijnlijk toereikend

Redelijk

 

Diastolisch

Waarschijnlijk niet toereikend

Redelijk

 

Gemiddeld arterieel

Waarschijnlijk toereikend

Redelijk

Lower arm ‘cuff’

Systolisch

Toereikend

Hoog

 

Diastolisch

Geen conclusie

Geen

 

Gemiddeld arterieel

Geen conclusie

Geen

Upper arm ‘cuff’

Systolisch

Geen conclusie

Geen

 

Diastolisch

Waarschijnlijk niet toereikend

Redelijk

 

Gemiddeld arterieel

Geen conclusie

Geen

 

Tabel 8: Responsiviteit meetinstrumenten

Type meetinstrument

Type bloeddruk

Conclusie

Bewijskracht

‘Finger cuff’

Systolisch

Geen conclusie

Zeer laag

 

Diastolisch

Geen conclusie

Zeer laag

 

Gemiddeld arterieel

Geen conclusie

Zeer laag

Lower arm ‘cuff’

Systolisch

Mogelijk toereikend

Laag

 

Diastolisch

Mogelijk toereikend

Laag

 

Gemiddeld arterieel

Mogelijk toereikend

Laag

Upper arm ‘cuff’

Systolisch

Mogelijk toereikend

Laag

 

Diastolisch

Mogelijk niet toereikend

Laag

 

Gemiddeld arterieel

Mogelijk toereikend

Laag

Bloeddrukmeting tijdens de perioperatieve periode is van vitaal belang. Afhankelijk van de soort ingreep en bepaalde co-morbiditeit van de patiënt zal het anesthesiologisch team de afweging maken welke vorm van bloeddrukmonitoring noodzakelijk zal zijn.

Indien invasieve meting niet nodig is wordt er in de praktijk momenteel vaak gekozen voor een oscillometrische meting aan de bovenarm. De bovenarmomtrek moet gebruikt worden om de correcte bloeddrukband te selecteren. De lengte van het opblaasgedeelte van de bloeddrukband moet 80% zijn van de bovenarmomtrek, het wordt aangeraden om te kijken naar de markeringen op de band zelf en indien nodig de bovenarmomtrek te meten (Pickering, 2005). Bij patiënten met obesitas die een bovenarmomtrek van >37,5 cm hebben wordt er door een cilindrische bloeddrukband, zoals in de praktijk gebruikt wordt, bij 15% van de patiënten een onterechte hypertensie gemeten (Palatini, 2012). De bovenarmomtrek neemt toe naarmate het gewicht toeneemt, in de eerdergenoemde studie was het gemiddelde BMI 41,4 voor de patiënten met een bovenarmomtrek van 38,8 cm.

 

Studies kijken in toenemende maat naar oscillometrische bloeddrukmetingen om de onderarm (Leblanc, 2013; Leblanc, 2019; Mostafa, 2020; Schumann, 2021). In het algemeen wordt een onderarm meting verricht twee cm distaal van de elleboog of drie cm proximaal van de processus styloideus ulnae. Voor een onderarm meting volstaat een standaard bloeddrukband vaak (25-35 cm lengte), een kleinere band (18-26 cm) kan ook nodig zijn (Mostafa, 2020; Schumann, 2021).

 

De bovenstaande GRADE conclusies kunnen voor de bovenarm metingen bij patiënten met obesitas die een operatie ondergaan enkel concluderen dat de diastolische bloeddruk waarschijnlijk geen goede overeenkomst heeft met de gouden standaard (criterion validity). Veranderingen worden mogelijk toereikend gemeten voor systolische en gemiddelde arteriële bloeddruk, maar mogelijk niet voor diastolische bloeddruk (responsivity). Over de onderarm kan met zekerheid geconcludeerd worden dat de systolische overeenkomst goed is (criterion validity) en mogelijk toereikend voor alle drie de typen bloeddrukmeting ten aanzien van het meten van veranderingen in de bloeddruk (responsivity).

 

De studies van Schumann en Mostafa rapporteren in de meeste gevallen dat onderarm metingen een hogere overeenkomst (criterion validity en responsivity) hebben met de arterielijn genomen als gouden standaard ten opzichte van bovenarm metingen. De patiënten in deze studies hadden een gemiddeld BMI boven de 40 kg/m2. Metingen aan de onderarm waren ook sneller dan aan de bovenarm met een mediaan tijd van 30s (IQR 27-34) bij de onderarm vs. 63s (IQR 49-76) bij de bovenarm (Mostafa, 2020). Dit en de GRADE conclusies suggereren dat metingen aan de onderarm beter zijn dan metingen aan de bovenarm bij patiënten met een BMI ≥40 kg/m2.

 

Een fingercuff systeem van bijvoorbeeld ClearSight (Edwards Lifesciences, USA), voorheen ccNexfin (BMEYE B.V., The Netherlands) meet continu op non-invasieve wijze de bloeddruk middels een infrarood plethysmografie systeem in combinatie met een Volume Clamp-methode. Continue monitoring van de hemodynamiek kan van grote meerwaarde zijn gezien de associatie van obesitas en co-morbiditeit zoals coronair lijden en cerebrovasculaire aandoening (Ortiz, 2015). De overeenkomst met de gouden standaard voor de systolische bloeddruk en de mean arterial pressure (MAP) is waarschijnlijk voldoende, maar niet voor de diastolische bloeddruk (GRADE redelijk). Of veranderingen in de bloeddruk goed gemeten kunnen worden is nog onduidelijk (GRADE zeer laag).

 

Het gebruik van de ClearSight is een veelbelovende methode in patiënten waarbij oscillometrie nog gebruikt wordt als standaardmethode van bloeddrukmeting en eventueel na verdere validatie als vervanging van een invasieve bloeddrukmeting. Hij is echter niet gevalideerd bij atriumfibrilleren of ritmestoornissen, deze patiënten werden in alle studies geëxcludeerd. Tevens zijn er patiënt karakteristieken die de ClearSight ook onbetrouwbaar maken zoals een verlengde capillary refill tijd, een slechte perfusie index of oedeem van de hand (Lakhal, 2023). Daarom lijkt de ClearSight goed te gebruiken bij cardiaal stabiele patiënten, echter zodra het een cardiaal belast iemand betreft is de ClearSight niet te adviseren. Gebruik hiervan kan mogelijk leiden tot een hoger risico op onjuiste waarden.

Aangezien alle studies verricht waren in bariatrische populaties is het tot dusver ook nog onduidelijk of de resultaten generaliseerbaar zijn over de hele populatie met obesitas.

Aangezien er geen data waren ten aanzien van klinische complicaties ten gevolge van de gebruikte bloeddrukmeting kunnen andere methodes gebruikt worden om te kijken of er klinisch relevante verschillen zijn tussen de vergeleken bloeddrukken.

Hiervoor wordt in enkele studies (Eley, 2021; Rogge, 2019; Schumann, 2021) gebruik gemaakt van error grid analyses volgens Saugel (2018), zie figuur 1. Een error grid analyse vergelijkt een nieuwe meetmethode met de gouden standaard en deelt de concordante metingen op in verschillende zones op basis van het risico op complicaties naar aanleiding van het gebruik van de meetmethode en volgende behandelbeslissingen dat zou bestaan in die desbetreffende zone.

Figuur 1: Error grid analyse (Saugel, 2018)

 

De risico’s zijn gedefinieerd als:

  • Geen risico (geen verschil in klinische actie tussen test en referentie methode)
  • Laag risico (deviatie van testmethode en referentie, waarschijnlijk onschadelijk gevolg)
  • Matig risico (testmethode wijkt af van referentie met onnodige behandeling met matige, niet-levensbedreigende gevolgen voor patiënt).
  • Significant risico (testmethode wijkt af van referentie en zou leiden tot onnodige behandeling met ernstige niet-levensbedreigende gevolgen voor de patiënt)
  • Gevaarlijk risico (testmethode wijkt af van referentie en zou leiden tot onnodige behandeling met levensbedreigende gevolgen voor de patiënt)

Tabel 9: Error grid analyses

Studie,

Meetlocatie

Bloeddruk

Zone A % (n)

Zone B % (n)

Zone C % (n)

Zone D % (n [N])

Zone E % (n)

Schumann, 2021

Fingercuff

SBD

MAP

89.5 (481)

77.1 (415)

9.8 (53)

21.6 (116)

0.2 (1)

0.9 (5)

0.4 (2 [1])

0.4 (2 [1])

0.2 (1)

0.0 (0)

Schumann, 2021

Bovenarm

SBD

MAP

85.1 (377)

65.9 (294)

10.0 (44)

28.3 (126)

3.8 (17)

4.0 (18)

1.1 (5 [5])

1.6 (7 [6])

0.0 (0)

0.2 (1)

Schumann, 2021

Onderarm

SBD

MAP

85.8 (459)

74.5 (400)

11.2 (60)

22.2 (119)

2.8 (15)

3.0 (16)

0.2 (1 [1])

0.4 (2 [2])

0.0 (0)

0.0 (0)

Eley, 2021

Fingercuff

SBD

MAP

90.8 (336)

91.4 (338)

6.5 (24)

4.3 (16) 

2.7 (10)

4.3 (16) 

0.0 (0)

0.0 (0)

0.0 (0)

0.0 (0)

Rogge, 2019

Fingercuff

SBD

MAP

93.7

89.5

6.0

10.0

0.3

0.5

0.0 (0)

0.0 (0)

0.0 (0)

0.0 (0)

n, aantal meetparen in de risicozone; N, aantal patiënten dat bijdraagt aan de meetparen n in de risicozone.

Door afrondingen kan het zijn dat de percentages niet optellen tot 100%

SBD: systolische bloeddruk, MAP: mean arterial pressure

 

Uit tabel 9 zou men kunnen concluderen dat de fingercuff en onderarm metingen veelal in risicozone A-C zitten met een enkele meting in zone D en E. Het grootste aandeel van de metingen in risicozone D zijn metingen verricht met de bloeddrukband om de bovenarm. Dit past bij de reeds beschreven problemen van de bloeddrukmetingen aan de bovenarm.

 

Waarden en voorkeuren van patiënten (en evt. hun verzorgers)

De patiënt is gebaat bij nauwkeurige bloeddrukmonitoring in de perioperatieve fase om complicaties te kunnen voorkomen zoals CVA’s en myocardinfarcten. Invasieve metingen hebben het risico op complicaties en kunnen ook als pijnlijk worden ervaren. Bovendien is een invasieve meting niet in elke situatie vereist. De locatie van de non-invasieve bloeddrukmeting maakt doorgaans niet veel uit voor de patiënt zolang er maar gekozen wordt voor een correct passende bloeddrukband.

 

Kosten (middelenbeslag)

Methodes om een invasieve bloeddrukmeting te verrichten en non-invasieve oscillometrische bloeddrukbanden zijn beschikbaar in elk ziekenhuis.

De ClearSight (Edwards Lifesciences, USA) daarentegen wordt niet standaard in elk ziekenhuis gebruikt en zou moeten worden aangeschaft. De disposable fingercuffs zijn doorgaans 150 euro per stuk (Imedsales.com, 2023).

 

Aanvaardbaarheid, haalbaarheid en implementatie

Een andere locatie gebruiken om een non-invasieve bloeddruk te meten zal vermoedelijk geen problemen geven. Implementatie van ClearSight zou beperkt kunnen zijn door de kosten en bij gebrek aan bewijs buiten bariatrische studies.

 

Rationale van de aanbeveling: weging van argumenten voor en tegen de interventies

Non-invasieve bloeddrukmetingen worden in de praktijk meestal verricht om de bovenarm. Bij patiënten met obesitas neemt niet alleen de bovenarmomtrek toe maar krijgen de bovenarmen ook een conischer verloop. Hierdoor ontstaat er een verhoogd risico op foutieve metingen, waarbij de bloeddruk met name overschat wordt (Palatini, 2012).

Bij 15% van de patiënten met een bovenarmomtrek van >37,5 cm wordt er hierdoor een onterechte hypertensie gemeten. Bij een BMI van 40 kg/m2 zal de bovenarmomtrek vaak >37,5 cm zijn (Palatini, 2012, Schumann 2021, Eley 2021).

 

Non-invasieve metingen aan de onderarm lijken beter overeen te komen met de gouden standaard en worden om die reden door de werkgroep aanbevolen indien de bovenarmomtrek >37,5cm is.

 

Aangezien de gevonden studies enkel peroperatieve bloeddrukwaarden vergeleken, kan de werkgroep deze aanbeveling niet extrapoleren naar andere situaties zoals bijvoorbeeld poliklinische metingen.

 

Te allen tijde dient er een correct passende bloeddrukband gebruikt te worden, de lengte van de band dient minimaal 80% te bedragen van de bovenarmomtrek (Pickering, 2005). Het wordt aanbevolen om de gebruiksaanwijzingen van de fabrikant op te volgen. Veelal worden er afmetingen aangegeven op de bloeddrukbanden die in Nederland gebruikt worden.

 

Er is nog onvoldoende bewijs om de ClearSight fingercuff aan te raden. Alle onderzoeken zijn verricht in de bariatrische populatie en het is onduidelijk of resultaten generaliseerbaar zijn over de gehele populatie met obesitas. Hier dient nog meer onderzoek naar verricht te worden.

Onderbouwing

Een accurate vorm van bloeddrukmeting gedurende de perioperatieve periode is van groot belang gezien het reeds verhoogde risico op cardiale complicaties bij patiënten met obesitas (Bamgbade, 2007; Benalcazar, 2022; Poirier, 2009). Patiënten met obesitas hebben vaker een conisch verloop van de bovenarm waardoor het non-invasief meten van de bloeddruk minder betrouwbaar en soms onmogelijk is (Palatini, 2011; Palatini, 2012). Als alternatief wordt de bloeddruk in sommige gevallen gemeten op alternatieve locaties (non-invasief op de onderarm), middels invasieve methoden (arterielijnen) of middels een continue vingerbloeddruk meter (productnamen: Nexfin/ClearSight). Invasieve monitoring is de gouden standaard, echter zijn hier wel risico’s aan verbonden zoals ischemie, bloedingen en lokale infecties (Scheer, 2002; Nuttall, 2016). In deze module vergelijken we diverse methoden van non-invasieve bloeddrukmetingen t.o.v. de arterielijn.

PICO 1: What is the effect of non-invasive blood pressure measurements (upper arm vs. lower arm vs. finger) on clinical outcome?

 

Finger cuff blood pressure versus arterial line blood pressure 

- GRADE

No evidence was found regarding the effect of blood pressure measurement by finger cuff or lower arm cuff on complications when compared with blood pressure measurement by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding the effect of blood pressure measurement by finger cuff or lower arm cuff on therapeutic reactions to measured blood pressure when compared with blood pressure measurement by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding the effect of blood pressure measurement by finger cuff or lower arm cuff on costs when compared with blood pressure measurement by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

PICO 2: What are the clinimetric properties of non-invasive blood pressure measurements (upper arm, lower arm, finger) compared to an arterial line (gold standard)?

 

Finger cuff blood pressure versus arterial line blood pressure

 

Reliability and measurement error

- GRADE

No evidence was found regarding reliability and measurement error of systolic blood pressure measurement by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding reliability and measurement error of diastolic blood pressure measurement by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding reliability and measurement error of mean arterial blood pressure measurement by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

Criterion validity

Moderate GRADE

Criterion validity is probably sufficient for systolic blood pressure measurements by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Schumann, 2021

Moderate GRADE

Criterion validity is probably insufficient for diastolic blood pressure measurements by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Schumann, 2021

Moderate GRADE

Criterion validity is probably sufficient for mean arterial blood pressure measurements by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Schumann, 2021

Responsiveness

Very low GRADE

The evidence is very uncertain about responsiveness for systolic blood pressure measurements by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Eley, 2021; Hansen, 2022; Rogge, 2019; Schumann, 2021

Very low GRADE

The evidence is very uncertain about responsiveness for diastolic blood pressure measurements by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Eley, 2021; Hansen, 2022; Rogge, 2019; Schumann, 2021

Very low GRADE

The evidence is very uncertain about responsiveness for mean arterial blood pressure measurements by finger cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Eley, 2021; Hansen, 2022; Rogge, 2019; Schumann, 2021

Lower arm blood pressure versus arterial line blood pressure

 

Reliability and measurement error

- GRADE

No evidence was found regarding reliability and measurement error of systolic blood pressure measurement by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding reliability and measurement error of diastolic blood pressure measurement by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding reliability and measurement error of mean arterial blood pressure measurement by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

Criterion validity

High GRADE

Criterion validity is sufficient for systolic blood pressure measurements by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Mostafa, 2020; Schumann, 2021

- GRADE

Criterion validity for diastolic blood pressure measurements by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia could not be graded as reported results were inconclusive.

 

Source: Source: Mostafa, 2020; Schumann, 2021

- GRADE

Criterion validity for mean arterial blood pressure measurements by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia could not be graded as reported results were inconclusive.

 

Source: Source: Mostafa, 2020; Schumann, 2021

Responsiveness

Low GRADE

Responsiveness may be sufficient for systolic blood pressure measurements by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Mostafa, 2020

Low GRADE

Responsiveness may be sufficient for diastolic blood pressure measurements by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Mostafa, 2020

Low GRADE

Responsiveness may be sufficient for mean arterial blood pressure measurements by lower arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Mostafa, 2020

Upper arm blood pressure versus arterial line blood pressure

 

Reliability and measurement error

- GRADE

No evidence was found regarding reliability and measurement error of systolic blood pressure measurement by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding reliability and measurement error of diastolic blood pressure measurement by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

- GRADE

No evidence was found regarding reliability and measurement error of mean arterial blood pressure measurement by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

Criterion validity

- GRADE

Criterion validity for systolic blood pressure measurements by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia could not be graded as reported results were inconclusive.

 

Source: Hager, 2009; Mostafa, 2020

Moderate GRADE

Criterion validity is probably insufficient for diastolic blood pressure measurements by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Hager, 2009; Mostafa, 2020

- GRADE

Criterion validity for mean arterial blood pressure measurements by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia could not be graded as reported results were inconclusive.

 

Source: Hager, 2009; Mostafa, 2020

Responsiveness

Low GRADE

Responsiveness may be sufficient for systolic blood pressure measurements by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Mostafa, 2020

Low GRADE

Responsiveness may be insufficient for diastolic blood pressure measurements by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Mostafa, 2020

Low GRADE

Responsiveness may be sufficient for mean arterial blood pressure measurements by upper arm cuff in patients with obesity undergoing surgery under general, regional, or spinal anesthesia.

 

Source: Mostafa, 2020

PICO 1: What is the effect of non-invasive blood pressure measurements (upper arm, lower arm, finger vs. arterial line) on clinical outcome?

 

Description of studies

No studies were included in the analysis of the literature.

 

Results

Complications

No studies were included in the analysis of the literature.

 

Therapeutic reactions to measured blood pressure

No studies were included in the analysis of the literature.

 

Costs

No studies were included in the analysis of the literature.

 

Level of evidence of the literature

No studies were included in the analysis of the literature.

 

PICO 2: What are the clinimetric properties of non-invasive blood pressure measurements (upper arm, lower arm, finger) compared to an arterial line (golden standard)?

 

Description of studies

Eley (2021) investigated criterion validity and responsiveness in a prospective comparison study. Blood pressure was measured in 30 adult patients scheduled for elective laparoscopic bariatric surgery (mean age 45 years, SD 11.7; male 71%; median BMI 50.2 kg/m2, 25-75th percentile 48.3 to 55.3) by a ClearSight EV1000 Clinical Platform (Edwards Lifesciences

Corp, Irvine, CA). Measurement properties were compared to blood pressure measurements by a radial arterial catheter. For criterion validity and responsiveness high risk of bias was assessed (inadequate quality) as no correlations or AUC was reported. Reliability was not reported.

 

Hager (2009) investigated criterion validity in a prospective comparison study. Blood pressure was measured in 22 patients undergoing bariatric surgery (mean age 44.3 years, SD 9.5; male not reported%; median BMI 66.7 kg/m2, SD 13.8) by non-invasive blood pressure measurements for the upper arm (Datex-Ohmeda, Madison, WI, USA). Measurement properties were compared to blood pressure measurements by a radial arterial catheter. For criterion validity low risk of bias was assessed (very good quality. Reliability and responsiveness were not reported.

 

Hansen (2022) investigated criterion validity and responsiveness in a prospective observational cohort study. Blood pressure was measured in 56 adult patients scheduled for elective laparoscopic bariatric surgery (mean age 46.5 years, SD 12.1; male 27%; mean BMI 49.2 kg/m2, SD 5.7) by a

  • Nexfin® system (BMEYE, Amsterdam, The Netherlands, now licensed as ClearSight® system by Edwards Lifesciences, Irvine, CA, USA;
  • forearm cuff (DURA-CUF™ GE, Boston, MA, USA). Measurement properties were compared to blood pressure measurements by an arterial catheter.

There may be risk of bias for this study as 4 potential participants were not included while no clear reason (i.e., insufficient data acquisition) was given (doubtful quality for criterion validity outcome regarding upper arm and finger cuff). There was high risk of bias for responsiveness as no correlation or AUC was reported regarding upper arm and finger cuff.

 

Mostafa (2020) investigated criterion validity and responsiveness in consecutive patients in a prospective observational cohort study. Blood pressure was measured in 40 adult patients scheduled for elective laparoscopic bariatric surgery (mean age 38 years, SD 11; male 12.5%; mean BMI 46 kg/m2, SD 5) by a

  • Nexfin® system (BMEYE, Amsterdam, The Netherlands, now licensed as ClearSight® system;
  • forearm cuff (Mindray non-invasive blood pressure measurement cuff);
  • upper arm cuff (Mindray non-invasive blood pressure measurement cuff).

Measurement properties were compared to blood pressure measurements by an 20g arterial catheter. No risk of bias (very good quality) was assessed for criterion validity and responsiveness. Reliability was not reported.

 

Rogge (2019) investigated criterion validity and responsiveness in a prospective comparison study. Blood pressure was measured in 35 adult patients scheduled for elective laparoscopic bariatric surgery (median age 53 years, 25-75th percentile 41-53; male 71%; median BMI 47 kg/m2, 25-75th percentile 42-53) by a ClearSight monitor (Dräger Infinity Delta; Dräger, Lübeck, Germany). Measurement properties were compared to blood pressure measurements by an arterial catheter. For criterion validity and responsiveness high risk of bias was assessed (inadequate quality) as no correlations or AUC was reported. Reliability was not reported.

 

Schumann (2021) investigated criterion validity and responsiveness in a prospective comparison study. Non-invasive blood pressure measurements were performed in 90 (108 included, but 18 lost to follow-up) adult patients scheduled for elective laparoscopic bariatric surgery (mean age 47 years, SD 13; male 29%; mean BMI 47 kg/m2, SD 7) by

  • continuous finger cuff measurements (ccNexfin (BMEYE B.V., The Netherlands); now ClearSight (Edwards Lifesciences, USA)) that was fitted and placed on the middle phalanx of the third or fourth finger according to the manufacturer’s specification;
  • oscillometric lower arm measurements with standard cuff (Criticon; GE Healthcare, USA);
  • oscillometric upper arm measurements with large cuff (Criticon; GE Healthcare, USA).

Measurement instruments were compared with measurement by a 20-gauge radial artery catheter. A pressure transducer was leveled to the level of the right atrium. There may be risk of bias (doubtful quality) for the reported criterion validity of the upper arm measurements due to a relatively large number of missing values. No risk of bias (very good quality) was assessed for finger cuff and lower arm criterion validity. For responsiveness there was risk of bias assessed (inadequate quality) as no correlation or AUC was reported. Reliability was not reported.

 

Results

Finger cuff blood pressure versus arterial line blood pressure

 

Reliability/measurement error

No studies reporting reliability and measurement errors were included.

 

Criterion validity

Schumann (2021) reported criterion validity by reporting a correlation coefficient and by reporting the mean of the differences including limits of agreement for systolic blood pressure, diastolic blood pressure and mean arterial blood pressure between cuff measurements and arterial line (see table 1). For systolic and mean arterial blood pressure, sufficient criterion validity (compared to arterial line) was reported for finger cuff measurements. For diastolic blood pressure, insufficient criterion validity (compared to arterial line) was reported.

 

Table 1: Criterion validity finger blood pressure measurements (compared to arterial line).

Study

Correlation coefficient (95%CI)

Mean of the difference (SD)

95% Limits of agreement

Criterion validity

Systolic blood pressure measurements

Schumann, 2021

0.75 (NR)

-7 (14)

-35 to 20

Sufficient

Diastolic blood pressure measurements

Schumann, 2021

0.63 (NR)

0 (11)

-22 to 22

Insufficient

Mean arterial blood pressure measurements

Schumann, 2021

0.75 (NR)

-1 (11)

-23 to 21

Sufficient

NR: Not reported

 

Responsiveness

Schumann (2021), Rogge (2019), Hansen (2022) and Eley (2021) reported responsiveness by reporting the concordance rate (i.e., percentage of concordant pairs in a 4-quadrant grid plot) for systolic blood pressure, diastolic blood pressure and mean arterial blood pressure when comparing cuff and arterial line measurements (see table 2). For systolic, diastolic, and mean arterial blood pressure, sufficient responsiveness was reported for finger cuff measurements.

 

Table 2: Responsiveness of finger blood pressure measurements (compared to arterial line).

Type of measurement

Concordance rate (95%CI)

Responsiveness

Systolic blood pressure

Schumann, 2021

0.85 (NR)

Unknown

Rogge, 2019

0.93 (0.89 to 0.97)

Unknown

Hansen, 2022

0.90 (NR)

Unknown

Eley, 2021

0.93 (NR)

Unknown

Diastolic blood pressure

Schumann, 2021

0.81 (NR)

Unknown

Rogge, 2019

0.88 (0.84 to 0.92)

Unknown

Hansen, 2022

0.86 (NR)

Unknown

Eley, 2021

0.92 (NR)

Unknown

Mean arterial blood pressure

Schumann, 2021

0.88 (NR)

Unknown

Rogge, 2019

0.93 (0.89 to 0.96)

Unknown

Hansen, 2022

0.91 (NR)

Unknown

Eley, 2021

0.93 (NR)

Unknown

NR: Not reported

 

Lower arm blood pressure versus arterial line blood pressure

 

Reliability/measurement error

No studies reporting reliability and measurement errors were included.

 

Criterion validity

Schumann (2021) and Mostafa (2020) reported criterion validity by reporting a correlation coefficient and by reporting the mean of the differences including limits of agreement for systolic blood pressure, diastolic blood pressure and mean arterial blood pressure between cuff measurements and arterial line (see table 3). For systolic blood pressure, sufficient criterion validity (compared to arterial line) was reported for lower arm measurements. For diastolic and mean arterial blood pressure, inconsistent results were reported, so results were inconclusive.

 

Table 3: Criterion validity lower arm blood pressure measurements (compared to arterial line)

Study

Correlation coefficient (95%CI)

Mean of the difference (SD)

95% Limits of agreement

Criterion validity

Systolic blood pressure measurements

Schumann, 2021

0.71 (NR)

-4 (15)

-33 to 26

Sufficient

Mostafa, 2020

0.71 (0.64 to 0.76)

4.3 (16)

-27.2 to 35.8

Sufficient

Diastolic blood pressure measurements

Schumann, 2021

0.61 (NR)

2 (12)

-22 to 26

Insufficient

Mostafa, 2020

0.74 (0.68 to 0.80

2.5 (10)

-17.2 (22.2)

Sufficient

Mean arterial blood pressure measurements

Schumann, 2021

0.67 (NR)

-5 (13)

-29 to 20

Insufficient

Mostafa, 2020

0.79 (0.74 to 0.83)

6.2 (8.4)

-10.1 to 22.6

Sufficient

NR: Not reported

 

Responsiveness

Mostafa, 2020) reported responsiveness by reporting a correlation coefficient and by reporting the mean of the difference’s values including limits of agreement for Dsystolic blood pressure, Ddiastolic blood pressure and Dmean arterial blood pressure between lower arm measurements and arterial line (see table 4). For systolic, diastolic, and mean arterial blood pressure, sufficient criterion validity (compared to arterial line) was reported for lower arm measurements.

 

Table 4: Responsiveness lower arm blood pressure measurements (compared to arterial line)

Study

Correlation coefficient (95%CI)

Mean of the difference (SD)

95% Limits of agreement

Responsiveness

Systolic blood pressure measurements

Mostafa, 2020

0.76 (0.69 to 0.8)

0.3 (10.3)

020 to 20.7

Sufficient

Diastolic blood pressure measurements

Mostafa, 2020

0.74 (0.67 to 0.79)

0.3 (6.3)

-12 to 12.7

Sufficient

Mean arterial blood pressure measurements

Mostafa, 2020

0.74 (0.67 to 0.79)

0.6 (12.3)

-23.6 to 24.9

Sufficient

NR: Not reported

 

Upper arm blood pressure versus arterial line blood pressure

 

Reliability/measurement error

No studies reporting reliability and measurement errors were included.

 

Criterion validity

Mostafa (2020) and Hager (2009) reported criterion validity by reporting a correlation coefficient and by reporting the mean of the differences including limits of agreement for systolic blood pressure, diastolic blood pressure and mean arterial blood pressure between cuff measurements and arterial line (see table 5). For systolic and mean arterial blood pressure, inconclusive results were reported for criterion validity (compared to arterial line) and no overall conclusions could be drawn for upper arm measurements. For diastolic blood pressure, insufficient criterion validity was reported.

 

Table 5: Criterion validity upper arm blood pressure measurements (compared to arterial line)

Study

Correlation coefficient (95%CI)

Mean of the difference (SD)

95% Limits of agreement

Criterion validity

Systolic blood pressure measurements

Mostafa, 2020

0.74 (0.68 to 0.79)

14.2 (13.6)

-12.5 to 40.9

Sufficient

Hager, 2009

0.63 (0.47 to 0.57)

-3.6 (NR)

-46.7 to 39.6

Insufficient

Diastolic blood pressure measurements

Mostafa, 2020

0.67 (0.60 to 0.73

9.9 (10.7)

-10.9 to 30.8

Insufficient

Hager, 2009

0.47 (0.24 to 0.70)

-7.6 (NR)

-38.1 to 23

Insufficient

Mean arterial blood pressure measurements

Mostafa, 2020

0.78 (0.73 to 0.83)

12.8 (9)

-4.9 to 30.6

Sufficient

Hager, 2009

0.63 (0.48 to 0.74)

1.7 (NR)

-28.8 to 32.1

Insufficient

NR: Not reported

 

Responsiveness

Mostafa, 2020) reported responsiveness by reporting a correlation coefficient and by reporting the mean of the difference’s values including limits of agreement for Dsystolic blood pressure, Ddiastolic blood pressure and Dmean arterial blood pressure between upper arm measurements and arterial line (see table 6). For systolic and mean arterial blood pressure, sufficient criterion validity (compared to arterial line) was reported for lower arm measurements. For diastolic blood pressure, insufficient criterion validity (compared to arterial line) was reported for lower arm measurements.

 

Table 6: Responsiveness upper arm blood pressure measurements (compared to arterial line)

Study

Correlation coefficient (95%CI)

Mean of the difference (SD)

95% Limits of agreement

Responsiveness

Systolic blood pressure measurements

Mostafa, 2020

0.74 (0.67 to 0.79)

-0.2 (9.9)

-19 to 19.4

Sufficient

Diastolic blood pressure measurements

Mostafa, 2020

0.60 (0.50 to 0.68)

-0.3 (9.1)

-18.2 to 17.7

Insufficient

Mean arterial blood pressure measurements

Mostafa, 2020

0.78 (0.72 to 0.82)

0.4 (7.3)

-13.9 to 14.8

Sufficient

NR: Not reported

 

Level of evidence of the literature

To determine the level of evidence, the COSMIN approach (Mokkink, 2018) was used for each individual outcome measure.

 

Finger cuff blood pressure versus arterial line blood pressure

 

Reliability and measurement errors

The level of evidence for reliability and measurement errors for systolic blood pressure could not be assessed as none of the included studies reported on these measurement properties.

The level of evidence for reliability and measurement errors for diastolic blood pressure could not be assessed as none of the included studies reported on these measurement properties.

The level of evidence for reliability and measurement errors for mean arterial blood pressure could not be assessed as none of the included studies reported on these measurement properties.

 

Criterion validity

The level of evidence of criterion validity for systolic blood pressure started at high and was downgraded to moderate because of imprecision (-1, less than 100, but more than 50 participants).

The level of evidence of criterion validity for diastolic blood pressure started at high and was downgraded to moderate because of imprecision (-1, less than 100, but more than 50 participants).

The level of evidence of criterion validity for mean arterial blood pressure started at high and was downgraded to moderate because of imprecision (-1, less than 100, but more than 50 participants).

 

Responsiveness

The level of evidence of responsiveness for systolic blood pressure started at high and was downgraded to very low because of risk of bias (-2, only multiple studies of inadequate quality available), imprecision (-1, unclear confidence intervals).

The level of evidence of responsiveness for diastolic blood pressure started at high and was downgraded to very low because of risk of bias (-2, only multiple studies of inadequate quality available), imprecision (-1, unclear confidence intervals).

The level of evidence of responsiveness for mean arterial blood pressure started at high and was downgraded to very low because of risk of bias (-2, only multiple studies of inadequate quality available), imprecision (-1, less unclear confidence intervals).

 

Lower arm blood pressure versus arterial line blood pressure

 

Reliability and measurement errors

The level of evidence for reliability and measurement errors for systolic blood pressure could not be assessed as none of the included studies reported on these measurement properties.

The level of evidence for reliability and measurement errors for diastolic blood pressure could not be assessed as none of the included studies reported on these measurement properties.

The level of evidence for reliability and measurement errors for mean arterial blood pressure could not be assessed as none of the included studies reported on these measurement properties.

 

Criterion validity

The level of evidence of criterion validity for systolic blood pressure started at high and was not further downgraded.

The level of evidence of criterion validity for diastolic blood pressure could not be graded as study results were inconclusive and no conclusions could be drawn.

The level of evidence of criterion validity for mean arterial blood pressure could not be graded as study results were inconclusive and no conclusions could be drawn.

 

Responsiveness

The level of evidence of responsiveness for systolic blood pressure started at high and was downgraded to low because of imprecision (-2, less than 50 participants included).

The level of evidence of responsiveness for diastolic blood pressure started at high and was downgraded to low because of imprecision (-2, less than 50 participants included).

The level of evidence of responsiveness for mean arterial blood pressure started at high and was downgraded to low because of imprecision (-2, less than 50 participants included).

 

Upper arm blood pressure versus arterial line blood pressure

 

Reliability and measurement errors

The level of evidence for reliability and measurement errors for systolic blood pressure could not be assessed as none of the included studies reported on these measurement properties.

The level of evidence for reliability and measurement errors for diastolic blood pressure could not be assessed as none of the included studies reported on these measurement properties.

The level of evidence for reliability and measurement errors for mean arterial blood pressure could not be assessed as none of the included studies reported on these measurement properties.

 

Criterion validity

The level of evidence of criterion validity for systolic blood pressure could not be graded as study results were inconclusive and no conclusions could be drawn.

The level of evidence of criterion validity for diastolic blood pressure started at high and was downgraded to moderate because of imprecision (-1, less than 100 participants, but more than 50 participants included).

The level of evidence of criterion validity for mean arterial blood pressure could not be graded as study results were inconclusive and no conclusions could be drawn.

 

Responsiveness

The level of evidence of responsiveness for systolic blood pressure started at high and was downgraded to low because of imprecision (-2, less than 50 participants included).

The level of evidence of responsiveness for diastolic blood pressure started at high and was downgraded to low because of imprecision (-2, less than 50 participants included).

The level of evidence of responsiveness for mean arterial blood pressure started at high and was downgraded to low because of imprecision (-2, less than 50 participants included).

A systematic review of the literature was performed to answer the following questions:

1) What is the effect of non-invasive blood pressure measurements (upper arm, lower arm, finger) compared to an arterial line in adult patients with obesity undergoing surgery under general, regional, or spinal anesthesia on clinical outcome?

 

P: Patients (age ≥18 years) with obesity (BMI ≥30 kg/m2) undergoing surgery under general, regional, or spinal anesthesia)
I1: Non-invasive blood pressure measurement by finger cuff
I2: Non-invasive blood pressure measurement by lower arm cuff
I3: Non-invasive blood pressure measurement by upper arm cuff
C: Blood pressure measurement by arterial line
O: Complications, therapeutic reactions to measured blood pressure, costs

 

2) What are the clinimetric properties of non-invasive blood pressure measurements (upper arm vs. lower arm vs. finger) compared to an arterial line (gold standard) in adult patients with obesity undergoing surgery under general, regional, or spinal anesthesia?

 

P: patients (age ≥18 years) with obesity (BMI ≥30 kg/m2) undergoing surgery under general, regional, or spinal anesthesia
I1: non-invasive blood pressure measurement by finger cuff during surgical procedure at single time points
I2: non-invasive blood pressure measurement by lower arm cuff during surgical procedure at single time points
I3: non-invasive blood pressure measurement by upper arm cuff during surgical procedure at single time points
C: blood pressure measurement by arterial line at single time points
O: reliability (reliability, measurement error), validity (criterion validity), responsiveness (criterion approach)

            

Relevant outcome measures

The guideline development group considered ‘clinical complications’ and ’therapeutic reactions to measured blood pressure’ as a critical outcome measures for decision making; and costs, reliability, validity, and responsivity as important outcome measures for decision making.

 

The working group defined the outcome measures as follows:

Complications:
         Myocardial ischemia (peri-operative, 30d/in-hospital)

Kidney function disorder (peri-operative, in-hospital, 30d)

Cerebrovascular accident (peri-operative/in-hospital/30d)

Nerve damage (per-operative)

Local bleeding by measurement (peri-operative)

Local ischemia by measurement (peri-operative)

Therapeutic reactions to measured blood pressure:

As defined in the selected studies

Costs:    Total costs during hospital stay

Reliability (according to COSMIN, see Mokkink, 2018):

Reliability: The proportion of the total variance in the measurements which is due to ‘true’ differences between patients

Measurement error: The systematic and random error of a patient’s score that is not attributed to true changes in the construct to be measured

Validity (according to COSMIN, see Mokkink, 2018):

Criterion validity: The degree to which the scores of a PROM are an adequate reflection of a ‘gold standard’

Responsiveness (according to COSMIN, see Mokkink, 2018):

The ability of a PROM to detect change over time in the construct to be measured

 

The working group defined the following values as a minimal clinically (patient) important difference:

Myocardial ischemia: 0.95≥RR≥1.05
Kidney function disorder:  0.95≥RR≥1.05
Cerebrovascular accident:  0.95≥RR≥1.05
Nerve damage:  0.95≥RR≥1.10
Local bleeding by measurement:  0.95≥RR≥1.05
Local ischemia by measurement:  0.95≥RR≥1.10
Therapeutic reactions to measured blood pressure: 10% difference compared to control group or 0.91≥RR≥1.10
Costs: 10% difference compared to control group

The working group defined the following values as sufficient measurement properties (according to COSMIN, see Mokkink, 2018):

Reliability:

Intraclass correlation coefficient or weighted Kappa≥ 0.70

Measurement error:

Smallest detectable change (SDC) or limits of agreement (LoA) < minimal important change (MIC systolic = 5 mmHg or less (SD 8 mmHg or less)

MIC diastolic = 5 mmHg or less (SD 8 mmHg or less)

MIC mean arterial = 5 mmHg or less (SD 8 mmHg or less))

Criterion validity:

Correlation (r) with golden standard or area under the curve (AUC)≥ 0.70

Responsiveness:

The result is in accordance with the hypothesis (criterion approach: concordance correlation coefficient) OR AUC ≥ 0.70

 

Search and select (Methods)

The databases Medline (via OVID) and Embase (via Embase.com) were searched with relevant search terms until 03-03-2023. The detailed search strategy is depicted under the tab Methods. The systematic literature search resulted in 555 hits. Studies were selected based on the following criteria:

  • Systematic reviews (searched in at least two databases, and detailed search strategy, risk of bias assessment and results of individual studies available), RCTs or observational peer reviewed studies in English or Dutch language;
  • Investigating patients (age ³18 years) with obesity (BMI ≥30 kg/m2) undergoing surgery under general, regional or spinal anesthesia;
  • Comparing the impact of blood pressure measurements by finger cuff and/or lower arm cuff to blood pressure measurements by upper arm cuff, or;
  • Studies investigating the clinimetric characteristics by comparing single time point measurement properties of blood pressure measurements by finger cuff, lower arm cuff and/or upper arm to properties of an arterial line;
  • At least one of the defined outcome measures was reported;
  • Studies reporting construct validity and studies reporting responsiveness for upper arm and lower arm measurements had to be assessed with low risk of bias. Studies reporting responsiveness for finger cuff measurements or reporting reliability outcomes were also included if high risk of bias was assessed

Eleven studies were initially selected based on title and abstract screening. After reading the full text, five studies were excluded (see the table with reasons for exclusion under the tab Methods), and six studies were included. These studies met the criteria of PICO 2 (clinimetric properties).

 

Results

No studies were included for the analysis of the literature regarding clinical effects of different types of blood pressure measurements. Six studies were included in the analysis of the literature regarding clinimetric properties. Important study characteristics and results are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.

  1. Bamgbade OA, Rutter TW, Naflu OO, Dorje P. Postoperative Complications in Obese and Nonobese Patients. World Journal of Surgery. 2007 April; 31(3):556-60.
  2. Benalcazar DA, Cascella M. Obesity Surgery Pre-Op Assessment and Preparation. Stat Pearls. 2022 July.
  3. Eley V, Christensen R, Guy L, Wyssusek K, Pelecanos A, Dodd B, Stowasser M, van Zundert A. ClearSight™ finger cuff versus invasive arterial pressure measurement in patients with body mass index above 45 kg/m2. BMC Anesthesiol. 2021 May 18;21(1):152. doi: 10.1186/s12871-021-01374-x. Erratum in: BMC Anesthesiol. 2023 Mar 10;23(1):75. PMID: 34006231; PMCID: PMC8130355.
  4. Hager H, Mandadi G, Pulley D, Eagon JC, Mascha E, Nutter B, Kurz A. A comparison of noninvasive blood pressure measurement on the wrist with invasive arterial blood pressure monitoring in patients undergoing bariatric surgery. Obes Surg. 2009 Jun;19(6):717-24. doi: 10.1007/s11695-008-9607-7. Epub 2008 Jul 10. PMID: 18618207.
  5. Hansen J, Pohlmann M, Beckmann JH, Klose P, Gruenewald M, Renner J, Lorenzen U, Elke G. Comparison of oscillometric, non-invasive and invasive arterial pressure monitoring in patients undergoing laparoscopic bariatric surgery - a secondary analysis of a prospective observational study. BMC Anesthesiol. 2022 Mar 28;22(1):83. doi: 10.1186/s12871-022-01619-3. PMID: 35346046; PMCID: PMC8962134.
  6. Imedsales.com Edwards Lifesciences CSCM ClearSight Finger Cuff Medium - Box of 5. Beschikbaar op: https://imedsales.com/edwards-lifesciences-cscm-clearsight-finger-cuff-medium-4, geraadpleegd op 19-12-2023
  7. Lakhal K, Dauvergne JE, Messet-Charriere H, Nay MA, Kamel T, Muller G, Robert-Edan V, Rozec B, Ehrmann S, Jacquier S, Boulain T. Risk Factors for Poor Performance in Finger Cuff Non-Invasive Monitoring of Arterial Pressure: A Prospective Multicenter Study. Anaesth Crit Care Pain Med. 2023 Dec 2:101333.
  8. Leblanc MÈ, Auclair A, Leclerc J, Bussières J, Agharazii M, Hould FS, Marceau S, Brassard P, Godbout C, Grenier A, Cloutier L, Poirier P. Blood Pressure Measurement in Severely Obese Patients: Validation of the Forearm Approach in Different Arm Positions. Am J Hypertens. 2019 Jan 15;32(2):175-185. doi: 10.1093/ajh/hpy152. PMID: 30312368.
  9. Leblanc MÉ, Croteau S, Ferland A, Bussières J, Cloutier L, Hould FS, Biertho L, Moustarah F, Marceau S, Poirier P. Blood pressure assessment in severe obesity: validation of a forearm approach. Obesity (Silver Spring). 2013 Dec;21(12):E533-41. doi: 10.1002/oby.20458. Epub 2013 Jun 22. PMID: 23512945.
  10. Mokkink, L. B., Prinsen, C. A., Patrick, D. L., Alonso, J., Bouter, L. M., de Vet, H.C., Terwee C. B. (2018). COSMIN methodology for systematic reviews of patient-reported outcome measures (PROMs). User manual. 78:1. Beschikbaar op: https://www.cosmin.nl/wp-content/uploads/COSMIN-syst-review-for-PROMs-manual_version-1_feb-2018-1.pdf.
  11. Mostafa MMA, Hasanin AM, Alhamade F, Abdelhamid B, Safina AG, Kasem SM, Hosny O, Mahmoud M, Fouad E, Rady A, Amin SM. Accuracy and trending of non-invasive oscillometric blood pressure monitoring at the wrist in obese patients. Anaesth Crit Care Pain Med. 2020 Apr;39(2):221-227. doi: 10.1016/j.accpm.2020.01.006. Epub 2020 Feb 14. PMID: 32068134.
  12. Nuttall G, Burckhardt J, Hadley A, Kane S, Kor D, Marienau MS, Schroeder DR, Handlogten K, Wilson G, Oliver WC: Surgical and patient risk factors for severe arterial line complications in adults. Anesthesiology. 2016; 124:590–7
  13. Ortiz, V.E., Kwo, J. Obesity: physiologic changes and implications for preoperative management. BMC Anesthesiol 15, 97 (2015).
  14. Palatini P, Parati G. Blood pressure measurement in very obese patients: a challenging problem. J Hypertens. 2011 Mar;29(3):425-9.
  15. Palatini P, Benetti E, Fania C, Malipiero G, Saladini F. Rectangular cuffs may overestimate blood pressure in individuals with large conical arms. J Hypertens. 2012 Mar;30(3):530-6.
  16. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella EJ. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005 Feb 8;111(5):697-716. doi: 10.1161/01.CIR.0000154900.76284.F6. PMID: 15699287.
  17. Poirier et al. American Heart Association. Cardiovascular Evaluation and Management of Severely Obese Patients Undergoing Surgery. Circulation. 2009; 120:86-95.
  18. Rogge DE, Nicklas JY, Schön G, Grothe O, Haas SA, Reuter DA, Saugel B. Continuous Noninvasive Arterial Pressure Monitoring in Obese Patients During Bariatric Surgery: An Evaluation of the Vascular Unloading Technique (Clearsight system). Anesth Analg. 2019 Mar;128(3):477-483. doi: 10.1213/ANE.0000000000003943. PMID: 30649073.
  19. Saugel B, Grothe O, Nicklas JY. Error Grid Analysis for Arterial Pressure Method Comparison Studies. Anesth Analg. 2018 Apr;126(4):1177-1185.
  20. Scheer B, Perel A, Pfeiffer UJ: Clinical review: Complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002; 6:199–204
  21. Schumann R, Meidert AS, Bonney I, Koutentis C, Wesselink W, Kouz K, Saugel B. Intraoperative Blood Pressure Monitoring in Obese Patients. Anesthesiology. 2021 Feb 1;134(2):179-188. doi: 10.1097/ALN.0000000000003636. PMID: 33326001.

Study

Study characteristics

Patient characteristics

Measurement instrument (I)

Measurement instrument (C; golden standard; reference method)

Follow-up/Interpretability

Measurement properties

Comments

Eley, 2021

Instrument assessed:

Continuous  non-invasive blood pressure via finger cuff

 

Setting and Country:

The royal Brisbane and Women’s Hospital, Brisbane, Australia

 

Funding and conflicts of interest:

Funding: ANZCA Research Foundation, Australian and New Zealand Colelge of Anaesthetists, Melbourne, Australia; Robert and Janelle Bird Post-Doctoral Fellowship awared by the Royal Brisbane and Women\s Hospital Foundation, Brisbane, Australia;
Conflicts of interests:
Edwarts Lifesciences Corp, Irvane, CA provided loadn equipment for the study, but was not involved in the protocol design, data collection or writing the manuscript.

 

 

Inclusion criteria:

  • ≥ 18 years old
  • BMI ≥ 45 kg/m2
  • Scheduled for elective laparoscopic bariatric surgery

Exclusion criteria:

  • Cardiac arrhythmia
  • American Society of Anesthesiologists physical status ≥ 4
  • Raynoud’s phenomenon
  • Other contraindications to radial arterial catherisation

 

Sample size:

N=67
(30 included in the final protocol)

 

Age in years (mean (SD; range)):

45 (11.7; 24 to 65)

 

 

Gender (% female):
male: 4(13%)
female: 26 (87%)

 

BMI in kg/m2 (medan (IQR; range)):

50.2 (48.3 to 55.3; 45.1 to 69.2)

 

Disease:

NA

Disease duration (mean (SD) in years:

NA

Disease severity:

NA

Name:

Continuous non-invasive blood pressure measurement using the vascular unloading technique via a finger cuff

 

Version (including language if applicable):

Clearsight EV1000 Clincal Platform (Edwads Lifesciences Corp, Irvine, CA

 

Construct:

Non-invasive blood pressure
systolic blood pressure

(SBP), mean arterial pressure (MAP) and diastolic blood pressure (DBP)

 

Specification of investigated component:

Following standard positioning

of the patient (one pillow under the head, table in the reverse Trendelenburg position) the first blood pressure

measurements were obtained

 

Specification of time, occasion, user:
Blood pressure was recorded digitally at 5 min intervals for each patient up to 1 hour, or until completion of

anesthesia

 

Hypothesis (construct validity hypothesis testing):

Not reported

Name:

Radial arterial catheter

 

Version (including language if applicable):

invasive transducer (Edwards Lifesciences Tru-

Wave™, Edwards Lifesciences Corp, Irvine, CA, USA); D19KT™

monitor with a E-PSMP Carescape Module™ (GE

Healthcare, Chicago, IL, USA).

 

Construct:

invasive radial arterial blood pressure monitoring

 

Specification of investigated component:

Following standard positioning

of the patient (one pillow under the head, table in the reverse Trendelenburg position) the first blood pressure

measurements were obtained

 

Specification of time, occasion, user:

Blood pressure was recorded digitally at 5 min intervals for each patient up to 1 hour, or until completion of

anesthesia

 

 

Length of follow-up:

Up to 1 hour, or until completion of anesthesia

 

Distribution of scores:

I: NR
C: NR

 

Loss to follow-up:
N=37
Reasons:
research staff unavailable (12);
procedure cancelled (10);
clear sight device unavailable (10);
anesthesis declined (2);
clear sight device failure (2);
unable to insert arterial catheter (1)

Percentage of missing items/total scores/outcome:
All patients had complete blood pressure

measurements up to 15 min, after which the number of

measurements per method ranged between 26 and 30,

due to variations in the duration of surgery

 

Floor effects (% of sample with the lowest score possible):
I: NR
Reason: NR
C: NR
Reason: NR

Ceiling effects (% of sample with the highest score possible):

I: NR
Reason: NR
C: NR
Reason: NR

 

Minimally important change/difference:
I:NR
Reason: NR
C: NR
Reason: NR

 

Criterion validity:

Mean arterial blood pressure, bland altman

bias:
 5.2 mmHG
(SD 10.9) m
lower LOA:
-16.0 mmHG
(95%CI -22.0 to -11.9)

Upper LOA:
26.5 mmHG
(95%CI 22.3 to 32.4) mm

 

Systolic blood pressure

Bias: 14.3 mmHG
(SD 14.1)
lower LOA:
-13.4 mmHG
(95%CI –20.6 to -8.2)
Upper LOA:
42,0 mmHG (95%CI 36.9 to 49.2)

 

Diastolic blood pressure

Bias: 2.6 mmHG
(SD 10.8)
lower LOA:
-18.6 mmHG
(95%CI –24.4 to -14.4)
Upper LOA:
23.8 mmHG (95%CI 19.7 to 29.6)

 

Responsiveness

Disconcordant pairs (n of N (%)):

 

Mean arterial blood pressure:
15 of 215 (7%)


Systolic blood pressure:

18 of 251 (7%)

Diastolic blood pressure:
16 of 197 (8%)

 

 

Clinical impact outcome measures:

Grid analyses (n (%))

The levels are based on whether or not the difference between the readings would trigger a therapeutic intervention and the potential consequences

of that intervention (A: no risk; B: low risk; C: moderate risk;

D: significant risk; E: dangerous risk)

 

Mean arterial pressure:

Zone A: 338 (91.4%)
Zone B: 16 (4.3%)
Zone C: 16 (4.3%)

Zone D: 0 (0%)

Zone E: 0 (0%)

 

Systolic blood pressure:

Zone A: 336 (90.8%)
Zone B: 24 (6.5%)
Zone C: 10 (2.7%)

Zone D: 0 (0%)

Zone E: 0 (0%)

 

Diastolic blood pressure:

NR

Remark: “In 4 (13%) participants

the circumference of the finger was larger than the manufacturer’s

recommendation for the largest finger cuff.”

 

Author’s conclusion:

“ In this pilot study, the vascular unloading technique did not

provide accurate blood pressure measurements when

assessed over time, with the FC tending to provide lower

values. The clinical consequences of these errors would have led to inappropriate interventions of moderate risk in a small but arguably significant fraction of readings, in this population with a high burden of comorbidities.”

Hager, 2009

Instrument assessed:

Blood pressure via Oscillometric cuff on the upper arm

 

Setting and Country:

Washington University, St. Louis, MO, USA

 

Funding and conflicts of interest:

This study was financially supported by the Clinical Research

Division of the Department of Anesthesiology, Washington

University, St. Louis, MO. None of the authors have personal financial

interest related to this research.

 

 

Inclusion criteria:

  • Body mass index (BMI) exceeding 40 kg/m2
  • scheduled for surgery (mainly gastric bypass or repair of gastric bypass)

 

Exclusion criteria:

  • Blood pressure difference between the arms exceeding 5mmHg, determined oscillometrically
  • History of Raynaud’s syndrome or other perfunsion difficulties in the arms or hands

 

Sample size:

22 patients

 

Age in years (mean (SD):

44.3 (9.5) years

 

Gender (% female):
NR

 

BMI  (SD):
66.7 (13.8) kg/m2

 

Arm Circumference (SD):
48.6 (7.5) cm

 

Disease:
NA

 

Disease duration (mean (SD) in years:

NA

 

Disease severity:

NA

Name:

Oscillometric noninvasive blood pressure upper arm

 

Version (including language if applicable):

Oscillometric noninvasive blood pressure (Datex-Ohmeda, Madison, WI, USA)

 

Construct:

systolic, diastolic, and mean blood pressure

Specification of investigated component:

NR

 

Specification of time, occasion, user:
Blood pressure measurements were taken every 15 minutes.

 

Hypothesis (construct validity hypothesis testing):

NR

Name:

Invasive arterial blood pressure monitoring

 

Version (including language if applicable):

The catheters were 20-gauge and 4.45 cm

long (Arrow International, Reading, CA, USA). The pressure

monitoring tubing was 210 cm long; pressure

transducers (both from Edwards Lifescience, Irvine, CA,

USA)

 

Construct:

systolic, diastolic, and mean blood pressure

 

Specification of investigated component:

NR

 

Specification of time, occasion, user:

Blood pressure measurement were collected every 5s.

 

Length of follow-up:

More than 3 hours (mean 3.8 SD 1.1)

 

Distribution of scores:

I: NR
C: NR

 

Loss to follow-up:
I: 3 patients
Reason: NR
C:1 patient
Reason NR

Percentage of missing items/total scores/outcome:
I: mean 3.4% SD 0.6%)
Reason: device errors
C: mean 2.8% SD 1.3%)
Reason: device errors

 

Floor effects (% of sample with the lowest score possible):
I: NR
Reason:
C: NR
Reason:

Ceiling effects (% of sample with the highest score possible):

I: NR
Reason:
C: NR
Reason:

 

Minimally important change/difference:
I: NR
Reason:
C: NR
Reason:

 

Criterion validity:

1) Bland altman analysis (mean bias (lower to upper limit of agreement)

 

Systolic blood pressure:
-3.6 (-46.7 to 39.6)

 

Diastolic blood pressure:

-7.6 (-38.1 to 23.0)

 

Mean arterial blood pressure

1.7 (-28.8 to 32.1)

 

2) Lin’s concordance correlation coefficient (2.5th percentile to 97th percentile))

Systolic blood pressure: 0.63 (0.47 to 0.75)

 

Diastolic blood pressure: 0.47 (0.24 to 0.70)

 

Mean arterial blood pressure: 0.63 (0.48 to 0.74)

 

 

 

 

Hansen, 2022

Instrument assessed:

Non invasive blood pressure uisng a forearm cuff

 

Setting and Country:

Department

of Anaesthesiology and Intensive Care Medicine and

General Surgery, University Medical Center, Schleswig-

Holstein, Campus Kiel, Germany

 

Funding and conflicts of interest:

Open Access funding enabled and organized by Projekt DEAL; no external funding, only institutional resources

 

 

Inclusion criteria:

  • Adult
  • BMI ≥ 30 kg/m2
  • ASA ≥ II
  • Indication for elective  laparoscopic bariatric surgery

 

Exclusion criteria:

  • Pre-existing cardiac arrhythmias
  • Perifpheral arterial vascular disease
  • Fontaine stadium >2
  • Pre-existing aortic aneurysm >4.5 cm
  • Cognitive or linguistic barriers

 

Sample size:

N=60 (56 included in final analysis)

 

Age in years (mean (SD; range)):

46.5 (12.1)

 

BMI in kg/m2 (mean (SD; range)):

49.2 (5.7)

 

 

Gender (% female):
male: 27%

Female: 73%

 

Disease:

NA

 

Disease duration (mean (SD) in years:

NA

 

Disease severity:

NA

I1:

 

Name:

Blood pressure using fingercuff (Nexfin)

 

Version (including language if applicable):

Nexfin® system (BMEYE,

Amsterdam, The Netherlands, now licensed as Clearsight

® system by Edwards Lifesciences, Irvine, CA, USA)

 

Construct:

Systolic arterial pressure, Diastolic arterial pressure, Mean arterial pressure

 

Specification of investigated component:

In the pre-, intra- and postoperative phase, the arterial

pressure was measured at 16 predefined measurement

time points at which hemodynamic changes were likely

expected. (mainly under general anesthesia)

 

Specification of time, occasion, user:
See specification of investigated component

 

Hypothesis (construct validity hypothesis testing):

NR

 

 

 

I2:

Name:

Noninvasive blood pressure measurement using forearm cuff (NBP)

 

Version (including language if applicable):

DURA-CUF™ GE, Boston, MA, USA

 

Construct:

Systolic arterial pressure, Diastolic arterial pressure, Mean arterial pressure

 

Specification of investigated component:

In the pre-, intra- and postoperative phase, the arterial

pressure was measured at 16 predefined measurement

time points at which hemodynamic changes were likely

expected. (mainly under general anesthesia)

 

Specification of time, occasion, user:
See specification of investigated component

 

Hypothesis (construct validity hypothesis testing):

NR

 

Name:

Blood pressure using arterial catheter (IAP)

 

Version (including language if applicable):

Arrow R Intl., Reading, PA,

USA; Transducer: DPT-6000, CODAN pvb Critical Care

GmbH, Forstinning, Germany

 

Construct:

Systolic arterial pressure, Diastolic arterial pressure, Mean arterial pressure

 

Specification of investigated component:

In the pre-, intra- and postoperative phase, the arterial

pressure was measured at 16 predefined measurement

time points at which hemodynamic changes were likely

expected. (mainly under general anesthesia)

 

 

Specification of time, occasion, user:

See specification of investigated component

 

Length of follow-up:

Until discharge from PACU

 

Distribution of scores:

NR

 

Loss to follow-up:
N=4
Reason: insufficient data acquisition

Percentage of missing items/total scores/outcome:
N=128 (13.4%)
Reasons:
intra-operative events preventing measurements (90);
challenges in function and handling the measurement device (NBP 31, IAP 2, Nexfin 5)

 

Floor effects (% of sample with the lowest score possible):
I:NR
Reason:
C:NR
Reason:

Ceiling effects (% of sample with the highest score possible):

I:NR
Reason:
C: NR
Reason:

 

Minimally important change/difference:
I: NR
Reason:
C: NR
Reason:

 

 

Criterion validity:

Correlation coefficient:

 

Lower arm (NBP)

 

Mean arterial pressure: 0.77

Systolic arterial pressure: 0.63

Diastolic arterial pressure: 0.72

 

Fingercuff

 

Mean arterial pressure: 0.88

Systolic arterial pressure: 0.87

Diastolic arterial pressure: 0.80

 

 

Bias (bland altman):

 

Lower arm (NBP)

Mean arterial pressure: 3.94mmHg
Systolic arterial pressure:
3.5mmHg

Diastolic pressure:

4mmHg

 

Finger cuff

Lower arm (NBP)

Mean arterial pressure: 1.43mmHg
Systolic arterial pressure:
12mmHg

Diastolic pressure:

0.7mmHg

 

Responsiveness

definition: concordance rate:

 

lower arm:

Mean arterial pressure: 90%

Systolic arterial pressure: 85%

Diastolic arterial pressure: 89%

 

Fingercuff:

Mean arterial pressure: 91%

Systolic arterial pressure: 90%

Diastolic arterial pressure: 86%

 

 

 

 

Author’s conclusions:

In the perioperative management of patients undergoing

laparoscopic bariatric surgery, our study indicates

that NIBP and Nexfin® derived absolute arterial pressure

recordings were not interchangeable with IAP, but

Nexfin® was more precise than NIBP. However, a good

trending ability even under different hemodynamic

stresses was found. Thus, Nexfin® may serve clinically

useful to detect arterial pressure changes and render

perioperative hemodynamic treatment, particularly

in those individuals where NIBP cannot be reliably

established.

 

Mostafa, 2020

Instrument assessed:

Noninvasive blood pressure cuff

 

Setting and Country:

University Hospital, Egypt

 

Funding and conflicts of interest:

None

 

 

Inclusion criteria:

  • Consecutive adults (≥18 years) with obesity (≥35 kg/m2
  • Schedules for bariatric surgery

Exclusion criteria:

  • Comorbidities including peripheral vascular diseases, upper extremity operations, upper extremity scars, upper-extremity deep venous thrombosis and arrhythmias
  • difference in the preoperative SBP of 10 mmHg or more between the extremities

 

Sample size:

N=60 (40 included in the protocol)

 

Age in years (mean (SD; range)):

38 (11)

 

Gender (% female):
male 5/40 (12.5%)

BMI mean (SD) kg/m2:

46(5)

 

Disease:

NA

Disease duration (mean (SD) in years:

NA

Disease severity:

NA

Forearm:

 

Name:

Noninvasive blood pressure cuff forearm

 

Version (including language if applicable):

adult non-invasive blood pressure cuff (Mindray

Adult NIBP cuff CM1203), sized 25–35 cm

 

Construct:

Mean arterial pressure, Systolic arterial pressure, Diastolic arterial pressure

Specification of investigated component:

NR

 

Specification of time, occasion, user:
3 minute interval

 

Hypothesis (construct validity hypothesis testing):

NR

 

 

Upperarm:

 

Name:

Noninvasive blood pressure cuff upperarm

 

Version (including language if applicable):

a large adult non-invasive

blood pressure cuff (Mindray Large Adult NIBP cuff CM1204), sized

33–47 cm

 

Construct:

Mean arterial pressure, Systolic arterial pressure, Diastolic arterial pressure

 

Specification of investigated component:

NR

 

Specification of time, occasion, user:

3 minute interval

Hypothesis (construct validity hypothesis testing):

NR

Name:

Radial arterial catheter



Version (including language if applicable):

20-G radial arterial using a Progetti (PG M9500, Italy) monitor.

 

Construct:

Mean arterial pressure, Systolic arterial pressure, Diastolic arterial pressure

 

Specification of investigated component:

NA

 

Specification of time, occasion, user:

3 minute intervals

 

Length of follow-up:

NR

 

Distribution of scores:

I:NR
C:NR

 

Loss to follow-up:
N=20
Reasons: inter-arm difference of more than 10mmHg(16) – exclusion criterium;
failure of arterial catheter insertion (2);
refusal to participate (2)

Percentage of missing items/total scores/outcome:
NR

In the 40 included patients, 262, 259, and 264 pairs of non-invasive readings of blood pressure were obtained from the arm, forearm, and wrist with the corresponding invasive blood pressure readings.

 

Floor effects (% of sample with the lowest score possible):
I:NR
Reason:
C:NR
Reason:

Ceiling effects (% of sample with the highest score possible):

I:NR
Reason:
C:NR
Reason:

 

Minimally important change/difference:
I:NR
Reason:
C:NR
Reason:

 

Criterion validity:

Correlation coefficient (95%CI):

 

Forearm:

Systolic arterial pressure: 0.71 (0.64 to 0.76)

Diastolic arterial pressure: 0.74 (0.68 to 0.80)

Mean arterial pressure: 0.79 (0.74 to 0.83)

 

Upper arm:

Systolic arterial pressure: 0.74 (0.68 to 0.79)
Diastolic arterial pressure: 0.67 (0.60 to 0.73)

Mean arterial pressure: 0.79 (0.73 to 0.83)

 

Mean bias (SD) – bland altman

 

Forearm:

Systolic arterial pressure: 4.3 (16)

Diastolic arterial pressure: 2.5 (10)

Mean arterial pressure: 6.2 (8.4)

 

Upper arm:

Systolic arterial pressure: 14.2 (13.6)

Diastolic arterial pressure: 9.9 (10.7)

Mean arterial pressure: 12.8 (9)

 

 

Responsiveness:

definition: Correlation coefficient (95%CI)


Forearm:

Systolic arterial pressure: 0.76 (0.69 to 0.80)

Diastolic arterial pressure: 0.74 (0.67 to 0.79)

Mean arterial pressure: 0.74 (0.67 to 0.79)

 

 

Upper arm:

Systolic arterial pressure: 0.74 (0.67 to 0.79)

Diastolic arterial pressure: 0.6 (0.5 to 0.68)

Mean arterial pressure: 0.78 (0.72 to 0.89)

 

Mean bias (SD, 95% limits of agreement)

 

Forearm:

Systolic arterial pressure: 0.3 ( 10.3, -20 to 20.7)

Diastolic arterial pressure: 0.3 ( 6.3, -12 to 12.7)

Mean arterial pressure: 0.6 ( 12.3, -23.6 to 24.9)

 

Upper arm:

Systolic arterial pressure: -0.2 ( 9.8, -19 to 19.4)

Diastolic arterial pressure: -0.3 ( 9.1, -18.2 to 17.7)

Mean arterial pressure: 0.4 ( 7.3, -13.9 to 14.8)

 

 

Rogge, 2019

Instrument assessed:

Clearsight system

 

Setting and Country:

Department of Anesthesiology, Center of

Anesthesiology and Intensive Care Medicine, University, Medical Center Hamburg-Eppendorf, Hamburg, Germany

 

Funding and conflicts of interest:

Funding: Edwards Lifesciences Corp (Irvine, CA)

No conlficts of interest

 

 

Inclusion criteria:

  • Adult patients
  • Severe obesity (<35 kg/m2)
  • Scheduled for elective laparascopic bariatric surgery (laparoscopic vertical sleeve gastrectomy or laparoscopic Roux-en-& bypass)
  • Continuous arterial pressure monitoring with an arterial catheter was planned independently of the study

 

Exclusion criteria:

  • Systolic arterial pressure difference of ≥10 mmHG in left and right arm measured oscillometrical
  • Peripheral vascular disease (Fontaine stadium >2)
  • Arterial fibrillation
  • Anatomic deformities of the upper extremities
  • Peripheral edema

 

Sample size:

N=35 (included in the final protocol)

 

Age in years (median (range)):

53 (41-59)

 

Gender (% female):
male: 25 (71%)
female: 10 (29%)

 

BMI in kg/m2 (median (range))

47 (42-53)

 

Disease:

NA

 

Disease duration (mean (SD) in years:

NA

 

Disease severity:

NA

Name:

Clearsight monitor with an interface cable to the patient monitor

 

Version (including language if applicable):

Dräger Infinity Delta;

Dräger, Lübeck, Germany

 

Construct:

Mean arterial pressure, Systolic arterial pressure, Diastolic arterial pressure

 

Specification of investigated component:

NR

 

Specification of time, occasion, user:
arterial pressure measurements of the test

and reference method in parallel for about 45 minutes

 

Hypothesis (construct validity hypothesis testing):

NR

Describe the assessed instrument and used procedures.

 

Name:

Arterial catheter

 

Version (including language if applicable):

NR

 

Construct:

Mean arterial pressure, Systolic arterial pressure, Diastolic arterial pressure

 

 

Specification of investigated component:

NR

 

Specification of time, occasion, user:

arterial pressure measurements of the test

and reference method in parallel for about 45 minutes

 

Length of follow-up:

45 minutes

Distribution of scores:

I: NR
C: NR

 

Loss to follow-up:
Not reported: It seems that for all participants data was included, but it was not mentioned whether there were eligible patients who were excluded due to, for example, technical failure or withdrawal

 

Percentage of missing items/total scores/outcome:
1.7% of arterial pressure data pairs excluded because of

artifacts or technical problems during signal recording with

the vascular unloading technology or the arterial catheter (not further specified)

 

Floor effects (% of sample with the lowest score possible):
I: NR
Reason:
C: NR
Reason:

Ceiling effects (% of sample with the highest score possible):

I: NR
Reason:
C: NR
Reason:

 

Minimally important change/difference:
I: NR
Reason:
C: NR
Reason:

 

Criterion validity:

Bland altman, mean of the difference (SD, 95%CI)

 

Mean arterial pressure:
1.1 mm Hg

(7.4, -13.5 to 15.6)

Systolic arterial pressure:

6.8 mm Hg

(10.3, -14.4 to 27.9)

Diastolic arterial pressure:

0.8 mm Hg

(6.9, -12.9 to 14.4)

 

Responsiveness:

definition: Concordance rate (95%CI)

 

Mean arterial pressure:
93% (89 to 96%)
systolic arterial pressure
93% (89-97%)
diastolic arterial pressure (88% (84-92%)


 

 

Clinical impact outcome measures:

definition: grid error analysis:
the error grid analysis enables a risk level to

be assigned to each pair of measured arterial pressure value

(test method) and “true” arterial pressure value (reference

method) for systolic arterial pressure and MAP (A: no risk; B: low risk; C: moderate risk;

D: significant risk; E: dangerous risk)

Mean arterial pressure:

Zone A: 89.5%

Zone B: 10.0%

Zone C: 0.5%

Zone D: 0%

Zone E: 0%

 

Systolic arterial pressure:

Zone A: 93.7%

Zone B: 6.0%

Zone C: 0.3%

Zone D: 0%

Zone E: 0%

 

Diastolic arterial pressure:

Not reported

Author’s conclusion:

In conclusion, the accuracy and precision of the vascular

unloading technology (Clearsight system) was good for MAP

and diastolic arterial pressure, but only moderate for systolic

arterial pressure during laparoscopic bariatric surgery. The

system showed good trending capabilities. According to

error grid analysis, >99% of Clearsight arterial pressure measurements

were categorized in no- or low-risk zones.

Schumann, 2021

Instrument assessed:

  1. oscillometric blood pressure, upper arm
  2. oscillometric blood pressure, lower arm
  3. oscillometric blood pressure, finger cuff

 

 

Setting and Country:

Not reported: authors are from Boston, Massachusetts; Munich, German; New York, New York; Irvine, California; Hamburg, Germany; Cleveland, Ohio

 

Funding and conflicts of interest:

Funding:
BMEYE B.V. (Amsterdam, The Netherlands)—now

Edwards Lifesciences (Irvine, California)—provided the

technical equipment for the study.

Conflicts of interest:
Dr. Schumann receives royalties as author and reviewer for obesity and sleep medicine related chapters in Up-To-Date (Wolters Kluwer; Waltham, Massachusetts). Dr. Wesselink is an employee of Edwards Lifesciences (Irvine, California). Dr. Saugel has received honoraria for consulting, honoraria

for giving lectures, and refunds of travel expenses from

Edwards Lifesciences; honoraria for consulting, institutional

restricted research grants, honoraria for giving lectures, and

refunds of travel expenses from Pulsion Medical Systems SE (Feldkirchen, Germany); institutional restricted research

grants, honoraria for giving lectures, and refunds of travel

expenses from CNSystems Medizintechnik GmbH (Graz,

Austria); institutional restricted research grants from Retia

Medical LLC (Valhalla, New York); honoraria for giving

lectures from Philips Medizin Systeme B.blingen GmbH

(B.blingen, Germany); and honoraria for consulting, institutional

restricted research grants, and refunds of travel

expenses from Tensys Medical Inc. (San Diego, California).

The other authors declare no competing interests.

 

Inclusion criteria:

  • adult patients
  • BMI ≥ 40kg/m2
  • Scheduled for elective laparoscopi bariatric surgery (gastric bypass, sleeve gastrectomy and gastric branding)
  • American Society of Anesthesiologists Physical Status classification < IV

 

Exclusion criteria:

  • Presence of peripheral upper or lower extremity edema
  • Vascular of anatomical abnormalities
  • History of ipsilateral axillary or inguinal lymph node dissection
  • Carpal tunnel syndrome
  • Negative modifies Allen test and absence of a palpable ipsilateral ulnar pulse
  • Atrial fibrillation

 

Sample size:

N=108
(90 included in the final protocol)

 

Age in years (mean (SD; range)):

47 (13)

 

 

Gender (n,%):
Male: 26 (29%)

 

BMI (mean, SD) in kg/m2:

48 (7) kg/m2

 

Disease:

NA

Disease duration (mean (SD) in years:

NA

 

Disease severity:

NA

Describe the assessed instrument and used procedures.

 

I1:

Name:

Continuous noninvasive finger cuff blood pressure:
mean arterial pressure; systolic blood pressure, diastolic blood pressure at 6 different time points (within 15 min before abdominal insufflation in the horizontal

position; 3, 15, 30, and 45 min after the beginning of

insufflation in the 30Åã reverse Trendelenburg position; and

3 min after desufflation in the horizontal position)

 

Version (including language if applicable):

ccNexfin (BMEYE B.V., The Netherlands); now ClearSight (Edwards Lifesciences,

USA)

 

Construct:

Non-invasive blood pressure

 

Specification of investigated component/

Specification of time, occasion, user:
system uses an inflatable

finger cuff with an infrared plethysmograph to measure the

blood volume in the finger arteries, keep the blood volume

constant throughout the cardiac cycle based on an automated

feedback system that inflates and deflates the finger

cuff, and indirectly reconstruct the blood pressure waveform

based on the required cuff pressure. The finger cuff

was fitted and placed on the middle phalanx of the third or

fourth finger according to the manufacturer’s specification

for proper fit. The heart reference system that compensates

for hydrostatic pressure differences between the level of the

heart and the finger cuff was positioned at the level of the

right atrium during the entire study period. Finger cuff blood pressure

measurements were displayed on and extracted from the

proprietary monitor of the ccNexfin system.

 

Hypothesis (construct validity hypothesis testing):
Not reported

 

 

I2:

Name:

Intermittent noninvasive oscillometric upper arm

 

Version (including language if applicable):

Criticon; GE Healthcare, USA

 

Construct:

Nonivasive blood pressure:
mean arterial pressure; systolic blood pressure, diastolic blood pressure at 6 different time points (within 15 min before abdominal insufflation in the horizontal

position; 3, 15, 30, and 45 min after the beginning of

insufflation in the 30Åã reverse Trendelenburg position; and

3 min after desufflation in the horizontal position)

 

 

Specification of investigated component/

Specification of time, occasion, user:
Measured using a standard large cuff. To reflect

daily clinical practice, cuff fit was accepted when blood pressure

measurements could be obtained. A cuff that would not allow

for circumferential closure or that would spontaneously come

undone during an inflation cycle despite the most feasible limb

alignment was considered a cuff failure for that limb site, and

no aids such as tape were used to rescue potential measurements.

Oscillometric lower leg blood pressure measurements

obtained during steep reverse Trendelenburg positioning were

not included in the analysis because hydrostatic pressure differences

would have influenced the difference between lower leg

and intraarterial blood pressure measurements. Blood pressure measurements were displayed on the

patient monitor (Philips Intellivue MP 90 anesthesia monitor;

Philips Healthcare, USA).

 

Hypothesis (construct validity hypothesis testing): Not reported

 

 

I3:

Name:

Intermittent noninvasive oscillometric lower arm

 

Version (including language if applicable):

Criticon; GE Healthcare, USA

 

Construct:

Nonivasive blood pressure: :
mean arterial pressure; systolic blood pressure, diastolic blood pressure at 6 different time points (within 15 min before abdominal insufflation in the horizontal

position; 3, 15, 30, and 45 min after the beginning of

insufflation in the 30o reverse Trendelenburg position; and

3 min after desufflation in the horizontal position)

 

Specification of investigated component/

Specification of time, occasion, user:
Measured using a standard cuff. To reflect

daily clinical practice, cuff fit was accepted when blood pressure

measurements could be obtained. A cuff that would not allow

for circumferential closure or that would spontaneously come

undone during an inflation cycle despite the most feasible limb

alignment was considered a cuff failure for that limb site, and

no aids such as tape were used to rescue potential measurements.

Oscillometric lower leg blood pressure measurements

obtained during steep reverse Trendelenburg positioning were

not included in the analysis because hydrostatic pressure differences

would have influenced the difference between lower leg

and intraarterial blood pressure measurements. Blood pressure measurements were displayed on the

patient monitor (Philips Intellivue MP 90 anesthesia monitor;

Philips Healthcare, USA).



Hypothesis (construct validity hypothesis testing): Not reported

 

 

Describe the assessed instrument and used procedures.

 

Name:

Radial artery catheter

 

Version (including language if applicable):

20-gauge arterial catheter

 

Construct:

Intraarterial blood pressure:
mean arterial pressure; systolic blood pressure, diastolic blood pressure at 6 different time points (within 15 min before abdominal insufflation in the horizontal

position; 3, 15, 30, and 45 min after the beginning of

insufflation in the 30Åã reverse Trendelenburg position; and

3 min after desufflation in the horizontal position)

 

 

Specification of investigated component/

Specification of time, occasion, user:

a 20-gauge arterial catheter was inserted in the radial artery

after induction of general anesthesia and connected it to a

disposable pressure transducer. The pressure transducer was

leveled to the level of the right atrium throughout the study.

The transducer system was examined for its damping properties

with a fast flush test, and, if necessary, actions were taken to correct abnormal damping. Blood pressure measurements were displayed on the

patient monitor (Philips Intellivue MP 90 anesthesia monitor;

Philips Healthcare, USA).

 

 

 

 

Length of follow-up:

NA

 

Distribution of scores:

Systolic blood pressure mean(SD) min to max, nmeasurements:

I1: 109 (21) 46 to 187, 538

I2: 110 (18) 60 to 167, 443

I3: 113 (18) 61 to 200, 535

C: 117 (21), 55 to 202, 538

 

Diastolic blood pressure mean(SD), min to max, nmeasurements:

I1: 67(13) 30 to 106, 538

I2: 75 (15) 41 to  129, 443

I3: 69 (14) 11 to 443, 537

 

Mean arterial pressure (SD) min to max, nmeasurements:
I1: 83(16) 39 to 136, 538

I2: 124 (24) 78 to 195, 446

I3: 79 (14) 44 to 126, 537

 

Loss to follow-up:
N=18
Reason: technical difficulties with the insertion of the arterial catheter (n=11); technical

failures with blood pressure monitoring equipment during

the procedure (n = 3); change of the surgical procedure

(n = 1); patient’s withdrawal from participation (n = 1);

discovery of missed exclusion criterion (n = 1); and case

canceled (n = 1).

 

Percentage of missing items/total scores/outcome:
I1:
missing values: 2
reasons: not reported

I2:
missing values: 97
reasons:

Nparticipants=8, cuff failure

Nparticipants, cuff to small

I3:

Missing values: 5
reasons:

Nparticipants, cuff failure

C:
missing values: 2
reasons: not reported

 

Floor effects (% of sample with the lowest score possible):
Not reported

Ceiling effects (% of sample with the highest score possible):

Not reported

 

Minimally important change/difference:
Not reported:

 

Criterion validity:

Definition: mean of the difference (SD; 95% limits of agreement):

I1 vs C:
systolic blood pressure: -7 (14; -35 to 20)
diastolic blood pressure: 0 (11; -22 to 22)
mean arterial pressure: -1 (11; -23 to 21)

I2 vs C:
systolic blood pressure: -7 (18; -43 to 29)
diastolic blood pressure: -3 (15; -32 to 26)
mean arterial pressure: -9 (15) -38 to 20)
I2 vs C:
systolic blood pressure: -4 (15; -33 to 26)
diastolic blood pressure: 2 (12; -22 to 26)
mean arterial pressure: -5 (13; -29 to 20)

 

definition: pearson correlation coefficient
I1 vs C:
systolic blood pressure: 0.75
diastolic blood pressure: 0.63
mean arterial pressure: 0.75
I2 vs C:
systolic blood pressure: 0.60
diastolic blood pressure: 0.50
mean arterial pressure: 0.57

I3 vs C:

systolic blood pressure: 0.71
diastolic blood pressure: 0.61
mean arterial pressure: 0.67

 

Responsiveness:
definition: concordance rate
I1 vs C:
systolic blood pressure: 0.85
diastolic blood pressure: 0.81
mean arterial pressure: 0.88
I2 vs C:
systolic blood pressure: 0.75
diastolic blood pressure: 0.72
mean arterial pressure: 0.75

I3 vs C:

systolic blood pressure: 0.78
diastolic blood pressure: 0.77
mean arterial pressure: 0.78

 

Clinical impact outcome measures:

definition: Error grid analysis (%(n))
the risk for patients resulting from therapeutic interventions that may be triggered by measurement

differences between the investigated method and the

reference method
A: no risk; B: low risk; C: moderate risk;

D: significant risk; E: dangerous risk
I1 vs C:
systolic blood pressure:
A: 89.5% (481)

B: 9.8% (53)

C: 0.2% (1)
D: 0.4% (2)
E: 0.2% (1)
mean arterial blood pressure:
A: 77.1% (415)

B: 21.6% (116)

C: 0.9% (5)
D: 0.4% (2)
E: 0.0% (0)

I2 vs C:

systolic blood pressure:
A: 85.1% (377)

B: 10.0% (44)

C: 3.8% (17)
D: 1.1% (5)
E: 0.0% (0)
mean arterial blood pressure:
A: 65.9% (294)

B: 28.3% (126)

C: 4.8% (18)
D: 1.6% (7)
E: 0.2% (1)

I3 vs C:

systolic blood pressure:
A: 85.8% (459)

B: 10.2% (60)

C: 2.8% (15)
D: 0.2% (1)
E: 0.0% (0)
mean arterial blood pressure:
A: 74.5% (400)

B: 22.2% (119)

C: 3.0% (16)
D: 0.4% (2)
E: 0.0% (0)

 

 

 

Hypothesis:
“The agreement between finger cuff (I1) and intraarterial

Measurements (C) is better than the agreement between oscillometric (I2+I3) and

intraarterial measurements (C)“

 

“Patients in our study reflect a typical bariatric surgical

population, rather than obese patients across an extended

age range, with possibly advanced cardiovascular comorbid

conditions presenting for a broader range of general surgical

procedures. Such a relatively selected study population may limit the generalizability of our findings.”

“In conclusion, the agreement between finger cuff and

intraarterial measurements was better than the agreement

between oscillometric and intraarterial measurements for

mean arterial pressure and diastolic blood pressure in obese

patients during surgery. In these patients, forearm oscillometry

exhibits better measurement performance than upper

arm or lower leg oscillometry.”

 

Risk or bias: Criterion validity

 

For continuous scores: Were correlations, or the area under the receiver operating curve calculated?

Very good: Correlations or AUC calculated

Inadequate: Correlations or AUC not calculated

Not applicable (fill box dichotomous scores)

For dichotomous scores: Were sensitivity and specificity determined?

 

Very good: Sensitivity and specificity calculated

Inadequate: Sensitivity and specificity not calculated

Not applicable (fill box continuous scores)

Were there any other important flaws in the design or statistical methods of the study?

Very good: No other important methodological flaws

Doubtful: Other minor methodological flaws

Inadequate: Other important methodological flaws

Overall rating (lowest score)

Eley, 2021

(I1 vs C)

Inadequate

(No correlation or AUC reported)

NA

Very good

Inadequate

Hager, 2009
(I3 vs C)

Very good
(Correlation coefficient calculated)

NA

Very good

Very good

Hansen, 2022

(i1 vs C)

Very good
(Pearson correlation coefficient calculated)

NA

Doubtful
(four participants excluded without reported reasons)

Doubtful

Hansen, 2022

(I2 vs C)

Very good
(Pearson correlation coefficient calculated)

NA

Doubtful

(relatively large number of missing values; four participants excluded without reported reasons)

Doubtful

Mostafa, 2020

(I2 vs C)

Very good
(Correlation coefficient calculated)

NA

Very good

Very good

Mostafa, 2020

(I3 vs C)

Very good
(Correlation coefficient calculated)

NA

Very good

Very good

Rogge, 2019

(I1 vs C)

Inadequate
(No correlation or AUC reported)

NA

Very good

Inadequate

Schuman, 2021

(I1 vs C)

Very good
(Correlation coefficient calculated)

NA

Very good

Very good

Schuman, 2021

(I2 vs C)

Very good
(Correlation coefficient calculated)

NA

Doubtful

(relatively large number of missing values)

Doubtful

Schuman, 2021

(I3 vs C)

Very good
(Correlation coefficient calculated)

NA

Very good

Very good

 

Risk or bias: Responsiveness (criterion approach (i.e. comparison to a gold standard)

 

For continuous scores: Were correlations between change scores, or the area under the Receiver Operator Curve (ROC) curve calculated?

Very good: Correlations or AUC calculated

Inadequate: Correlations or AUC not calculated

Not applicable (fill box dichotomous scores)

For dichotomous scales: Were sensitivity and specificity (changed versus not changed) determined?

 

Very good: Sensitivity and specificity calculated

Inadequate: Sensitivity and specificity not calculated

Not applicable (fill box continuous scores)

Were there any other important flaws in the design or statistical methods of the study?

Very good: No other important methodological flaws

Doubtful: Other minor methodological flaws

Inadequate: Other important methodological flaws

Overall rating (lowest score)

Eley, 2021

(i1 vs C)

Inadequate
(% concordant pairs for direction of change calculated)

NA

Very good

Inadequate

Hansen, 2022

(I1 vs C)

Inadequate
(% concordant pairs for direction of change calculated)

NA

Very good

Inadequate

Hansen, 2022

(I2 vs C)

Inadequate
(% concordant pairs for direction of change calculated)

NA

Doubtful

(relatively large number of missing values)

Inadequate

Mostafa, 2020

(I2 vs C)

Very good
(Correlation coefficient calculated)

NA

Very good

Very good

Mostafa, 2020

(I3 vs C)

Very good
(Correlation coefficient calculated)

NA

Very good

Very good

Rogge, 2019

(I1 vs C)

Inadequate
(% concordant pairs for direction of change calculated)

NA

Very good

Inadequate

Schuman, 2021

(I1 vs C)

Inadequate
(% concordant pairs for direction of change calculated)

NA

Very good

Inadequate

Schuman, 2021

(I2 vs C)

Inadequate
(% concordant pairs for direction of change calculated)

NA

Doubtful

(relatively large number of missing values)

Inadequate

Schuman, 2021

(I3 vs C)

Inadequate
(% concordant pairs for direction of change calculated)

NA

Very good

Inadequate

Table of excluded studies

Reference

Reason for exclusion

Anast N, Olejniczak M, Ingrande J, Brock-Utne J. The impact of blood pressure cuff location on the accuracy of noninvasive blood pressure measurements in obese patients: an observational study. Can J Anaesth. 2016 Mar;63(3):298-306. doi: 10.1007/s12630-015-0509-6. Epub 2015 Oct 16. PMID: 26475165.

High risk of bias due to type of outcome for construct validity. Responsiveness and reliability not reported.

Leblanc MÈ, Auclair A, Leclerc J, Bussières J, Agharazii M, Hould FS, Marceau S, Brassard P, Godbout C, Grenier A, Cloutier L, Poirier P. Blood Pressure Measurement in Severely Obese Patients: Validation of the Forearm Approach in Different Arm Positions. Am J Hypertens. 2019 Jan 15;32(2):175-185. doi: 10.1093/ajh/hpy152. PMID: 30312368.

Wrong timing of measurement (not during surgery, but in recovery room)

Rogge DE, Nicklas JY, Haas SA, Reuter DA, Saugel B. Continuous Noninvasive Arterial Pressure Monitoring Using the Vascular Unloading Technique (CNAP System) in Obese Patients During Laparoscopic Bariatric Operations. Anesth Analg. 2018 Feb;126(2):454-463. doi: 10.1213/ANE.0000000000002660. PMID: 29261549.

Wrong construct: mean blood pressure over period of time.

Tobias JD, McKee C, Herz D, Teich S, Sohner P, Rice J, Barry N, Michalsky M. Accuracy of the CNAP™ monitor, a noninvasive continuous blood pressure device, in providing beat-to-beat blood pressure measurements during bariatric surgery in severely obese adolescents and young adults. J Anesth. 2014 Dec;28(6):861-5. doi: 10.1007/s00540-014-1835-5. Epub 2014 May 1. PMID: 24789660.

No individual results for fingercuff, upper and lower arm reported

Verkhovsky, A., Smit, M., Levin, A., & Coetzee, J. F. (2018). Blood pressure measurement in obese patients: non-invasive proximal forearm versus direct intra-arterial measurements. Southern African Journal of Anaesthesia and Analgesia, 24(3), 70-74.

High risk of bias due to type of outcome for construct validity. Responsiveness and reliability not reported.

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 09-04-2025

Laatst geautoriseerd  : 09-04-2025

Geplande herbeoordeling  : 09-04-2030

Initiatief en autorisatie

Initiatief:
  • Nederlandse Vereniging voor Anesthesiologie
Geautoriseerd door:
  • Nederlands Oogheelkundig Gezelschap
  • Nederlandse Internisten Vereniging
  • Nederlandse Vereniging van Artsen voor Longziekten en Tuberculose
  • Nederlandse Vereniging van Maag-Darm-Leverartsen
  • Nederlandse Vereniging voor Anesthesiologie
  • Nederlandse Vereniging voor Heelkunde
  • Nederlandse Vereniging voor Obstetrie en Gynaecologie
  • Nederlandse Vereniging van Ziekenhuisapothekers
  • Nederlandse Vereniging van Diëtisten
  • Nederlandse Vereniging voor Intensive Care
  • Patiëntenfederatie Nederland
  • Nederlandse Vereniging van Anesthesiemedewerkers
  • Nederlandse Stichting Over Gewicht
  • Netwerk Diëtisten Bariatrische Chirurgie

Algemene gegevens

De ontwikkeling van deze richtlijn werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut) en werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS).

De financier heeft geen enkele invloed gehad op de inhoud van de richtlijn.

Samenstelling werkgroep

Voor het ontwikkelen van de richtlijn is in 2022 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de anesthesiologische zorg voor patiënten met obesitas.

 

Werkgroep

Dr. T.A. Brouwer, anesthesioloog, NVA

Drs. M.A.M. Siepel, anesthesioloog, NVA

Drs. A.D. Pot, anesthesioloog, NVA

Drs. S.D.X. Oei, AIOS anesthesiologie, NVA (vanaf september 2022)

Dr. B. Torensma, PhD, anesthesiemedewerker, NVAM

Drs. J.A. Apers, chirurg, NVvH

Dr. L. Freeman, gynaecoloog, NVOG (tot oktober 2022)

Dr. D.D.C.A. Henriquez, gynaecoloog, NVOG (vanaf oktober 2022)

Prof. dr. C. A. J. Knibbe, ziekenhuisapotheker, NVZA

Drs. M.A. Damhof, ziekenhuisapotheker, NVZA (vanaf december 2023)
Dr. H.J. Reesink, longarts, NVALT
Drs. H.L. Lutgers, internist-endocrinoloog, NIV (vanaf april 2023)
N.G. Cnossen, patiëntvertegenwoordiger, Nederlandse Stichting Over Gewicht

 

Klankbordgroep
Dr. M. Klemt-Kropp, MDL-arts, NVMDL
Drs. Ö. Engin, oogarts, NOG
Dr. H. Buter, internist-intensivist, NVIC

N.J.C. Raeijmaekers, BSc, diëtist, NVD/NDBC

 

Met ondersteuning van

Drs. I. van Dusseldorp, literatuurspecialist, Kennisinstituut van de Federatie van Medisch Specialisten

Dr. J.C. Maas, adviseur, Kennisinstituut van de Federatie van Medisch Specialisten

Drs. I. van Dijk, adviseur, Kennisinstituut van de Federatie van Medisch Specialisten

Belangenverklaringen

De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.

Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

Tammo Brouwer (voorzitter)

Anesthesioloog, vrij ondernemer.
Lid van het MSB Anesthesiologie Leeuwarden,

Geen

Geen

Geen restricties

Alice Dorien Pot

Anesthesioloog in Meander Medisch Centrum Amersfoort

Co-auteur boek 'klinische kinderanesthesiologie in de praktijk', initiatief vanuit NVA, uitgeverij Prelum (onbetaald).

Geen

Geen restricties

Bart Torensma

Klinisch epidemioloog en data scientist via eigen bedrijf Torensma Research Consultancy BV.

"Dagelijks bestuurslid (penningmeester) Stichting COREON Algemeen bestuurslid Vereniging voor epidemiologen.

Lesgeven aan de research verpleegkundige Breederode hogeschool Rotterdam

 

Masterclass gemaakt samen met Medtronic AUE over ERABS en team samenwerkingen."

Voor PhD (<3 jaar geleden) onderzoek gedaan naar deep block verslapping bij patiënten met obesitas. Deze studie is destijds door MSD gesponsord in de vorm van gratis ampullen sugammadex.

 

Geen restricties

Catherijne A.J. Knibbe

Ziekenhuisapotheker-klinisch farmacoloog, St. Antonius ziekenhuis Nieuwegein en Utrecht, afdeling Klinische farmacie
hoogleraar Grondslagen van de Individuele Farmacotherapie, LACDR, Universiteit Leiden

Lid CCMO, Lid Board ACCP

Diverse studies gefinancierd door ZonMw of Antonius Onderzoeksfonds. De onderzoeken zijn niet gerelateerd aan de richtlijn.

Geen restricties

Dacia Henriquez

Gynaecoloog, Amphia Ziekenhuis

Geen

Geen

Geen restricties

Helen Lutgers

Internist in Ommelander Ziekenhuis Groningen

Geen

Geen

Geen restricties

Herre Reesink

Longarts, OLVG Amsterdam

Geen

Geen

Geen restricties

Jan Apers

Chirurg Franciscus Gasthuis & Vlietland

NVGIC bestuur

Dutch Obesity Academy

Geen

Geen restricties

Liv Freeman

Gynaecoloog Ikazia Ziekenhuis Rotterdam

Voorzitter samenwerking obstetrie anesthesie (onbetaald)

 

Geen

Geen restricties

Michiel Damhof

 

Ziekenhuisapotheker Medisch Centrum Leeuwarden

Geen

Geen

Geen restricties

Muriel Arianne Michelle Siepel

Anesthesioloog OLVG Amsterdam

Geen

Geen

Geen restricties

Nienke Cnossen

Patiëntvertegenwoordiger

Geen

Geen

Geen restricties

Sander Oei

Aios anesthesiologie. ErasmusMC

SITdiensten Park Medisch Centrum, betaald. 1-2x/mnd

ANWdiensten verpleeghuizen, betaald. 1x/mnd

Geen

Geen restricties

Hanneke Buter

Intensivist

bestuurslid NVIC

Geen

Geen restricties

Michael Klemt-Kropp

MDL-arts

Geen

Geen

Geen restricties

Natascha Raeijmaekers

Diëtist Obesitas Centrum, ETZ. Betaald.

Bestuur Netwerk Diëtisten Bariatrische chirurgie, onbetaald.

Geen

Geen restricties

Ozlem Engin

Oogarts

Geen

Geen

Geen restricties

Irma van Dijk

Adviseur kennisinstituut van de Federatie Medisch Specialisten

Geen

Geen

Geen restricties

José Maas

Adviseur kennisinstituut van de Federatie Medisch specialisten

Geen

Geen

Geen restricties

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief door het uitnodigen van een afvaardiging van de Nederlandse ‘Stichting ‘Overgewicht’ in de werkgroep. Het verslag van de knelpunteninventarisatie [zie aanverwante producten] is besproken in de werkgroep. De verkregen input is meegenomen bij het opstellen van de uitgangsvragen, de keuze voor de uitkomstmaten en bij het opstellen van de overwegingen. De conceptrichtlijn is tevens voor commentaar voorgelegd aan de Stichting en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.

 

Kwalitatieve raming van mogelijke financiële gevolgen in het kader van de Wkkgz

Bij de richtlijn is conform de Wet kwaliteit, klachten en geschillen zorg (Wkkgz) een kwalitatieve raming uitgevoerd om te beoordelen of de aanbevelingen mogelijk leiden tot substantiële financiële gevolgen. Bij het uitvoeren van deze beoordeling is de richtlijn op verschillende domeinen getoetst (zie het stroomschema op de Richtlijnendatabase).

 

Module

Uitkomst raming

Toelichting

Module Bloeddruk meten

Geen financiële gevolgen

Hoewel uit de toetsing volgt dat de aanbeveling(en) breed toepasbaar zijn (5.000-40.000 patiënten), volgt ook uit de toetsing dat het geen nieuwe manier van zorgverlening of andere organisatie van zorgverlening betreft. Er worden daarom geen substantiële financiële gevolgen verwacht.

 

Werkwijze

AGREE

Deze richtlijn is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).

 

Knelpuntenanalyse en uitgangsvragen

Tijdens de voorbereidende fase inventariseerde de werkgroep de knelpunten in de anesthesiologische zorg voor patiënten met obesitas. Tevens zijn er knelpunten aangedragen door relevante partijen via een schriftelijke knelpunteninventarisatie. Een verslag hiervan is opgenomen onder aanverwante producten.

 

Op basis van de uitkomsten van de knelpuntenanalyse zijn door de werkgroep concept-uitgangsvragen opgesteld en definitief vastgesteld.

 

Uitkomstmaten

Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep tenminste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Methode literatuursamenvatting

Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. Indien mogelijk werd de data uit verschillende studies gepoold in een random-effect model. Review Manager 5.4 werd gebruikt voor de statistische analyses. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is mogelijk dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • er is een reële kans dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • de literatuurconclusie is zeer onzeker.

Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.

In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.

Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers

 

 

Sterke aanbeveling

Zwakke (conditionele) aanbeveling

Voor patiënten

De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet.

Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet.

Voor behandelaars

De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen.

Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren.

Voor beleidsmakers

De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid.

Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen.

Organisatie van zorg

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijn is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module Organisatie van zorg.

 

Commentaar- en autorisatiefase

De conceptrichtlijn werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijn aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijn werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Literatuur

Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.

 

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.

 

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.

 

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.

 

Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.

 

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html

 

Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.

 

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Postoperatieve Bewaking