Wekedelentumoren

Initiatief: NVVH Aantal modules: 14

Risico-inschatting

Uitgangsvraag

Wat is de plaats van predictiemodellen voor de risico-inschatting en prognostificatie van patiënten met wekedelentumoren?

Aanbeveling

Overweeg het gebruik een gevalideerd predictiemodel, bijvoorbeeld PERSARC of Sarculator, als aanvulling op de informatievoorziening bij sarcomen in de extremiteiten:

  • tijdens een MDO bij behoefte aan risico-inschatting voor het intensiveren van de behandeling op basis van het risico op een lokaal recidief of;
  • in de spreekkamer om patiënten voor te lichten over de risico’s en de daaraan verbonden behandelkeuzes.

Overwegingen

Voor- en nadelen van de interventie en de kwaliteit van het bewijs

Er is een literatuuronderzoek verricht naar de prestatie van multivariabele modellen die algehele overleving en kans op lokaal recidief voorspellen bij patiënten met een wekedelentumor in een extremiteit. Er werden 12 studies geïncludeerd waarin in totaal vier extern gevalideerde predictiemodellen werden geïdentificeerd. Algehele of sarcoom-specifieke overleving kan voorspeld worden met alle vier de modellen. De kans op een lokaal recidief kan met één van de modellen worden voorspeld. De cruciale uitkomstmaat is de prestatie van het predictiemodel. De bewijskracht voor deze uitkomstmaat varieert van laag tot redelijk. Er is afgewaardeerd voor risico of bias vanwege beperkingen in de studie-opzet, indirectheid vanwege een bredere studiepopulatie (inclusief patiënten met een recidiverende wekedelentumor en/of tumor op een andere locatie dan in een extremiteit) en betrouwbaarheidsintervallen die de grenzen van klinische besluitvorming overschrijden.

 

De werkgroep concludeert dat predictiemodellen zoals Sarculator en PERSARC gebruikt kunnen worden om dokters en patiënten preoperatief te informeren over de levensverwachting van de patiënt na de resectie van een wekedelentumor in een extremiteit. Ook kunnen de predictiemodellen worden gebruikt om de patiënt te informeren over de mogelijke uitkomsten van verschillende behandelingen zonder deze met elkaar te vergelijken. Zo kunnen patiënten samen met hun behandelend team tot een meest passende individuele behandelkeuze komen.

 

Waarden en voorkeuren van patiënten (en evt. hun verzorgers)

In hoeverre er een toegevoegde waarde van de implementatie van predictiemodellen bestaat in de zorg rondom patiënten met een wekedelentumor in een extremiteit bestaat zal volgen uit de VALUE PERSARC studie (Kruiswijk, 2023). De implementatie van PERSARC in een Multi Disciplinair Overleg werd beoordeeld in een studie van Hagenmaier (2021): Zij concludeerden dat PERSARC het Multidisciplinaire behandelteam helpt om geïndividualiseerde voorspelde OS en LR-tarieven te optimaliseren, en gedeelde besluitvorming hierbij faciliteert.

 

Kosten (middelenbeslag)

Er zijn geen kosten voor het gebruik van de predictiemodellen.

 

Aanvaardbaarheid, haalbaarheid en implementatie

De huidige behandelingsbesluitvorming in de zorg voor hooggradige sarcomen van zacht weefsel (STS) wordt nog niet voldoende beïnvloed door geïndividualiseerde risico's van verschillende behandelopties en de hierop gebaseerde voorkeuren van patiënten. Risicovoorspellingshulpmiddelen kunnen patiënten en professionals inzicht verschaffen in gepersonaliseerde risico's en voordelen van verschillende behandelopties, en daardoor mogelijk de kennis van patiënten vergroten en besluitvormingsconflicten verminderen. De VALUE-PERSARC-studie beoogt de (kosten)effectiviteit te beoordelen van een gepersonaliseerd risicobeoordelingshulpmiddel (PERSARC) om de kennis van patiënten over risico's en voordelen van behandelopties te vergroten en besluitvormingsconflicten te verminderen in vergelijking met de gebruikelijke zorg bij patiënten met hooggradige sarcomen in de extremiteiten (Kruiswijk, 2023).

 

Rationale van de aanbeveling

Predictiemodellen zijn een waardevolle aanvulling in de informatievoorziening van het multidisciplinair behandelteam in de voorspelling van prognose en het ontstaan van een lokaal recidief bij verschillende patiënt en behandel parameters.

Onderbouwing

Prognostificatie met behulp van risico predictiemodellen wordt steeds vaker gebruikt om de prognose in de oncologie te schatten en klinische besluitvorming op een meer gepersonaliseerde manier te vergemakkelijken. Welke van deze instrumenten nuttig zijn voor patiënten met, en behandelaars van, wekedelensarcomen van de extremiteiten (eSTS) en op welk moment, is nog onduidelijk. In deze richtlijn streven we ernaar een overzicht te geven van betrouwbare en beschikbare voorspellingsinstrumenten voor eSTS, en de mogelijke toepassingen te bespreken binnen de zorgpaden voor patiënten met eSTS.

Low GRADE

The MSKCC prediction model (including the factors age, tumor size, histologic grade, histologic subtype, dept, site) may show good performance for predicting sarcoma-specific death in patients with extremity soft-tissue sarcoma after surgical resection.

 

Source: Kattan, 2002; Eilber, 2004; Mariani, 2005; Squires, 2022

 

Low GRADE

The SAM prediction model (including the factors tumor size, necrosis, vascular invasion, histological grade, depth, location) may show good performance for predicting sarcoma-specific survival after surgical resection in patients with extremity soft-tissue sarcoma.

 

Source: Sampo, 2012

 

Moderate GRADE

The Sarculator prediction model (including the factors age, tumor size, grade and histological subtype) likely shows good performance for predicting (dynamic) overall after surgical resection survival in patients with extremity soft-tissue sarcoma.

 

Source: Callegaro, 2016; Callegaro, 2019; Squires, 2022; Voss, 2022

 

Moderate GRADE

The evidence suggests that the PERSARC prediction model (including the factors age, tumor size, depth, histology, margin, RT) likely shows good performance for predicting (dynamic) overall after surgical resection survival in patients with extremity soft-tissue sarcoma.

 

Source: Van Praag, 2017; Rueten-Budde, 2018; Rueten-Budde; 2019

 

Moderate GRADE

The PERSARC prediction model (including the factors age, tumor size, depth, histology, margin, RT) likely shows moderate to good performance for predicting local recurrence. The model may underestimate the risk of local recurrence after surgical resection in patients with extremity soft-tissue sarcoma.

 

Source: Van Praag, 2017; Smolle, 2019

Description of studies

Four externally validated prediction models were identified in the 12 studies that were included in the literature analysis.

 

MSKCC nomogram

Kattan (2002) developed the MSKCC nomogram. Eilber (2004) externally validated the model. Mariani (2005) adjusted the grade factor in the nomogram and validated the model for patients with extremity STS. Squires (2022) externally validated the revised model from Mariani (2005).

 

SAM-model

Sampo (2012) developed and externally validated the SAM-model.

 

Sarculator

Callegaro (2016) developed and externally validated the Sarculator nomogram. The model was also externally validated by Squires (2022) and Voss (2022). Callegaro (2019) developed and externally validated a dynamic version of the model.

 

PERSARC

Van Praag (2017) developed the PERSARC nomogram Smolle (2019) externally validated the model for the outcome local recurrence. Rueten-Budde (2018) developed a dynamic version of the model for the outcome overall survival, which was updated and externally validated by Rueten-Budde (2021).

 

For more information about the characteristics of the individual studies, see Table 1.

 

Table 1 – Study characteristics per prediction model

Study

Type of validation

Population

N, survival %

Analysis method

MSKCC nomogram (Memorial Sloan Kettering Cancer Center)

Kattan, 2002; prospective cohort study

Development, internal validation

Adult patients (> 16 years) with primary STS.

N=2,163, The 5- and 10-year disease-specific death probabilities were 25% and 35%.

Three prediction methods were compared, Kaplan-Meier analysis of all possible subsets, recursive partitioning, and Cox proportional hazards regression analysis. Nomogram based on Cox model.

Eilber, 2004; prospective cohort study

External validation

Adult patients (>16 years) with primary soft tissue sarcoma (STS), grade low/  intermediate/ high, tumor completely

surgically resected.

N=929, the observed 5-year and 10-year disease-specific survival rates were 77% and 71%.

Only external validation

Mariani, 2005; retrospective cohort study

Revised nomogram, internal validation

Patients with extremity STS, grade 1-3, primary disease, undergoing surgery with curative intent

N=642, 10-year survival estimates 95.8% in patients with Grade 1 STS, 76.5% for Grade 2 STS, and 59.4% for Grade 3 STS.

Multiple Cox regression model.

Squires, 2022; retrospective cohort study

External validation

Patients with primary extremity STS

N=1,326, estimated 5- and 10-year OS of 70% and 58%.

Only external validation

SAM-model

Sampo, 2012; retrospective cohort, validation on data obtained from hospital register

Development, external validation

Non-metastatic, primary or locally recurrent STS of the extremities or trunk wall

DC N=294, VC N=354. The 5-year sarcoma-specific survival rate was 75% and at 10 years 71%, no data on survival rate in validation cohort.

Multivariate Cox proportional hazards regression.

Sarculator

Callegaro, 2016; retrospective cohort study

Development, external validation

Patients with extremity STS, after macroscopically complete surgical resection at multidisciplinary sarcoma centres

DC N=1,452; VC1 N=420, VC2 N=1,436, VC3 N=444, 5-year and 10-year overall survival were 79.9% and 72.9% for DC; 78.1% and 68.3% for VC1; 72.7% and 60.2% for VC2; and 72.7% and not estimated (due to the shorter follow-up) for VC3.

Multivariable Cox model, backward procedure based on the Akaike information criterion (AIC) for variable selection.

Callegaro, 2019; retrospective multicenter cohort study

Development dynamic nomogram, external validation

Patients with primary extremity STS

DC N=3,740; VC N=893, DC 5-year and 10-year OS 76.0% and 66.3%; VC 59.5% and 48.0%.

Multivariable Cox model, backward procedure based on the Akaike information criterion (AIC) for variable selection.

Squires, 2022; retrospective cohort study

External validation

Patients with primary extremity STS

N=1,326, estimated 5- and 10-year OS of 70% and 58%.

Only external validation

Voss, 2022; data retrospectively obtained from database

External validation

Patients with soft tissue sarcoma of the extremity or trunk

N=9,738, 5-year OS was 68.9%.

Only external validation

PERSARC (PERsonalized SARcoma Care)

Van Praag, 2017; retrospective cohort study

 

Development, internal validation

Patients with primary high grade extremity STS

N=766, OS was estimated to be equal to 63%, 53% and 39% at 3, 5 and 10 years, respectively; LR was estimated to be equal to 13.3%, 15.1% and 17.2% at 3, 5 and 10 years, respectively.

Multivariate Cox proportional hazards regression model (OS), Fine and Gray model (LR)

Smolle, 2019; retrospective multicenter cohort study

External validation for outcome LR

Patients with high grade extremity STS

DC N=1931, VC=1085. Two hundred forty-two (12.5%) of test cohort patients developed LR.

Fine and Gray model, stepwise backward selection.

Rueten-Budde, 2018; retrospective multicenter cohort study

Development dynamic model, internal validation outcome dynamic OS

Patients with high-grade extremity STS

N=2,232. No survival rates reported.

Proportional landmark supermodel. Landmark time points tLM were chosen every three months between zero and five years after surgery. At each of these time points a Cox proportional hazards model was estimated on the subset of patients still at risk: patients alive and in follow-up at time tLM. The status of LR and DM is determined at landmark time point tLM for each patient and considered fixed. These Cox models were then combined into a landmark supermodel.

Rueten-Budde, 2021; retrospective cohort study

Revision dynamic model, external validation for dynamic OS

Patients with high‐grade extremity STS

Added patients N=3,826; VC N=1,111. No survival rates reported.

The dynamic prediction model developed in Rueten‐Budde (2018)

was revised by adding more patients and the variable grade to the

model. The prediction model was based on landmark methodology.

DC=development cohort, VC=validation cohort, STS=soft-tissue sarcoma, OS=overall survival

 

Results

Overall survival

MSKCC  

The MSKCC nomogram is reported in four studies (Kattan, 2002; Eilber, 2004; Mariani, 2005; Squires, 2022). More information about the model characteristics, development and validation is presented in Table 2. Model performance was reported using C-indexes varying from 0.71 to 0.77. The working group considers the performance of this model acceptable.

 

SAM-model

The SAM-model is reported in the study from Sampo (2012). More information about the model characteristics, development and validation is presented in Table 2. Model performance was reported using AUC values of 0.81 and 0.77 and C-indexes of 0.79 and 0.77. The working group considers the performance of this model acceptable.

 

Sarculator

The Sarculator nomogram is reported in four studies (Callegaro, 2016; Callegaro, 2019; Squires, 2022; Voss, 2022). More information about the model characteristics, development and validation is presented in Table 2. Model performance was reported using C-indexes varying from 0.675 to 0.845. The working group considers the performance of this model acceptable.

 

PERSARC

The PERSARC nomogram for the outcome overall survival is reported in three studies (Van Praag, 2017; Rueten-Budde, 2018; Rueten-Budde, 2021). More information about the model characteristics, development and validation is presented in Table 2. Model performance was reported using C-indexes varying from 0.677 to 0.827. The working group considers the performance of this model acceptable.

 

Local recurrence

PERSARC – 2 studies

The PERSARC nomogram for the outcome local recurrence is reported in two studies (Van Praag, 2017; Smolle, 2019). More information about the model characteristics, development and validation is presented in Table 2. Model performance was reported using C-indexes varying from 0.683 to 0.705. Smolle (2019) reported that calibration plots for LR using test and validation cohort showed that the LR model tended to underestimate the actual patient risk, especially in the validation cohort.

 

Table 2 – Prediction model characteristics and outcomes

Prediction model name

Outcome 

Predictors: effect size (95%CI) 

Performance measure (95%CI) 

MSKCC nomogram (Kattan, 2002; Mariani, 2005)

 

12-year sarcoma-specific death after surgery

 

(Mariani 2005: 10-year extremity STS-specific death)

Age at diagnosis

Tumor size (< 5, 5 to 10, or > 10 cm)

Histologic grade (high or low), in Mariani 2005 changed to FNCLCC-grade (1-3)

Histologic subtype (fibrosarcoma, leiomyosarcoma, liposarcoma, malignant fibrous histiocytoma, malignant peripheral nerve tumor, synovial, or other)

Depth (superficial or deep)

Site (upper extremity, lower extremity, visceral, thoracic or trunk, retrointraabdominal, or head or neck)

 

No effect sizes reported.

Development (Kattan 2002)

C-index: 0.77

External validation (Eilber 2004)

C-index: 0.76

Internal validation adjusted model (Mariani 2005)

C-index 0.76

External validation of Mariani 2005 (Squires 2022)

C-index 0.71 (0.68 to 0.75) for 4-, 8-, and 12-year DSS

SAM model (Sampo, 2012)

10-year sarcoma-specific survival from diagnosis

Tumor size per cm: HR 1.10 (1.05 to 1.15)

Necrosis (no/yes): HR 1.60 (0.88 to 2.90)

Vascular invasion (no/yes): HR 1.60 (0.93 to 2.75)

Histological grade (2/3/4, per grade): HR 1.57 (1.11 to 2.22)

Tumor depth (superficial/ deep): HR 3.51 (1.71 to 7.38)

Location (extremity/ axis of body): HR 1.65 (1.01 to 2.68)

Development (Sampo 2012)

AUC 0.81 (0.75 to 0.87)

C-index 0.79

 

External validation (Sampo 2012)

AUC 0.77 (0.72 to 0.82)

C-index 0.77

Sarculator

(Callegaro, 2016; Callegaro, 2019)

10-year OS

 

(Callegaro 2019: dynamic 5-year OS)

Age (66 vs 40 years, third and first quartile): HR 1.58 (1.30 to 1.93)

Tumor size (10 vs 4 cm, third and first quartile): HR 2.48 (1.92 to 3.21)

FNCLCC grade: II vs I HR 2.68 (1.64 to 4.39), III vs I HR 4.25 (2.64 to 6.84)

Histological subtype

Leiomyosarcoma vs myxoid liposarcoma: HR 2.50 (1.51 to 4.16)

DD/pleom lipo vs myxoid liposarcoma: HR 1.48 (0.80 to 2.74

MPNST vs myxoid liposarcoma: HR 1.89 (1.06 to 3.36)

Myxofibrosarcoma vs myxoid liposarcoma: HR 1.64 (0.99 to 2.70)

Synovial vs myxoid liposarcoma: HR 2.70 (1.59 to 4.60)

UPS vs myxoid liposarcoma: HR 1.27 (0.76 to 2.11)

Vascular vs myxoid liposarcoma: HR 5.81 (2.71 to 12.45)

Other vs myxoid liposarcoma: HR 1.99 (1.23 to 3.21)

Development cohort (Callegaro 2016)

C-index 0.767 (0.743 to 0.789)

 

External validation cohorts (Callegaro 2016)

C-index 0.698 (0.638 to 0.754)

C-index 0.775 (0.754 to 0.796)

C-index 0.762 (0.720 to 0.806)

Development cohort dynamic model (Callegaro 2019)

C-index

At time of primary surgery: 0.776 (0.761 to 0.790)

1 year after surgery: 0.837 (0.822 to 0.851)

2 years after surgery: 0.845 (0.823 to 0.862)

3 years after surgery: 0.834 (0.811 to 0.859)

 

External validation dynamic model (Callegaro 2019)

C-index

At time of primary surgery: 0.675 (0.643 to 0.704)

1 year after surgery: 0.773 (0.740 to 0.801)

2 years after surgery: 0.810 (0.775 to 0.844)

3 years after surgery: 0.796 (0.751 to 0.834)

External validation (Squires 2022)

C-index 5-year OS: 0.72 (0.70 to 0.75)

C-index 10-year OS: 0.73 (0.70 to 0.75)

External validation (Voss 2022)

C-index 5-year OS 0.726

PERSARC

(Van Praag,  2017; Rueten-Budde, 2018)

Overall survival at 3, 5 and 10 years

 

(Rueten-Budde, 2018/2021: dynamic 5-year OS)

Age (unit increase of 10 years): HR 1.195 (1.116 to 1.268)

Size (unit increase of 1 cm): HR 1.068 (1.052 to 1.085)

Depth (relative to investing fascia)

Superficial vs deep: HR 0.813 (0.591 to 1.117)

Deep and superficial vs deep: HR 1.110 (0.736 to 1.674)

Histology

MPNST vs myxofibrosarcoma: HR 1.422 (0.989 to 2.044)

Synovial sarcoma vs myxofibrosarcoma: HR 1.261 (0.869 to 1.831)

Spindle cell sarcoma vs myxofibrosarcoma: HR 1.211 (0.884 to 1.661)

MFH/UPS vs myxofibrosarcoma: HR 1.293 (0.890 to 1.876)

Margin

0.1 to 0.2 mm vs 0 mm: HR 0.786 (0.599 to 1.033)

> 2 mm vs 0 mm: HR 0.711 (0.524 to 0.964)

RT

Neoadjuvant vs no RT: HR 0.548 (0.399 to 0.753)

Adjuvant vs no RT: HR 0.638 (0.486 to 0.837)

Development (Van Praag 2017)

C-index 0.677 (95% CI 0.643 to 0.701)

Development dynamic model, validation (Rueten-Budde 2018)

C-indexes 0.694, 0.777, 0.813, 0.810, 0.798, and 0.781 at 0-, 1-, 2-, 3-, 4-, and 5-years after surgery respectively

Revision, external validation (Rueten-Budde 2021)

C-indexes 0.697, 0.790, 0.822, 0.818, 0.812, and 0.827 at 0, 1, 2, 3, 4, and 5 years after surgery respectively

Local recurrence (cumulative incidence)

Age (unit increase of 10 years): sHR 1.051 (0.942 to 1.184)

Size (unit increase of 1 cm): sHR 1.031 (1.001 to 1.063)

Depth (relative to investing fascia)

Superficial vs deep: sHR 0.907 (0.536 to 1.535)

Deep and superficial vs deep: sHR 0.563 (0.198 to 1.604)

Histology

MPNST vs myxofibrosarcoma: sHR 1.079 (0.580 to 2.009)

Synovial sarcoma vs myxofibrosarcoma: sHR 0.779 (0.379 to 1.602)

Spindle cell sarcoma vs myxofibrosarcoma: sHR 0.979 (0.570 to 1.681)

MFH/UPS vs myxofibrosarcoma: sHR 1.096 (0.557 to 2.156)

Margin

0.1 to 0.2 mm vs 0 mm: sHR 0.635 (0.406 to 0.992)

> 2 mm vs 0 mm: sHR 0.282 (0.159 to 0.500)

RT

Neoadjuvant vs no RT: sHR 0.312 (0.146 to 0.668)

Adjuvant vs no RT: sHR 0.700 (0.417 to 1.175)

Development (Van Praag 2017)

C-index 0.696 (95% CI 0.629 to 0.743)

Smolle 2019

C-index 0.705 and 0.683 for the internal and external cohort respectively

AUC=area under the ROC (receiver operating characteristic) curve, C-index=concordance index, (s)HR=(sub distribution) hazard ratio, CI=confidence interval, OS=overall survival, DSS=disease-specific survival, LR=local recurrence, STS=soft-tissue sarcoma, FNCLCC: Fédération Nationale des Centres de Lutte Contre le Cancer, DD/pleom lipo=dedifferentiated/pleomorphic liposarcoma, MPNST=malignant peripheral nerve sheath tumor, UPS=undifferentiated pleomorphic sarcoma, MFH=malignant fibrous histiocytoma, RT=radiotherapy.

 

Level of evidence of the literature

MSKCC: model including age, tumor size, histologic grade, histologic subtype, dept, site – predicting sarcoma-specific death

The level of evidence regarding the outcome measure started at high and was downgraded by two levels to low because of study limitations (risk of bias, -1); confidence intervals crossing the border of clinical relevance (imprecision, -1).

 

SAM-model: model including tumor size, necrosis, vascular invasion, histological grade, depth, location – predicting sarcoma-specific survival

The level of evidence regarding the outcome measure started at high and was downgraded by two levels to low because of study limitations (risk of bias, -1); applicability because the study also included patients with recurrent and/ or trunk wall STS (indirectness, -1).

 

Sarculator: model including age, tumor size, grade and histological subtype – predicting (dynamic) overall survival

The level of evidence regarding the outcome measure started at high and was downgraded by one level to moderate because of confidence intervals crossing the border of clinical relevance (imprecision, -1).

 

PERSARC: model including age, tumor size, depth, histology, margin, RT – predicting (dynamic) overall survival

The level of evidence regarding the outcome measure started at high and was downgraded by one level to moderate because of confidence intervals crossing the border of clinical relevance (imprecision, -1).

 

PERSARC: model including age, tumor size, depth, histology, margin, RT – predicting local recurrence

The level of evidence regarding the outcome measure started at high and was downgraded by one level to moderate because of confidence intervals crossing the border of clinical relevance (imprecision, -1).

Preferably a study measuring the effect of using a prediction model on treatment decisions and the ability of the model to accurately predict overall survival and local recurrence.

 

As such research is very rare and the working group did not expect to find such studies, a systematic review of the literature was performed to answer the following question:  Which model predicts overall survival and local recurrence in patients from patients with soft tissue sarcoma and what is the predictive value of this model?

 

(Patients):

patients with primary extremity soft tissue sarcoma

 

I (Intervention): 

prediction model

  • outcome: mortality, overall survival, local recurrence
  • factors, at least one of the following: age, grade, sarcoma type, size
(Comparison):

other prediction model or no comparison

 

(Outcome):

model performance (discrimination parameters like area under the curve, C-index, sensitivity, specificity, predictive value)

 

T/S (Timing/Setting): 

pre-operative, during follow-up, with new event

 

 

Relevant outcome measures

The guideline development group considered model discrimination as a critical outcome measure for decision making and sensitivity, specificity and predictive values as important outcome measures for decision making.

 

A priori, the working group did not define the outcome measures listed above but used the definitions used in the studies.


Prognostic research: Study design and hierarchy

When reviewing literature, there is a hierarchy in quality of individual studies. Preferably, the effectiveness of a clinical decision model is evaluated in a clinical trial. Unfortunately, these studies are very rare. If not available, studies in which prediction models are developed and validated in other samples of the target population (external validation) are preferred as there is more confidence in the results of these studies compared to studies that are not externally validated. Most samples do not completely reflect the characteristics of the total population, resulting in deviated associations, possibly having consequences for conclusions. Studies validating prediction models internally (e.g. bootstrapping or cross validation) can be used to answer the research question as well, but downgrading the level of evidence is obvious due to risk of bias and/or indirectness as it is not clear whether models perform sufficiently in target populations. The confidence in the results of unvalidated prediction models is very low. Therefore, such models will not be graded. This is also applicable for association models. The risk factors identified from such models can be used to inform patients about the elevated risk on complications during procedural sedation and analgesia, however they are less suitable to be used in clinical decision making.

 

Search and select (Methods)

The databases Medline (via OVID) and Embase (via Embase.com) were searched with relevant search terms until 12-10-2023. The detailed search strategy is depicted under the tab Methods. The systematic literature search resulted in 1,178 hits. Studies were selected based on the following criteria:

  • Prediction model is externally validated
  • Prediction model for patients with primary extremity soft tissue sarcoma with outcome overall survival or local recurrence
  • Published after 2010

42 studies were initially selected based on title and abstract screening. After reading the full text, 20 studies were excluded (see the table with reasons for exclusion under the tab Methods), and 12 studies were included.

 

Results

In total, 12 studies that reported 4 different prediction models were included in the analysis of the literature. Important study characteristics and results are summarized in the evidence tables. The assessment of the risk of bias is summarized in the risk of bias tables.

  1. Callegaro D, Miceli R, Bonvalot S, Ferguson P, Strauss DC, Levy A, Griffin A, Hayes AJ, Stacchiotti S, Pechoux CL, Smith MJ, Fiore M, Dei Tos AP, Smith HG, Mariani L, Wunder JS, Pollock RE, Casali PG, Gronchi A. Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: a retrospective analysis. Lancet Oncol. 2016 May;17(5):671-80. doi: 10.1016/S1470-2045(16)00010-3. Epub 2016 Apr 5. PMID: 27068860.
  2. Callegaro D, Miceli R, Bonvalot S, Ferguson PC, Strauss DC, van Praag VVM, Levy A, Griffin AM, Hayes AJ, Stacchiotti S, Pèchoux CL, Smith MJ, Fiore M, Tos APD, Smith HG, Catton C, Szkandera J, Leithner A, van de Sande MAJ, Casali PG, Wunder JS, Gronchi A. Development and external validation of a dynamic prognostic nomogram for primary extremity soft tissue sarcoma survivors. EClinicalMedicine. 2019 Nov 22;17:100215. doi: 10.1016/j.eclinm.2019.11.008. PMID: 31891146; PMCID: PMC6933187.
  3. Eilber FC, Brennan MF, Eilber FR, Dry SM, Singer S, Kattan MW. Validation of the postoperative nomogram for 12-year sarcoma-specific mortality. Cancer. 2004 Nov 15;101(10):2270-5. doi: 10.1002/cncr.20570. PMID: 15484214.
  4. Hagenmaier HSF, van Beeck AGK, Haas RL, van Praag VM, van Bodegom-Vos L, van der Hage JA, Krol S, Speetjens FM, Cleven AHG, Navas A, Kroon HM, Moeri-Schimmel RG, Leyerzapf NAC, van de Sande MAJ. The Influence of Personalised Sarcoma Care (PERSARC) Prediction Modelling on Clinical Decision Making in a Multidisciplinary Setting. Sarcoma. 2021 Oct 21;2021:8851354. doi: 10.1155/2021/8851354. PMID: 34720664; PMCID: PMC8553471.
  5. Kattan MW, Leung DH, Brennan MF. Postoperative nomogram for 12-year sarcoma-specific death. J Clin Oncol. 2002 Feb 1;20(3):791-6. doi: 10.1200/JCO.2002.20.3.791. PMID: 11821462.
  6. Kruiswijk AA, van de Sande MAJ, Haas RL, van den Akker-van Marle EM, Engelhardt EG, Marang-van de Mheen P, van Bodegom-Vos L; VALUE-PERSARC research group. (Cost-)effectiveness of an individualised risk prediction tool (PERSARC) on patient's knowledge and decisional conflict among soft-tissue sarcomas patients: protocol for a parallel cluster randomised trial (the VALUE-PERSARC study). BMJ Open. 2023 Nov 2;13(11):e074853. doi: 10.1136/bmjopen-2023-074853. PMID: 37918933; PMCID: PMC10626817.
  7. Mariani L, Miceli R, Kattan MW, Brennan MF, Colecchia M, Fiore M, Casali PG, Gronchi A. Validation and adaptation of a nomogram for predicting the survival of patients with extremity soft tissue sarcoma using a three-grade system. Cancer. 2005 Jan 15;103(2):402-8. doi: 10.1002/cncr.20778. PMID: 15578681.
  8. Rueten-Budde AJ, van Praag VM, van de Sande MAJ, Fiocco M; PERSARC Study Group. External validation and adaptation of a dynamic prediction model for patients with high-grade extremity soft tissue sarcoma. J Surg Oncol. 2021 Mar;123(4):1050-1056. doi: 10.1002/jso.26337. Epub 2020 Dec 17. PMID: 33332599; PMCID: PMC7985864.
  9. Smolle MA, Sande MV, Callegaro D, Wunder J, Hayes A, Leitner L, Bergovec M, Tunn PU, van Praag V, Fiocco M, Panotopoulos J, Willegger M, Windhager R, Dijkstra SPD, van Houdt WJ, Riedl JM, Stotz M, Gerger A, Pichler M, Stöger H, Liegl-Atzwanger B, Smolle J, Andreou D, Leithner A, Gronchi A, Haas RL, Szkandera J. Individualizing Follow-Up Strategies in High-Grade Soft Tissue Sarcoma with Flexible Parametric Competing Risk Regression Models. Cancers (Basel). 2019 Dec 21;12(1):47. doi: 10.3390/cancers12010047. PMID: 31877801; PMCID: PMC7017264.
  10. Squires MH, Ethun CG, Donahue EE, Benbow JH, Anderson CJ, Jagosky MH, Manandhar M, Patt JC, Kneisl JS, Salo JC, Hill JS, Ahrens W, Prabhu RS, Livingston MB, Gower NL, Needham M, Trufan SJ, Fields RC, Krasnick BA, Bedi M, Votanopoulos K, Chouliaras K, Grignol V, Roggin KK, Tseng J, Poultsides G, Tran TB, Cardona K, Howard JH. Extremity Soft Tissue Sarcoma: A Multi-Institutional Validation of Prognostic Nomograms. Ann Surg Oncol. 2022 May;29(5):3291-3301. doi: 10.1245/s10434-021-11205-5. Epub 2022 Jan 11. PMID: 35015183.
  11. Van Praag VM, Rueten-Budde AJ, Jeys LM, Laitinen MK, Pollock R, Aston W, van der Hage JA, Dijkstra PDS, Ferguson PC, Griffin AM, Willeumier JJ, Wunder JS, van de Sande MAJ, Fiocco M. A prediction model for treatment decisions in high-grade extremity soft-tissue sarcomas: Personalised sarcoma care (PERSARC). Eur J Cancer. 2017 Sep;83:313-323. doi: 10.1016/j.ejca.2017.06.032. Epub 2017 Aug 8. PMID: 28797949.
  12. Voss RK, Callegaro D, Chiang YJ, Fiore M, Miceli R, Keung EZ, Feig BW, Torres KE, Scally CP, Hunt KK, Gronchi A, Roland CL. Sarculator is a Good Model to Predict Survival in Resected Extremity and Trunk Sarcomas in US Patients. Ann Surg Oncol. 2022 Feb 27. doi: 10.1245/s10434-022-11442-2. Epub ahead of print. PMID: 35224688.

Evidence table for prediction modelling studies (based on CHARMS checklist)

Study reference

Study characteristics

Patient characteristics

Candidate predictors

Model development, performance and evaluation

 

Outcome measures and results

Comments

Interpretation of model

Kattan, 2002

 

Development MSKCC model

 

 

Source of data and date: prospective cohort, July 1982 through May 2000

 

Setting/ number of centres and country: single institution, NY, USA

 

Funding and conflicts of interest:

Supported in part by grant no. RPG-00-202-01-CCE (to M.W.K.) from the American Cancer Society and grant no. P0-CA-47179-11 (to M.F.B.) from the National Cancer Institute.

 

COI not reported.

Recruitment method: consecutive

 

Inclusion criteria:

Adult patients (> 16 years of age) who underwent treatment for primary soft tissue sarcoma at Memorial Sloan-Kettering Cancer Center.

 

Exclusion criteria:

Patients who presented with local or systemic recurrence were excluded from this study.

 

Treatment: All patients were treated with surgical resection. Some patients received adjuvant chemotherapy or radiation at the discretion of the multidisciplinary soft tissue sarcoma group or as part of clinical trials. Because treatment was not prospectively randomized but included both patients prospectively randomized in trials and those given standard of care based on prognosis, treatment variables were omitted from modeling.

 

Participants:

N= 2,136

 

Mean age:

50.9 years

 

Sex: % M / % F

Not reported.

 

Age:
Age at diagnosis

 

Tumor size:

≤5, 5 to 10, or > 10 cm

 

Histologic grade:

High or low

 

Histologic subtype: fibrosarcoma, leiomyosarcoma, liposarcoma, malignant fibrous histiocytoma, malignant peripheral nerve

tumor, synovial, or other.

 

Tumor depth:

superficial or deep

 

Tumor site:

Upper extremity, lower extremity, visceral, thoracic or trunk, retro intraabdominal,

or head or neck.

 

Missing data:

Patients whose sarcoma site was skin (n=25) were excluded. Patients with one or more missing values (n=139) were omitted, leaving 2,163 patients for analysis.

Development

Modelling method: Three nomogram development approaches were compared: Kaplan-Meier, recursive partitioning, and Cox regression.

 

The Cox regression model was used to develop the nomogram.

 

Performance

Calibration measures:

‘excellent’ calibration according to authors, shown in calibration plot.

 

Discrimination measures and 95%CI:

C-index: 0.77

 

Classification measures:

Not reported.

 

Evaluation

Method for testing model performance: internal.

 

Type of outcome: single

 

Definition and method for measurement of outcome:

Disease-specific survival rates, death from sarcoma or treatment complication was considered an event.

 

Endpoint or duration of follow-up:

Until death, maximum follow-up  18.1 years

 

Number of events /outcomes:

The median follow-up overall and for the patients still alive was 3.2 and 4.0 years; the 5- and 10-year disease-specific death probabilities were 25% (95% CI, 23% to 27%) and 35% (95% CI, 32% to 38%) respectively.

 

RESULTS

Multivariable model:

Age at diagnosis

Tumor size (< 5, 5 to 10, or > 10 cm)

Histologic grade (high or low), in Mariani 2005 changed to FNCLCC-grade (1-3)

Histologic subtype (fibrosarcoma, leiomyosarcoma, liposarcoma, malignant fibrous histiocytoma, malignant peripheral nerve tumor, synovial, or other)

Depth (superficial or deep)

Site (upper extremity, lower extremity, visceral, thoracic or trunk, retro intraabdominal, or head or neck)

 

No effect sizes reported.

Interpretation: confirmatory.

 

Authors’ conclusion

In conclusion, the nomogram estimates the probability that the patient will die of sarcoma within 12 years, assuming he or she does not die of another cause first. Such probability estimates may be useful for patient counseling, follow-up scheduling, and clinical trial eligibility determination.

Eilber, 2004

 

MSKCC, external validation Kattan 2002

Source of data and date: prospectively recorded hospital data, between 1975 and 2002.

 

Setting/ number of centres and country: department of surgery, University of California–Los Angeles (UCLA; Los Angeles, CA)

 

Funding and conflicts of interest:

“Supported by National Institutes of Health Program Project Grant P01CA47179 (M.F.B.), a Kristen Ann Carr Fellowship (F.C.E.), and American Cancer Society Grant RPG-00-202-01-CCE (M.W.K.).”

 

COI not reported.

Recruitment method: consecutive

 

Inclusion criteria: patients who underwent treatment for primary STS at UCLA.

 

Exclusion criteria: Patients who presented with locally recurrent or metastatic disease were excluded from the analysis.

All patients with STS who were treated with an ifosfamide-based chemotherapy protocol (n = 238 between 1990 and 2002) were excluded, due to evidence that ifosfamide-based chemotherapy is associated with improved survival in patients with high-risk primary extremity STS.

 

Treatment: All patients had their primary tumors completely surgically resected at UCLA. A significant number of patients received adjuvant radiation therapy and/or adjuvant chemotherapy. Adjuvant therapy was administered at the discretion of the multidisciplinary sarcoma research group or as part of a clinical trial.

 

Participants:

929 patients

 

Mean age:

49 years

 

Sex: % M / % F

NR

 

Other important characteristics:

 

Tumor grade

Low: 272 (29%)

Intermediate: 200 (21%)

High: 457 (50%)

N/A (external validation only)

Development

N/A

 

Performance

Calibration measures and 95%CI: calibration plots reported for nomogram with and without patients with intermediate grade disease. Model is considered to be very well calibrated according to the authors.

 

Discrimination measures and 95%CI:

C-index 0.76

 

Classification measures: NR

 

Evaluation

Method for testing model performance: separate external validation

 

Type of outcome: single

 

Definition and method for measurement of outcome: 12-year disease specific survival. Disease-specific survival was defined as the time from surgery to death caused by disease or to last follow-up.

 

Endpoint or duration of follow-up: NR.

 

Number of events/outcomes:

With median follow-up periods of 48 months for all patients and 60 months for surviving patients, the observed 5-year and 10-year disease-specific survival rates were 77% (95% CI, 74– 80%) and 71% (95% CI, 67–75%), respectively.

 

RESULTS

Multivariable model:

MSKCC model from Kattan 2002 used.

Interpretation: confirmatory.

 

Authors’ conclusion

In conclusion, the MSKCC Sarcoma Nomogram was found to yield accurate survival predictions when applied to an external cohort consisting of patients who were treated at UCLA.

Mariani, 2005

 

MSKCC adaptation model Kattan 2002

Source of data and date:

Data from institute, between January 1980 and December 2000

 

Setting/ number of centres and country: the Istituto Nazionale

per lo Studio e la Cura dei Tumori (INT) (Milan, Italy).

 

Funding and conflicts of interest: NR

Recruitment method: consecutive

 

Inclusion criteria:

patients with localized extremity STS underwent

surgery with curative intent, who presented with primary disease

 

Exclusion criteria:

-

 

Treatment:

All surgical resections were macroscopically complete, which we defined as the absence of macroscopic residual disease after surgical excision of the tumor. Adjuvant radiation therapy was delivered to 237 patients (37%). External beam radiation was used in all such patients, and the doses ranged from 45 grays (Gy) to 65 Gy (median, 57 Gy). Adjuvant chemotherapy (mainly anthracycline-based regimens associated with ifosfamide) was given to 114 patients (18%) at the discretion of the multidisciplinary STS group or as part of clinical trials.

 

Participants:

642 patients

 

Mean age:

47.7 years

 

Sex: % M / % F

52/48

 

Other important characteristics:

 

Histologic grade:

Grade 1: 180 (28%)

Grade 2: 170 (26%)

Grade 3: 292 (46%)

 

Predictors same as MSKCC model Kattan 2002, only histologic grade 1-3 instead of high vs low.

 

Missing data: NR

Development

Modelling method: For MSKCC model testing and revision, we adopted the approach of “validation by calibration”, Cox model.

 

Performance

Calibration measures and 95%CI:

“Graphic comparison of observed and predicted sarcoma-specific survival curves showed that predictions by the nomogram were quite accurate, within 10% of actual survival for all prognostic strata. Statistical analysis showed that such predictions could be improved by employing approximately 25% shrinkage to achieve good calibration”

 

Discrimination measures and 95%CI:

C-statistic: 0.76

 

Classification measures: NR

 

Evaluation

Method for testing model performance:

“To account for possible over fitting, we calculated the degree of shrinkage of Cox model regression coefficients and the optimism in the estimated c statistic by means of bootstrap”

Type of outcome: single

 

Definition and method for measurement of outcome:

10-year extremity STS-specific death: “Survival time, which was computed from the date of surgery to the date of death or last follow-up, was censored for living patients and for patients who died of causes unrelated to STS, because we modeled disease-specific death.”

 

Endpoint or duration of follow-up: 120 months

 

Number of events/outcomes:

There were 176 deaths overall; of these, 143 deaths (81%) were due to sarcoma and, thus, contributed to the current analysis.

 

RESULTS

Multivariable model:

Only HR reported for adjusted predictor.

 

Histologic grade

Grade 2 vs. Grade 1 HR 4.51 (95% CI 1.99 to 10.2)

Grade 3 vs. Grade 1 HR 8.93 (95%CI 4.14 to 19.3)

 

Interpretation: confirmatory

 

Authors’ conclusion

In conclusion, the current study confirmed that the MSKCC nomogram is a valuable tool for individual prognostic assessment. However, some degree of adjustment seems useful for improving the quality of predictions. This hypothetically may reflect either statistical “over fitting” in the original model, weaker prognostic effect of covariates in extremity STS compared with STS in other sites, the application of a three-grade system instead of two-grade system, or some combination of the above mechanisms. The revised nomogram incorporates such an adjustment of predictions, and it is proposed as an extension in extremity STS of the MSKCC nomogram whenever histologic grade is classified according to the FNCLCC system, which is now the system used most widely all over the world.

Squires 2022

 

External validation MSKCC (Mariani 2005) / Sarculator (Callegaro 2016)

Source of data and date: U.S. Sarcoma Collaborative (USSC) database, from 2000 to 2017

 

Setting/ number of centres and country: nine high-volume academic institutions across the United States

 

Funding and conflicts of interest:

 

FUNDING This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

 

DISCLOSURES The authors have no financial or conflict of interest disclosures.

Recruitment method: consecutive

 

Inclusion criteria: all patients who underwent

resection of primary extremity STS. Patients aged 18 years or older who underwent curative intent resection of primary extremity

STS were included.

 

Exclusion criteria:

Histologies excluded

from the original Sarculator nomogram development study were also excluded in the current analysis: desmoid fibromatosis, peripheral primitive neuroectodermal tumor (PPNET), alveolar or embryonal rhabdomyosarcoma, dermatofibrosarcoma protuberans, and well-differentiated liposarcoma.

 

Patients with metastatic or recurrent

disease were excluded.

 

Treatment:

All patients underwent curative intent resection of primary extremity STS.

 

Perioperative

Chemotherapy (n=313 (24%)) and radiation (n=700 (53%)) data also were collected.

 

Participants:

N=1,326

 

Median age [IQR]: 59 [46–71]

 

Sex: % M / % F

54/46

 

N/A (external validation only)

Development

N/A

 

Performance

Calibration measures:

Calibration plots: The calibration plots showed good predictability according to the authors for 5- and 10-year OS using the Sarculator nomogram.

 

The calibration plots for DSS demonstrated similarly good calibration using the MSKCC nomogram.

 

Discrimination measures and 95%CI:

Sarculator: The C-indices for 5- and 10-year OS were 0.72 (95% CI: 0.70–0.75) and 0.73 (95% CI: 0.70–0.75).

MSKCC: C-indices for 4-, 8-, and 12-year of 0.71 (95% CI: 0.68–0.75)

 

Classification measures:

NR

 

Evaluation

Method for testing model performance:

 

Type of outcome: single

 

Definition and method for measurement of outcome:

Sarculator: overall survival

MSKCC: disease-specific survival

 

Endpoint or duration of follow-up: NR

 

Number of events/outcomes:

Median follow-up time was 34 months. Median OS was 173 months (IQR, 128 months-MNR), with estimated 5- and 10-year OS of 70% and 58%,

respectively.

 

RESULTS

Multivariable model:

N/A (external validation)

 

Alternative presentation of final model:

N/A (external validation)

 

Interpretation: confirmatory.

 

Authors’ conclusion:

In conclusion, the Sarculator and MSKCC nomograms were both found to have good discriminative and prognostic ability within a diverse, modern, multi-institutional U.S. validation cohort of patients undergoing resection of primary extremity STS. Ongoing incorporation of these prognostic nomograms into the clinical management of extremity STS patients appears warranted.

 

 

Sampo, 2012

 

Development and external validation SAM-model

Source of data and date:

Patients referred during 1987–2002

 

Swedish database: 25-year period 1973–1997

 

Setting/ number of centres and country:

Helsinki University Central Hospital, Finland, external validation from Lund University Hospital register, Sweden

 

Funding and conflicts of interest:

 

The study was supported by the Helsinki University Central Hospital Research Funds, Finnish Cancer Society, and the Sigrid Juselius Foundation. Dr M Sampo was supported by grants from the K Albin Johansson Foundation, Finska Läkaresällskapet, and Duodecim Foundation.

 

COI not reported.

Recruitment method: consecutive

 

Inclusion criteria:

All patients referred for non-metastatic, primary or locally

recurrent STS of the extremities or trunk wall to the Soft Tissue Sarcoma Group between August 1987 and December 2002 are included.

 

Exclusion criteria:

Exclusion criteria comprised: extra skeletal osteosarcoma,

chondrosarcoma, Ewing/ PNET family tumour, angiosarcoma, alveolar soft tissue sarcoma, epithelioid sarcoma, clear cell sarcoma,

atypical lipoma/grade I liposarcoma, dermatofibrosarcoma protuberans or preoperative radiation therapy. A total of 15 patients with chemotherapy were also excluded.

 

Treatment:

The primary treatment in all cases was a surgical resection. If the preoperative investigations indicated that adequate surgical margins were not achievable, surgery aimed at marginal surgical margins with postoperative radiation therapy. The treatment protocol recommended, following intralesional surgery, a reoperation when feasible.

 

Participants:

N=294

Validation database, N=354

 

Mean age (range)

57 (16-92)

Validation database 63 (17-96)

 

Sex: % M / % F

52/48

Validation database: 56/44

Necrosis:

Absent or present.

 

Vascular invasion:

Absent or present.

 

Tumor size:

In cm, recorded as the largest diameter of tumor in the surgical specimen reported by the original pathologist.

 

Histological grade:

The pathologist  assigned the histological malignancy grade of the tumor based on a four-tiered grading scale modified from Broders et al (1939) and

Angervall et al (1986). Grades 1 and 2 are low grades and 3 and 4 high grades.

 

Tumor depth:

Subcutaneous tumors with or without cutaneous

extension but without involvement of the deep fascia were defined superficial, all others deep.

 

Tumor location:

Extremity or axis of body

 

Missing data:

In 84 cases, we were unable to retrieve the original histological slides leaving 294 tumours to analysis. Demographic data for

missing cases was similar except for histological subtype.

Development

Modelling method: Cox regression multivariate model

 

 

Performance

Calibration measures and 95%CI:

Calibration plots reported: “A good concordance is seen in the groups with a predicted 10-year survival of over 50%, whereas a slight underestimation is observed in the groups predicted to have the lowest survival.”

 

Discrimination measures and 95%CI:

AUC: 0.81 (95% CI 0.75–0.87)

C-index: 0.79

 

Validation series:

AUC: 0.77 (95% CI 0.72–0.82)

C-index: 0.77

 

Classification  measures:

Compared to SIN model: when the patients were classified into three categories (cutoff at tertiles) on the basis of their predicted 10-year sarcoma-specific survival, the net reclassification improvement (NRI 0.12, P=0.03) is significant as well as the integrated discrimination improvement (IDI 0.03, P=0.0003

 

Evaluation

Method for testing model performance: external

Type of outcome: single

 

Definition and method for measurement of outcome:

Sarcoma-specific survival

(SSS) was calculated from the date of the diagnosis to death from sarcoma. Deaths due to other causes than sarcoma were censored.

 

Endpoint or duration of follow-up: Until death.

 

Number of events/outcomes:

The median follow-up for the patients alive at the end of follow-up was 7.2 years (range 0.3–17.5 years). The 5-year sarcoma-specific survival rate was 75% (95% CI 0.70–0.80) and at 10 years 71% (95% CI 0.64–0.76)

 

RESULTS

Multivariable model:

Tumor size per cm: HR 1.10 (1.05 to 1.15)

Necrosis (no/yes): HR 1.60 (0.88 to 2.90)

Vascular invasion (no/yes): HR 1.60 (0.93 to 2.75)

Histological grade (2/3/4, per grade): HR 1.57 (1.11 to 2.22)

Tumor depth (superficial/ deep): HR 3.51 (1.71 to 7.38)

Location (extremity/ axis of body): HR 1.65 (1.01 to 2.68)

Interpretation: exploratory

 

Authors’ conclusion

In conclusion, we have created a new prognostic model to

estimate survival probability in patients with the commonest

subtypes of STS. An external validation was performed showing a good prognostic accuracy and an improvement in accuracy compared with a model with size, necrosis, and vascular invasion only. Our model can be seen as a working formulation to be

refined by validation in further external validation studies and is made available online.

 

Callegaro, 2016

 

Development  and external validation Sarculator model

Source of data and date:

Development cohort: 1 Jan 1994, to 31 Dec 2013

 

External validation, cohort 1: 1 Jan 1996 to 15 May 2012, cohort 2: 1 Jan 1994 to 31 Dec 2013, cohort 3: 1 Jan 2006 to 31 Dec 2013

 

Setting/ number of centres and country:

Development cohort: Istituto Nazionale Tumori (Milan, Italy).

Validation cohorts: Institut Gustave

Roussy (Villejuif, France), Mount Sinai Hospital (Toronto, ON, Canada), Royal Marsden Hospital (London, UK)

 

Funding and conflicts of interest:

The authors declare no competing interests.

 

Funding: None

Recruitment method:

Consecutive

 

Inclusion criteria:

All consecutive adult (aged >18 years) patients with primary (non-recurrent and non-metastatic) soft-tissue sarcomas of the extremities, who had had an operation with curative intent at Fondazione IRCCS Istituto Nazionale dei Tumori (Milan, Italy), between Jan 1, 1994, and Dec 31, 2013, formed the development cohort of the study. We defined soft-tissue sarcomas of the extremities as all tumours arising from the shoulder girdle to the hand (upper extremity) and from the pelvic girdle (excluding endopelvic tumours) to the foot (lower extremity).

 

Exclusion criteria:

We excluded patients with desmoids, soft-tissue Ewing’s sarcoma, alveolar or embryonal rhabdomyosarcoma, dermatofibrosarcoma protuberans, and well differentiated liposarcoma because of the peculiar natural histories and treatment strategies for these cancers.

 

Treatment:

The indication to administer radiotherapy was given by both the operating surgeon and the radiation oncologist when a higher risk of relapse was thought to exist based on clinical grounds. However, no prospectively selected criteria were used to this end. Chemotherapy was given at the discretion of the  multidisciplinary institutional sarcoma board or as part of ongoing clinical trials.

 

Participants:

N Development cohort (DC): 1,452

N Validation cohort (VC)1: 420

N VC2: 1,436

N VC3: 444

 

Median age (IQR):

DC: 54 (40-66)

VC1: 51 (38-62)

VC2: 57 (43-70)

VC3: 63 (50-74)

 

Sex: % M / % F

DC: 54/46

VC1: 51/49

VC2: 56/44

VC3: 57/43

Age at diagnosis:

In years.

 

Tumor size:

In cm.

 

Tumor depth:

Superficial or deep according to the investing fascia.

 

Surgical margins:

We classified all macroscopically complete resections according to the closest surgical margin, which we microscopically categorised as either positive (tumour within 1 mm from the inked surface; R1) or negative (absence of tumour within 1 mm from the inked surface; R0). We excluded macroscopically incomplete resection from the analysis.

 

Tumor grading:

Fédération Française des Centres de Lutte Contre le Cancer (FNCLCC; French Federation of Centers for the Fight against Cancer) Criteria, grades I, II, and III.

 

Histological subtypes:

Based on WHO’s criteria and grouped into nine categories: leiomyosarcoma, dedifferentiated or pleomorphic liposarcoma, myxoid liposarcoma, malignant peripheral nerve sheath tumours, myxofibrosarcoma, synovial sarcoma, undifferentiated pleomorphic sarcoma, vascular sarcoma (including both epithelioid haemangio-endothelioma [mostly grade 1 and occasionally grade 2] and angiosarcoma [only grade 3]), and others.

 

Number of participants with any missing value?

Not reported.

 

How were missing data handled?

Not reported.

 

Development

Modelling method: Multivariable Cox model, backward selection.

 

Performance

Calibration measures and 95%CI:

Well-calibrated according to authors. Calibration plot, Hosmer–Lemeshow calibration test reported.

 

Discrimination measures, C-index (95% CI):

DC: 0.767 (0.743 to 0.789).

VC1: 0.698 (0.638 to 0.754)

VC2: 0.775 (0.754 to 0.796)

VC3: 0.762 (0.720 to 0.806)

 

Classification measures:

Not reported.

 

Evaluation

Method for testing model performance: internal and external

 

Type of outcome: single

 

Definition and method for measurement of outcome:

Overall survival (events: deaths from any cause)

 

Endpoint or duration of follow-up:

The median follow-up was 86 months (IQR 47–123) for the development cohort; 75 months (46–117) for the French validation cohort, 85 months (44–121) for the Canadian validation cohort, and 54 months (30–71) for the UK validation cohort

 

Number of events/outcomes:

In the development cohort, overall survival was 79.9% (95% CI 77.7–82.1) at 5 years and 72.9% (70.2–75.7) at 10 years follow-up. In the validation cohorts, 5-year and 10-year overall survival were 78.1% (95% CI 73.9–82.6) and 68.3% (62.6–74.5) for French patients; 72.7% (70.2–75.2) and 60.2% (57.0–63.5) for Canadian patients; and 72.7% (68.1–77.5) and not estimated (due to the shorter follow-up) for the UK patients.

 

RESULTS

Multivariable model, HR (95% CI):

Age

66 years vs 40 years: 1.58 (1.30–1.93)

 

Tumour size

10 cm vs 4 cm: 2.48 (1.92–3.21)

 

FNCLCC grade

II vs I 2.68 (1.64–4.39)

III vs I 4.25 (2.64–6.84)

 

Histological subtype

Leiomyosarcoma vs myxoid

Liposarcoma: 2.50 (1.51–4.16)

DD/pleom lipo vs myxoid liposarcoma: 1.48 (0.80–2.74)

MPNST vs myxoid liposarcoma: 1.89 (1.06–3.36)

Myxofibrosarcoma vs myxoid

Liposarcoma: 1.64 (0.99–2.70)

Synovial vs myxoid liposarcoma: 2.70 (1.59–4.60)

UPS vs myxoid liposarcoma: 1.27 (0.76–2.11)

Vascular vs myxoid liposarcoma: 5.81 (2.71–12.45)

Other vs myxoid liposarcoma: 1.99 (1.23–3.21)

 

Alternative presentation of final model: Nomogram, free app called Sarculator has been developed

for smartphones and tablets and is distributed via the official app stores

Interpretation: confirmatory

 

Authors’ conclusion

Our nomograms are reliable prognostic methods that can be used to predict overall survival and distant metastases in patients after surgical resection of soft-tissue sarcoma of the extremities. These nomograms can be offered to clinicians to improve their abilities to assess patient prognosis, strengthen the prognosis-based decision making, enhance patient stratification, and inform patients in the clinic.

 

It is important to note that these nomograms only apply to adult patients with primary soft-tissue sarcomas of the extremities, who underwent macroscopically complete surgical resection at multidisciplinary sarcoma centres.

Callegaro 2019

 

Development and external validation of dynamic Sarculator model

 

Source of data and date, setting/ number of centres and country:

All consecutive adult (>18years) patients with primary (non-recurrent, non-metastatic) eSTS surgically treated at Fondazione IRCCS Istituto Nazionale dei Tumori (Milan, Italy), Institut Gustave Roussy (Villejuif, France), Mount Sinai Hospital (Toronto, Canada), and at the Royal Marsden Hospital (London ,UK) from 1994 to 2013 were merged, forming the development cohort. On the Milan series, we developed two static nomograms for OS and DM in 2016. Patients with the same characteristics operated on between 2000 and 2016 at 7 other European referral centers comprised the validation cohort

 

Funding and conflicts of interest:

Recruitment method: consecutive

 

Inclusion criteria:

Adult (>18years) patients with primary (non-recurrent, non-metastatic) eSTS surgically treated. Extremity STS were defined as tumors arising between the shoulder girdle and the hand (upper extremity) and between the pelvic girdle (excluding endopelvic tumours) and the foot (lower extremity).

 

Exclusion criteria:

Patients with well-differentiated liposarcoma, dermatofibrosarcoma protuberans, desmoid-type fibromatosis, Ewing sarcoma and alveolar or embryonal rhabdomyosarcoma were excluded.

 

Patients who underwent macroscopically incomplete (R2) resections were excluded.

 

Treatment:

Patients were operated with curative intent. Radiotherapy (RTx) and/or chemotherapy (CTx) were used according to multidisciplinary guidance or as part of clinical trials. 

 

Participants:

N development cohort (DC): 3,740

N validation cohort (VC): 893

 

Median age (IQR):

DC: 56 (42–69)

VC: 62 (49–73)

 

Sex: % M / % F

DC: 54.8/45.2

VC: 55.3/44.7

 

Predictors (candidate & selected):

In the multivariable Cox landmark OS supermodel, after application of the backward procedure the following variables were excluded from the covariates set: tumor's depth, surgical margin status, CTx administration, RTx administration.

 

The final supermodel included age at surgery, tumor size and its interaction with TLM, grading and its interaction with TLM, histology, and both LR and DM indicator variables. 

Development

Modelling method: The dynamic nomogram was developed using a landmark analysis approach and a multivariable Cox model. A backward procedure based on the Akaike Information Criterion was adopted for variable selection.

 

Performance

Calibration measures:

Calibration plots were reported, good calibration according to authors.

 

Discrimination measures and 95%CI:

In the development series, the Harrell C index was (95% bootstrap confidence interval) 0.776 (0.761–0.790) for predictions calculated at time of primary surgery (TLM=0) and 0.837 (0.822–0.851), 0.845 (0.823–0.862) and 0.834 (0.811–0.859) for predictions calculated at 1 year, 2 years and 3 years after surgery, respectively.

 

In the validation series, the Harrell C index was 0.675 (0.643–0.704) at TLM=0, 0.773 (0.740–0.801) at TLM=12 months, 0.810 (0.775–0.844) at TLM=24 months and 0.796 (0.751–0.834) at TLM=36 months.

 

Classification measures:

NR

 

Evaluation

Method for testing model performance:

Internal and external

Type of outcome: single

 

Definition and method for measurement of outcome:

5-year overall survival at different times during the first three years of follow-up.

 

Endpoint or duration of follow-up: NR

 

Number of events/outcomes:

The median follow-up was (interquartile [IQ] range) 79 months (44–119 months) for the development cohort and 71 months (43–108 months) for the validation cohort. In the development and validation cohorts, respectively, 1003 and 367 patients died. In the development cohort, 5-year OS was 76.0% (74.6–77.5%) and 10-year OS was 66.3% (64.3–68.2%). In the validation cohort 5- and 10-year OS was 59.5% (56.0–63.1%) and 48.0% (43.8–52.6%), respectively. 

 

RESULTS

Multivariable model:

Covariates: HR (95% CI)

Age, years               

 69 vs. 42: 1.80 (1.58,2.05)               

Local recurrence     

 yes vs. no: 5.63 (4.26,7.44)

 

Distant Metastasis   

 yes vs. no: 10.34 (8.74,12.23)

 

Histological subtype

 LMS vs. Myxoid lipo: 1.78(1.26,2.52)

 DD/pleom lipo vs. Myxoid lipo: 1.37 (0.93,2.02)

 MPNST vs. Myxoid lipo: 1.73 (1.16,2.58)       

 Myxofibro vs. Myxoid lipo: 1.05 (0.72,1.53)

 Synovial sarcoma vs. Myxoid lipo: 2.03 (1.43,2.88)               

 UPS vs. Myxoid lipo:1.18 (0.85,1.63)

 Vascular vs. Myxoid lipo: 3.20 (1.85,5.53)

 Other vs. Myxoid lipo: 1.48 (1.07,2.04)

 

Size, cm  

 11 vs. 4 (0): 3.06 (2.53,3.70)

 11 vs. 4 (12): 2.32 (1.92, 2.80)

 11 vs. 4 (24): 1.90 (1.55, 2.32)

 11 vs. 4 (36): 1.65 (1.29, 2.11)

 

FNCLCC grade         

 II vs. I (0): 2.55 (1.75, 3.73)

 II vs. I (12): 2.07 (1.42, 3.01)

 II vs. I (24): 1.63 (1.11, 2.40)

 II vs. I (36): 1.26 (0.82, 1.94)

 III vs. I (0): 4.88 (3.40,7.02)

 III vs. I (12): 2.59 (1.79,3.75)

 III vs. I (24): 1.59 (1.08, 2.33)

 III vs. I (36): 1.09 (0.72,1.67)               

Alternative presentation of final model: dynamic nomogram. The new nomogram has also been incorporated in the app ‘Sarculator’ for smartphones and tablets, which is available for free download.

Interpretation: confirmatory

 

Authors’ conclusion

In conclusion, this new prognostic tool fulfills a need of the oncologist dealing with eSTS patients: being able to objectively counsel patients regarding their personalized residual risk during FU. Patients might be comforted from an improvement in prognosis as the time goes by without events and the update of the prognostic estimate may also support patients’ planning for the future. Moreover, the dynamic prediction informs the physician of how a postoperative event will impact on an individual patient's prognosis quantitatively. Finally, this study paves the way for future FU personalization with possible creation of risk-adapted FU strategies. 

 

 

Voss 2022

 

External validation Sarculator

Source of data and date: the National Cancer Data Base (NCDB) Sarcoma

Participant Use File (PUF) between 2004 and 2017.

 

Setting/ number of centres and country:

The NCDB is a prospectively maintained, national, hospital-based registry that includes data from patients accounting for more than 70% of incident cancer diagnoses at over 1500 Commission on Cancer (CoC)-accredited centers in the USA.

 

Funding and conflicts of interest:

DISCLOSURES None.

Recruitment method: consecutive

 

Inclusion criteria: Patients with soft tissue sarcoma of the extremity or trunk from the National Cancer Data Base (NCDB) Sarcoma Participant Use File (PUF) between 2004 and 2017

were included.

 

Briefly, we included extremity and trunk sites (ICD-O-3 topography codes C471, C472, C476, C491, C492, and C496) with stage I–III disease by AJCC 8th edition staging. The following histologies were included on the basis of their inclusion in the original Sarculator algorithm (ICD-O histology codes in parentheses): leiomyosarcoma (8890, 8891, 8896), liposarcoma [8850, 8855, 8857 (grades 2 and 3 only)], dedifferentiated liposarcoma [8858 (grades 2 and 3 only)], pleomorphic liposarcoma (8854), myxoid liposarcoma (8852–53), malignant peripheral nerve sheath tumor (8540, 8561), myxofibrosarcoma (8840), synovial sarcoma (9040–43), vascular sarcomas (angiosarcoma 8894, 9120; hemangioendothelioma 9130, 9133), undifferentiated pleomorphic sarcoma (8805, 8830), or other sarcoma (8000–01, 8004, 8800–01, 8804, 8810–11, 8813, 8815, 8825, 8895, 9044, 9150, 9170, 9364, 9580, 9581).

 

We included only patients who underwent surgery and had either an R0 (no residual tumor at the primary site) or R1 (microscopic residual tumor) resection as Sarculator was only designed for those who have undergone complete surgical resection.

 

Exclusion criteria:

We excluded those with incomplete grade, treatment, or survival data; those with metastatic disease; and those with a tumor <1 cm or > 35 cm in size (maximal size accepted by Sarculator is 35 cm).

 

Treatment: All patients underwent complete surgical resection.

 

Radiation therapy:

Neoadjuvant: n=1,941 (19.93%)

Adjuvant: 3,856 (39.60%) None: 3,941 (40.47%)

 

Chemotherapy

Neoadjuvant or adjuvant: 1,572 (16.14%)

 

Participants:

N= 9,738

 

Age: N(%)

  • <50: 2,827 (29.03)
  • 50–59: 1,916 (19.68)
  • 60–69: 1,999 (20.53)
  • 70–79: 1,720 (17.66)
  • ≥ 80: 1,276 (13.10)

 

Sex: % M / % F

54.10/45.90

N/A (external validation only)

Development

Modelling method:

N/A

 

Performance

Calibration measures:

Calibration plots: Sarculator tends to slightly overestimate survival for the higher survival quintiles and tends to underestimate the survival for the subgroup with the lowest actual OS

 

Discrimination measures and 95%CI:

C-index of 0.726

 

Classification measures:

NR

 

Evaluation

Method for testing model performance:

External validation

Type of outcome: single

 

Definition and method for measurement of outcome:

Overall survival

 

Endpoint or duration of follow-up: NR/until death

 

Number of events/outcomes:

mean follow-up time of 4.45 years. The 5-year actual OS for the study cohort was 68.9%.

 

RESULTS

Multivariable model: N/A (external validation only)

 

Alternative presentation of final model: N/A (external validation only)

Interpretation: confirmatory.

 

Authors’ conclusion

Sarculator is overall a good predictor of aOS and useful tool for clinicians to aid in survival prognostication, but clinicians should be aware of subpopulations for whom Sarculator’s predictions may be stronger or more limited. Future work may focus on enhancing the Sarculator algorithm specifically for US patients, including the incorporation of predictive demographic variables.

Van Praag, 2017

 

Development and internal validation PERSARC model

Source of data and date: retrospective cohort, January 2001 – December 2014

 

Setting/ number of centers and country: multicenter study, five international

sarcoma centers

 

Conflict of interest statement: None declared.

 

Funding: This study was supported by the Dutch Cancer Society - KWF Kankerbestrijding.

 

Role of the funding source: This funding source had no role in the design of this study as well as any role during its execution, analyses, interpretation of the data, in the writing of the report or decision to submit the article for publication.

Recruitment method: consecutive series of patients who underwent surgery

 

Inclusion criteria:

Eligible diagnoses included high grade (FNCLCC grade III) angiosarcoma, malignant peripheral nerve sheath tumor, synovial sarcoma, spindle cell sarcoma, myxofibrosarcoma and (pleomorphic) soft-tissue sarcomas not-otherwise-specified.

 

Exclusion criteria:

Excluded patients include those that were treated without curative intent, had LR or DM within 2 months after primary treatment (ruled out by pre-treatment and follow-up (FU) staging with lung computed tomography (CT) scan), had a tumor in their abdomen, thorax, head or neck or received (neo) adjuvant treatment other than RT or chemotherapy.

 

Treatment received?

 

 

Participants:

N= 766

 

Mean age ± SD:

58.28 ± 19.39

 

Sex: % M / % F

57 / 43

 

Other important characteristics:

 

Age:

Patient age at presentation.

 

Tumor size:

In cm. Maximum diameter at pathologic analysis. In patients that received neoadjuvant RT and/or chemotherapy, tumor size was

defined as maximum diameter measured by CT or MRI before treatment.

 

Depth:

Relative to the investing fascia: deep, superficial, deep and superficial.

 

Histology subtype:

Obtained from medical records:

  • Myxofibrosarcoma
  • MPNST
  • Synovial sarcoma
  • Spindle cell sarcoma
  • MFH/UPS
  • other

 

Surgical margin:

  • Intralesional: for tumor cells present at the margin of the resection specimen (<0.1 mm)
  • Marginal: tumor cells found within 0.1 - 2 mm of the margin a
  • Free: tumor cells found at least 2 mm away from the margin

 

RT:

Information from medical records: No RT, neoadjuvant, adjuvant

 

Number of participants with any missing value?

N (%): 72 patients (8.6%) of original 838

 

How were missing data handled?

Patients with missing values were not included in the development of the model.

 

Development

Modelling method:

Outcome OS: multivariate Cox proportional hazards regression model

 

Outcome CILR: Fine and Gray model

 

Performance

Calibration measures and 95%CI: Calibration plots are reported.

 

Discrimination measures and 95%CI:

C-index for OS: 0.677 (95% CI 0.643 to 0.701.

C-index for LR: 0.696 (95% CI 0.629 to 0.743)

 

Classification measures:

NR

 

Evaluation

Method for testing model performance: predictive performance of the prediction

models was assessed internally by using leave-one-out cross validation (CV).

 

Type of outcome: Overall survival (OS), cumulative incidence of local recurrence (CILR)

 

Definition and method for measurement of outcome:

OS: overall survival at 3, 5 and 10 years after surgery

CILR: cumulative incidence of local recurrence in the presence of competing events. LR at 3, 5 and 10 years after surgery

 

Endpoint or duration of follow-up:

Patients visited the outpatient clinic for their scheduled clinical and radiographic FU: every 3-4 months in the first 2-3 years, then every 6 months and after 5 years yearly. It was common that FU was ended after 10 years evidence of no disease.

 

Number of events/outcomes:

OS was estimated to be equal to 63%, 53% and 39% at 3, 5 and 10 years, respectively; LR was estimated to be equal to 13.3%, 15.1% and 17.2% at 3, 5 and 10 years, respectively.

 

RESULTS

Multivariable model OS:

Age (unit increase of 10 years): HR 1.195 (1.116 to 1.268)

Size (unit increase of 1 cm): HR 1.068 (1.052 to 1.085)

Depth (relative to investing fascia)

Superficial vs deep: HR 0.813 (0.591 to 1.117)

Deep and superficial vs deep: HR 1.110 (0.736 to 1.674)

Histology

MPNST vs myxofibrosarcoma: HR 1.422 (0.989 to 2.044)

Synovial sarcoma vs myxofibrosarcoma: HR 1.261 (0.869 to 1.831)

Spindle cell sarcoma vs myxofibrosarcoma: HR 1.211 (0.884 to 1.661)

MFH/UPS vs myxofibrosarcoma: HR 1.293 (0.890 to 1.876)

Margin

0.1 to 0.2 mm vs 0 mm: HR 0.786 (0.599 to 1.033)

> 2 mm vs 0 mm: HR 0.711 (0.524 to 0.964)

RT

Neoadjuvant vs no RT: HR 0.548 (0.399 to 0.753)

Adjuvant vs no RT: HR 0.638 (0.486 to 0.837)

 

Multivariable model LR:

Age (unit increase of 10 years): sHR 1.051 (0.942 to 1.184)

Size (unit increase of 1 cm): sHR 1.031 (1.001 to 1.063)

Depth (relative to investing fascia)

Superficial vs deep: sHR 0.907 (0.536 to 1.535)

Deep and superficial vs deep: sHR 0.563 (0.198 to 1.604)

Histology

MPNST vs myxofibrosarcoma: sHR 1.079 (0.580 to 2.009)

Synovial sarcoma vs myxofibrosarcoma: sHR 0.779 (0.379 to 1.602)

Spindle cell sarcoma vs myxofibrosarcoma: sHR 0.979 (0.570 to 1.681)

MFH/UPS vs myxofibrosarcoma: sHR 1.096 (0.557 to 2.156)

Margin

0.1 to 0.2 mm vs 0 mm: sHR 0.635 (0.406 to 0.992)

> 2 mm vs 0 mm: sHR 0.282 (0.159 to 0.500)

RT

Neoadjuvant vs no RT: sHR 0.312 (0.146 to 0.668)

Adjuvant vs no RT: sHR 0.700 (0.417 to 1.175)

Interpretation: exploratory

 

Authors’ conclusion

In this study, we developed the PERSARC model which uniquely presents clinicians with the possibility to accurately predict outcome of OS and CILR and compare different treatment modalities, for patients with high-grade ESTS that undergo surgical resection with curative intent.

 

 

Smolle, 2019

 

Development and validation of dynamic PERSARC model for local recurrence

Source of data and date: prospectively maintained STS databases at 5 participating

tertiary sarcoma referral centers (2 for validation cohort), between January 1994 and October 2014 for the test cohort and between January 2000 and December 2013 for the validation cohort.

 

Setting/ number of centres and country: multicenter study, country NR

 

Funding and conflicts of interest:

Funding: This work was supported by the Dutch Cancer Society (DCS)—KWF Kankerbestrijding [UL2015-8028]. The funding source had no role in the design of this study; execution, analyses, and interpretation of the data; report writing; or decision to submit the article for publication.

 

Conflicts of Interest: Author van de Sande reports grants from Daiichi Sankyo, outside the submitted work. The remaining authors (Maria A Smolle, Dario Callegaro, JayWunder, Andrew J. Hayes, Lukas Leitner, Marko Bergovec, Per-Ulf Tunn, Veroniek van Praag, Marta Fiocco, Joannis Panotopoulos, Madeleine Willegger, Reinhard Windhager, Sander Djikstra, Winan J van Houdt, Jakob M Riedl, Michael Stotz, Armin Gerger, Martin Pichler, Herbert Stöger, Bernadette Liegl-Atzwanger, Josef Smolle, Dimosthenis Andreou, Andreas Leithner, Alessandro Gronchi, Rick L. Haas, and Joanna Szkandera) have no conflicts of interest to declare.

Recruitment method: consecutive

 

Inclusion criteria: Patients with primary nonmetastatic

high-grade (G2/3) eSTS managed with surgery at a curative intent were included in the test cohort, with patient information deriving from prospectively maintained STS databases at 5 participating tertiary sarcoma referral centers.

 

Extremity STS were defined as tumors from

the shoulder to the fingers (=upper limb) and from the pelvic girdle, excluding intrapelvic STS, to the foot (=lower limb).

 

Exclusion criteria:

Patients with missing information on oncological follow-up (i.e., development of LR/DM) had to be excluded (n = 42).

 

Treatment:

All patients underwent surgery at a curative intent. (Neo-)adjuvant RTX and CTX had been administered in case a high risk of LR or DM had been anticipated by the multidisciplinary tumor board, according to locally preferred guidelines, LR was defined as a radiologically and/or histologically confirmed tumor recurrence.

 

Participants:

Development cohort (DC) N=1,931

Validation cohort (VC) N=1,085

 

Median age (IQR):

DC: 59 years (44.7 to 70)

VC: 61 years (47 to 74)

 

Sex: % M / % F

DC: 53.8/46.2

VC: 56.7/43.3

 

Gender, tumor size, histological subtype (except for angiosarcoma/vascular sarcoma (p = 0.127) and dedifferentiated/ pleomorphic liposarcoma (p = 0.254), margins, neoadjuvant and adjuvant RTX, as well as adjuvant CTX (all p < 0.05) had a significant influence on risk of LR in the stepwise backward selection of the Fine and Gray model. Grading as a time-dependent effect was kept in the model (p = 0.108), while age (p = 0.082) and neoadjuvant CTX (p = 0.214) were excluded. Consequently, gender, grading, tumor size, neoadjuvant and adjuvant RTX, histological subtype, and adjuvant CTX were included in the flexible parametric competing risk regression model

Development

Modelling method:  Royston and Parmar approach to fit a flexible parametric competing risk regression model in order to estimate the risk of LR and DM, with death as the competing event; variable selection for the LR and DM models was based on a stepwise backward procedure

using a multivariable Fine and Gray model

 

Performance

Calibration measures and 95%CI:

The authors concluded that calibration plots for LR using test and validation cohort showed that the LR model tended to underestimate the actual patient risk, especially in the validation cohort.

 

Discrimination measures and 95%CI:

The Harrell C index for LR was equal to 0.705 and 0.683 for the internal and external cohort, respectively.

 

Classification measures:

NR

 

Evaluation

Method for testing model performance:

Internal and external

Type of outcome: single. (second model with outcome DM not included in present analysis)

 

Definition and method for measurement of outcome:

Local recurrence, defined as a radiologically and/or histologically confirmed tumor recurrence.

 

Endpoint or duration of follow-up: until death/NR

 

Number of events/outcomes: NR

 

RESULTS

Multivariable model:

Local Recurrence, coefficient (95% CI)

 

Gender    Male 1

Female 0.698 (0.529 0.921)

Grading    G2 1

G3 0.816 (0.598 1.113)

Tumor size 1.026 (1.004 1.049)

Margins    R0 1

R1/R2 2.761 (2.021 3.774)

Histology

Myxoid Liposarcoma 1

MPNST 4.227 (1.837 9.729)

Myxofibrosarcoma 4.156 (2.056 8.400)

Synovial Sarcoma 3.116 (1.429 7.014)

UPS 3.373 (1.620 7.025)

Angiosarcoma/Vascular Sarcoma 3.316 (0.981 12.341)

Dedifferentiated/Pleomorphic Liposarcoma 1.727 (0.719 4.143)

Leiomyosarcoma 2.779 (1.294 5.966)

Others 2.385 (1.123 5.065)

 

Neoadjuvant RTX

No 1

Yes 0.298 (0.178 0.494)

Adjuvant RTX

No 1

Yes 0.603 (0.447 0.814)

Adjuvant CTX

No 1

Yes 1.711 1.154 2.538

Restricted cubic spline 1 2.104 (1.851 2.392)

Restricted cubic spline 2 1.332 (1.230 1.442)

Restricted cubic spline 3 0.980 (0.937 1.026)

Restricted cubic spline for time-dependent effect of grading 0.944 (0.813 1.096)

Constant 0.048 (0.024 0.097)

 

 

Alternative presentation of final model: models

included in the updated version of the PERSARC app for Individualized Sarcoma Care and follow-up.

Interpretation: confirmatory, i.e. model useful for practice versus exploratory, i.e. more research needed.

 

Authors’ conclusion

In conclusion, the present study provides a model to individually predict patient’s LR and DM risks during follow-up, applying a flexible parametric competing risk regression approach. These models are at the moment being included in the updated version of the PERSARC app for Individualized Sarcoma Care and follow-up. Although a risk-threshold of 4% for LR and 2% for DM was chosen in the present study, the “optimal” threshold upon which an individual patient should undergo imaging with MRI, chest-CT, or CXR, is still subjected to experts’ opinion and should be further discussed with patients concerned.

Rueten-Budde 2018

 

Development and internal validation of dynamic PERSARC model

Source of data and date: Clinical data were collected between January 1st, 2000 and December 31st, 2014, at 14 different international specialized sarcoma centers.

 

Setting/ number of centres and country: Included centers are Leiden University Medical Center (Leiden, the Netherlands), Royal Orthopaedic Hospital (Birmingham and Stanmore, UK), Netherlands Cancer Institute (Amsterdam, the Netherlands), Mount Sinai Hospital (Toronto, Canada), the Norwegian Radium Hospital (Oslo, Norway), Aarhus University Hospital (Aarhus, Denmark), Skane University Hospital (Lund, Sweden), and Medical University Graz (Graz, Austria).

 

Funding and conflicts of interest:

This work has been supported by the Dutch Cancer Society (DCS) – KWF Kankerbestrijding [UL2015-8028]. The funding source had no role in the design of this study, execution, analyses, interpretation of the data, report writing or decision to submit the article for publication.

 

Authors Rueten-Budde, van Praag and Fiocco have nothing to disclose. Author van de Sande reports grants from Daiichi Sankyo, outside the submitted work

Recruitment method: consecutive

 

Inclusion criteria:

Patients were selected from each hospital's own sarcoma registry based on histological diagnosis. Eligible diagnoses included high-grade (FNCLCC grade II and III [11]) angiosarcoma, malignant peripheral nerve sheath tumor (MPNST), synovial sarcoma, spindle cell sarcoma, myxofibrosarcoma, liposarcoma, leiomyosarcoma, malignant fibrous histiocytoma/ undifferentiated pleomorphic sarcoma (MFH/UPS), (pleomorphic) soft tissue sarcomas not-otherwise-specified (NOS), malignant rhabdoid tumor, alveolar soft part sarcoma, epithelioid sarcoma, clear cell sarcoma, rhabdomyosarcoma (adult form) and conventional fibrosarcoma.

 

Exclusion criteria:

Patients were excluded if they were initially treated without curative intent, presented with LR or DM, had Kaposi's or rhabdomyosarcoma (pediatric form), had a tumor in their abdomen, thorax, head or neck, or received isolated limb perfusion as (neo-) adjuvant treatment.

 

Treatment:  All patients underwent surgery.

 

Radiotherapy (%)

  • No radiotherapy 916 (41.0)
  • Neoadjuvant 265 (11.9)
  • Adjuvant 1004 (45.0)
  • Unknown 47 ( 2.1)

 

Chemotherapy (%)

  • No chemotherapy 1876 (84.1)
  • Neoadjuvant 98 ( 4.4)
  • Adjuvant 228 (10.2)
  • Unknown 30 ( 1.3)

 

Participants:

N=2,232

 

Mean age:

60.86 (SD 18.74)

 

Sex: % M / % F

53.9/46.1

In the following, baseline and time-dependent variables that were included into the dynamic model are defined. Predictors measured at baseline were: age (years), tumor size by the largest diameter measured at pathological examination (centimeters), tumor depth in relation to investing fascia (deep/superficial), and histological subtype according to WHO classification . Radiotherapy (yes/no) was further specified as being either neoadjuvant or adjuvant treatment. Chemotherapy was not included in the model because it was seldom given to patients for primary tumors. Surgical margins were categorized according to the categorical R-system: ‘R0’ for a negative margin and ‘R1-2’ for a positive margin with tumor cells in the inked surface of the resection margin. The potential effect modifier grade was not included, since all included patients had high-grade tumors. Local recurrence was defined as the presence of pathologically and/or radiologically confirmed tumor at the site where it was originally detected, more than two months after primary surgery. Distant metastases were defined as

radiological evidence of systemic spread of tumor distant from the

primary tumor site.

Development

Modelling method: proportional

landmark supermodel, backward selection procedure

 

Performance

Calibration measures and 95%CI:

Good model calibration was indicated by a heuristic shrinkage factor equal to 0.996.

 

Discrimination measures and 95%CI: The discriminative ability of the model was

measured with dynamic cross-validated C-indices of 0.694, 0.777, 0.813, 0.810, 0.798, and 0.781 at 0-, 1-, 2-, 3-, 4-, and 5-years after surgery respectively.

 

Classification measures:

NR

 

Evaluation

Method for testing model performance:

Internal validation

Type of outcome: single (dynamic)

 

Definition and method for measurement of outcome: Dynamic overall survival, defined as time from surgery to death from any cause or last recorded follow-up; dynamic probability of surviving an additional five years from a prediction time point tp called dynamic overall survival (DOS).

 

Endpoint or duration of follow-up: until death/NR

 

Number of events/outcomes:

Median follow-up of 6.42 years (95% confidence interval: 6.17–6.72). In total 1034 patients died, 143 patients developed LR, 556 DM, and 159 developed both.

 

 

RESULTS

Multivariable model:

Coefficients: HR (95% CI)

 

Covariates with time-constant effects

Age (ref: 60 years, per 10 years)

Age 1.444 (1.381–1.510)

Age2 1.065 (1.048–1.082)

 

Tumor size (ref: 0 cm, per 1 cm)

Size 1.120 (1.072–1.169)

Size2 0.997 (0.996–0.999)

 

Tumor depth (superficial vs. deep)

0.784 (0.654–0.940)

 

Radiotherapy (RT)

No RT 1

Neoadjuvant 0.773 (0.572–1.044)

Adjuvant 0.903 (0.763–1.068)

 

Local recurrence (yes vs. no)

1.998 (1.622–2.461)

 

Distant metastasis (yes vs. no)

7.572 (6.501–8.818)

 

Covariates with time-varying effects

Prediction time (ref: time of surgery, per year)

tp 0.431 (0.330–0.562)

tp2 1.127 (1.066–1.192)

 

Histology Constant

Myxofibrosarcoma 1

MPNST 1.807 (1.270–2.571)

Synovial sarcoma 1.323 (0.971–1.801)

Sarcoma – NOS 1.181 (0.784–1.781)

Spindle cell sarcoma 0.819 (0.638–1.051)

MFH/UPS 1.000 (0.789–1.269)

Other 1.229 (0.828–1.825)

 

Histology Linear time-varying effect

Myxofibrosarcoma 1

MPNST 0.916 (0.692–1.212)

Synovial sarcoma 1.368 (1.084–1.727)

Sarcoma – NOS 1.067 (0.739–1.540)

Spindle cell sarcoma 1.184 (0.959–1.461)

MFH/UPS 1.256 (1.024–1.540)

Other 1.050 (0.742–1.486)

 

Histology Quadratic time-varying effect

Myxofibrosarcoma 1

MPNST 0.985 (0.930–1.044)

Synovial sarcoma 0.913 (0.864–0.964)

Sarcoma – NOS 0.983 (0.913–1.058)

Spindle cell sarcoma 0.990 (0.947–1.035)

MFH/UPS 0.968 (0.928–1.010)

Other 0.985 (0.913–1.062)

 

Margin Constant

R0 vs. R1-2 0.764 (0.606–0.964)

 

Margin Linear time-varying effect

R0 vs. R1-2 1.417 (1.127–1.783)

 

Margin Quadratic time-varying effect

R0 vs. R1-2 0.947 (0.902–0.993)

 

Alternative presentation of final model: The results of this study will be made freely available through the updated PERsonalized SARcoma Care (PERSARC) mobile application.

Interpretation: confirmatory

 

Authors’ conclusion

The presence of time-varying effects, as well as the effect of local recurrence and distant metastases on survival, suggest the importance of updating predictions during follow-up. This newly developed dynamic prediction model which updates survival probabilities over time can be used to make better individualized treatment decisions based on a dynamic assessment of a patient's prognosis.

Rueten-Budde 2021

 

Update and external validation of dynamic PERSARC model

Source of data and date:

The model development data were augmented for the update and contained data from Leiden University Medical Center, Royal Orthopaedic Hospital, Netherlands Cancer Institute, Mount Sinai Hospital, the Norwegian Radium Hospital, Aarhus University Hospital, Skåne University Hospital, Medical University Graz, Royal Marsden Hospital, Erasmus MC Cancer Institute, Radboud University Medical Center, University Medical Center Groningen, Haukeland University Hospital, Helios Klinikum Berlin‐Buch, MedUni Vienna, Vienna General Hospital, and the EORTC trial 62931, a randomized controlled trial which studied the effect of intensive adjuvant chemotherapy on several outcome measures. External data were provided by Istituto Nazionale dei Tumori. For both, the model development and external cohort data were collected from centers between January 1, 2000, and December 31, 2014. Data from the EORTC trial 62931, which is part of the development cohort, were collected between February 1995, and December 2003.

 

Setting/ number of centres and country: see above

 

Funding and conflicts of interest:

ACKNOWLEDGMENT

This study has been supported by the Dutch Cancer Society (DCS) – KWF Kankerbestrijding (Grant no. UL2015‐8028). The funding source had no

role in the design of this study, execution, analyses, interpretation of the data, report writing, or decision to submit the article for publication.

 

CONFLICT OF INTERESTS

Authors Anja J. Rueten‐Budde, Veroniek M. van Praag, and Marta Fiocco have nothing to disclose. Author Michiel A. J. van de Sande reports grants from Daiichi Sankyo, outside the submitted work.

Recruitment method: consecutive

 

Inclusion criteria:

Selection and exclusion criteria were identical for the model development (update) cohort and the external cohort.

Included eSTS subtypes included high‐grade (FNCLCC Grades II and III) angiosarcoma, malignant peripheral nerve sheath tumor, synovial sarcoma, spindle cellsarcoma, myxofibrosarcoma, liposarcoma, leiomyosarcoma, malignant fibrous histiocytoma/ undifferentiated pleomorphic sarcoma, (pleomorphic) soft tissue sarcomas not‐otherwise‐specified, epithelioid sarcoma, clear cell sarcoma, rhabdomyosarcoma (adult form), conventional fibrosarcoma, giant cell sarcoma, malignant granular cell tumor, unclassified soft tissue sarcoma, and undifferentiated sarcoma.

 

Exclusion criteria:

Patients were excluded if they were initially treated without curative

intent, presented with LR or DM, had Kaposi's or rhabdomyosarcoma (pediatric form), had tumor in their abdomen, thorax, head, or neck, or

received isolated limp perfusion as (neo‐) adjuvant treatment.

 

Treatment: All patients underwent resection.

 

Radiotherapy (%)

No radiotherapy

UC: 1331 (34.8)

VC: 474 (42.7)

Neoadjuvant

UC: 517 (13.5)

VC: 138 (12.4)

Adjuvant

UC: 1878 (49.1)

VC: 499 (44.9)

Unknown

UC: 100 (2.6)

VC: 0 (0.0)

Chemotherapy (%)

No

UC: 3189 (83.4)

VC: 739 (66.5)

Yes

UC: 470 (12.3)

VC: 372 (33.5)

Unknown

UC: 167 (4.4)

VC: 0 (0.0)

 

Participants:

Update cohort (UC) N=3,826

Validation cohort (VC) N=1,111

 

Mean age (SD):

UC: 59.40 (18.10)

VC: 55.46 (17.03)

 

Sex: % M / % F

UC: 52.6/43.9 (3.5 unknown)

VC: 54.6/45.4

The dynamic prediction model developed in Rueten‐Budde (2018)

was revised by adding more patients and the variable grade to the

model.

Development

Modelling method: N/A

 

Performance

Calibration measures and 95%CI:

VC: calibration plot, author concluded that the figure shows they are relatively close to the diagonal line implying that predictions are accurate; the model generally slightly underestimated survival.

 

Discrimination measures and 95%CI:

VC: The discriminative ability of the model was assessed with dynamic C‐indices, with values equal to 0.697, 0.790, 0.822, 0.818, 0.812, and 0.827 at 0, 1, 2, 3, 4, and 5 years after surgery respectively.

 

Classification measures:

NR

 

Evaluation

Method for testing model performance:

External validation

Type of outcome: single (dynamic)

 

Definition and method for measurement of outcome:

The outcome of interest was OS, defined as the time from surgery to death due to any cause or last recorded follow‐up. The dynamic model predicts 5‐year dynamic overall survival (DOS) from a

particular prediction time point during follow‐up.

 

Endpoint or duration of follow-up: until death/NR

 

Number of events/outcomes:

UC: median follow‐up equal to 6.00 years (95% confidence interval [CI] = 5.86–6.18)

VC: median follow‐up equal to 6.89 years (95% CI = 6.47–7.61).

In the development cohort (update), in total 1602 patients died, 241 patients developed LR, 949 DM, and

385 developed both. In the external cohort, 306 patients died, 70 had LR, 279 DM, and 77 developed both.

 

RESULTS

Multivariable model:

Revised model reported.

 

Alternative presentation of final model: The updated dynamic prediction models is implemented in the

updated PERSARC application; available for free at the Apple Store and Google Play Store.

Interpretation: confirmatory

 

Authors’ conclusion

Results from the external validation show that the dynamic PERSARC model is reliable in predicting the probability of surviving an additional 5 years from a specific prediction time point during follow‐up. The model combines patient‐, treatment‐specific and time‐dependent variables such as local recurrence and distant metastasis to provide accurate survival predictions throughout follow‐up and is available through the PERSARC app.

 

Risk of bias table

Study reference

(first author, year of publication)

 

Classification1

 

Participant selection

1) Appropriate data sources?2

2) Appropriate in- and exclusion?

 

 

 

 

 

 

 

 

 

 

 

 

Risk of bias: low/high/unclear

Predictors

1) Assessed similar for all participants?

2) Assessed without knowledge of outcome?

3) Available at time the model is intended to be used?

 

 

 

 

 

 

 

 

Risk of bias: low/high/unclear

Outcome

1) Pre-specified or standard outcome definition?

2) Predictors excluded from definition?

3) Assessed similar for all participants?

4) Assessed without knowledge of predictors?

5) Time interval between predictor and outcome measurement appropriate?

 

 

 

 

 

Risk of bias: low/high/unclear

Analysis

1) Reasonable number of participants with event/outcome?

2) All enrolled participants included in analysis?

3) Missing data handled appropriately?

4) No selection of predictors based on univariate analysis?

5) Relevant model performance measures evaluated appropriately?3

6) Accounted for model overfitting4 and optimism?

7) Predictors and weights correspond to results from multivariate analysis?

 

Risk of bias: low/high/unclear

Overall judgment

 

High risk of bias: at least one domain judged to be at high risk of bias.

 

Model development only: high risk of bias.

 

 

 

 

 

 

 

 

Risk of bias: low/high/unclear

MSKCC; Kattan, 2002; Eilber, 2004; Mariani, 2005; Squires 2022; development and external validation of model

Low

 

(Data obtained from databases in which patients were prospectively entered, consecutive patients or all patients who underwent resection of primary extremity STS in different centers during time period. Clear in- and exclusion criteria)

 

Unclear, probably high

 

(Clear definitions of predictors. Patients from multiple centers, predictors may have been recorded differently at different centers. Predictors recorded before the outcome occurred.)

Unclear, probably low

 

(Outcome is sarcoma-specific death, may be misclassified. No information on whether assessor of outcome was aware of predictors.)

High

 

(Patients with missing values were excluded (n=139); and for other studies no information on missing data. No effect sizes reported for the predictors in the developed nomogram.)

High risk of bias

SAM; Sampo 2012; development and external validation of model

Unclear, probably low

 

(For development: all patients referred to STS Sarcoma Group in time period, data probably obtained from register but not explicitly described. Data for validation cohort obtained from hospital database. Both with clear in- and exclusion criteria)

 

Unclear, probably low

 

(Predictors are clearly defined and assessed in the same way for all study participants. Predictors were recorded before the outcome occurred. Not explicitly reported whether re-evaluation/re-assessment was blinded.)

Unclear, probably low

 

(Outcome sarcoma-specific survival, may be misclassified. No information on whether assessor of outcome was aware of predictors.)

High

 

(Missing data for 84 patients in development cohort, patients excluded. Validation cohort: 224 patients excluded, unclear how many due to missing data; “patients with metastatic disease at presentation, patients receiving adjuvant chemotherapy and patients with missing data on the assessed and reported parameters were excluded”)

High risk of bias

Sarculator; Callegaro, 2016; Callegaro, 2019; Squires, 2022; Voss, 2022; development and external validation of model

Low

 

(Data obtained from institutional or national prospectively maintained databases.

Clear in- and exclusion criteria)

Unclear

 

(Predictors are clearly defined and assessed in the same way for all study participants. Predictors recorded before outcome.

Squires: Patients from multiple centers, predictors may have been recorded differently at different centers.

Voss: data from national database; predictors may have been recorded differently at different centers.)

Low

 

(Outcome is overall survival, not likely to be misclassified. No information on whether assessor of outcome was aware of predictors.)

Unclear

 

(No information on missing data for Callegaro 2016 and Squires.

Callegaro 2019; 12 patients excluded because survival time was missing, small percentage of the total of 3,740.

Voss: patients excluded with incomplete grade, treatment, or survival data, not mentioned how many.)

Some concerns

PERSARC; Van Praag, 2017; Smolle, 2019; Rueten-Budde, 2018; Rueten-Budde, 2021;  development and external validation of model

Low

 

(Data obtained from prospective sarcoma databases.

Clear in- and exclusion criteria)

Unclear

 

 

Low

 

(Outcome overall survival is not likely to be misclassified. Outcome local recurrence, clear definition, misclassification not likely. No information on whether assessor of outcome was aware of predictors.)

Unclear

 

Van Praag: Due to missing values for 72 patients, 766 individuals were included

Some concerns

 

 

Table of excluded studies

Reference

Reason for exclusion

Anaya, D.A.; Lahat, G.; Wang, X.; Xiao, L.; Pisters, P.W.; Cormier, J.N.; Hunt, K.K.; Feig, B.W.; Lev, D.C.; Pollock, R.E. Postoperative nomogram for survival of patients with retroperitoneal sarcoma treated with curative intent. Ann. Oncol. 2010, 21, 397–402.

model only internally validated

Ardoino I, Miceli R, Berselli M, et al. Histology-specific nomogram for primary retroperitoneal soft tissue sarcoma. Cancer 2010;116:2429-36.

wrong type of STS (RPS)

Cahlon O, Brennan MF, Jia X, Qin LX, Singer S, Alektiar KM. A postoperative nomogram for local recurrence risk in extremity soft tissue sarcomas after limbsparing surgery without adjuvant radiation. Ann Surg. 2012;255(2):343–347

model not externally validated

Callegaro, D.; Barretta, F.; Swallow, C.J.; Strauss, D.C.; Bonvalot, S.; Honorè, C.; Stoeckle, E.; van Coevorden, F.; Haas, R.; Rutkowski, P.; et al. Longitudinal prognostication in retroperitoneal sarcoma survivors: Development and external validation of
two dynamic nomograms. Eur. J. Cancer 2021, 157, 291–300

wrong type of STS (RPS)

Canter, R.J.; Qin, L.X.; Maki, R.G.; Brennan, M.F.; Ladanyi, M.; Singer, S. A synovial sarcoma-specific preoperative nomogram supports a survival benefit to ifosfamide-based chemotherapy and improves risk stratification for patients. Clin. Cancer Res. 2008, 14, 8191–8197

model only internally validated

Chisholm, J.C.; Marandet, J.; Rey, A.; Scopinaro, M.; de Toledo, J.S.; Merks, J.H.; O0Meara, A.; Stevens, M.C.; Oberlin, O. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: A nomogram to better define patients who can be salvaged with further therapy. J. Clin. Oncol. 2011, 29, 1319–1325

wrong type of STS (not primary), wrong population (children)

Crago, A.M.; Denton, B.; Salas, S.; Dufresne, A.; Mezhir, J.J.; Hameed, M.; Gonen, M.; Singer, S.; Brennan, M.F. A prognostic nomogram for prediction of recurrence in desmoid fibromatosis. Ann. S

model only internally validated

Dalal, K.M.; Kattan, M.W.; Antonescu, C.R.; Brennan, M.F.; Singer, S. Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk. Ann. Surg. 2006, 244, 381–391.

model only internally validated

Gronchi, A.; Miceli, R.; Shurell, E.; Eilber, F.C.; Eilber, F.R.; Anaya, D.A.; Kattan, M.W.; Honoré, C.; Lev, D.C.; Colombo, C.; et al.
Outcome prediction in primary resected retroperitoneal soft tissue sarcoma: Histology-specific overall survival and disease-free
survival nomograms built on major sarcoma center data sets. J. Clin. Oncol. 2013, 31, 1649–1655.

wrong type of STS (RPS)

Pasquali, S.; Palmerini, E.; Quagliuolo, V.; Martin-Broto, J.; Lopez-Pousa, A.; Grignani, G.; Brunello, A.; Blay, J.Y.; Tendero, O.; Diaz-Beveridge, R.; et al. Neoadjuvant chemotherapy in high-risk soft tissue sarcomas: A Sarculator-based risk stratification analysis of the ISG-STS 1001 randomized trial. Cancer 2022, 128, 85–93. Erratum in Cancer 2022, 128, 3265.

different type of research question (added value of chemotherapy)

Raut, C.P.; Callegaro, D.; Miceli, R.; Barretta, F.; Rutkowski, P.; Blay, J.Y.; Lahat, G.; Strauss, D.C.; Gonzalez, R.; Ahuja, N.;
et al. Predicting Survival in Patients Undergoing Resection for Locally Recurrent Retroperitoneal Sarcoma: A Study and Novel
Nomogram from TARPSWG. Clin. Cancer Res. 2019, 25, 2664–2671

model only internally validated

Sekimizu M, Ogura K, Yasunaga H, et  al. Development of nomograms for prognostication of patients with primary soft tissue sarcomas of the trunk and extremity: report from the Bone and Soft Tissue Tumor Registry in Japan. BMC Cancer. 2019;19(1):657

model only internally validated

Shen, W.; Sakamoto, N.; Yang, L. Model to predict the survival benefit of radiation for patients with rhabdomyosarcoma after surgery: A population-based study. Int. J. Oncol. 2014, 45, 549–557

model only internally validated

Tan, M.C.; Brennan, M.F.; Kuk, D.; Agaram, N.P.; Antonescu, C.R.; Qin, L.X.; Moraco, N.; Crago, A.M.; Singer, S. Histology-based
Classification Predicts Pattern of Recurrence and Improves Risk Stratification in Primary Retroperitoneal Sarcoma. Ann. Surg.
2016, 263, 593–600

model only internally validated

Tan, P.H.; Thike, A.A.; Tan, W.J.; Thu, M.M.; Busmanis, I.; Li, H.; Chay, W.Y.; Tan, M.H.; Phyllodes Tumour Network Singapore. Predicting clinical behaviour of breast phyllodes tumours: A nomogram based on histological criteria and surgical margins. J. Clin. Pathol. 2012, 65, 69–76

article not available

Tu Q, Hu C, Zhang H, et al. Development and validation of novel nomograms for predicting specific distant metastatic sites and overall survival of patients with soft tissue sarcoma. Technol Cancer Res Treat. 2021;20:1533033821997828.

model not externally validated (not in a separate population)

Xu Y, Xu G, Wu H, et al. The nomogram for early death in patients with bone and soft tissue tumors. J Cancer. 2020;11(18):5359–5370

model only internally validated

Yang, L.; Takimoto, T.; Fujimoto, J. Prognostic model for predicting overall survival in children and adolescents with rhabdomyosarcoma. BMC Can

model only internally validated

Zhang SL, Wang ZM, Wang WR, Wang X, Zhou YH. Novel nomograms individually predict the survival of patients with soft tissue sarcomas after surgery. Cancer Manag Res. 2019;11:3215–3225

model not externally validated (not in a separate population)

Zivanovic, O.; Jacks, L.M.; Iasonos, A.; Leitao, M.M., Jr.; Soslow, R.A.; Veras, E.; Chi, D.S.; Abu-Rustum, N.R.; Barakat, R.R.; Brennan, M.F.; et al. A nomogram to predict postresection 5-year overall survival for patients with uterine leiomyosarcoma. Cancer 2012, 118, 660–669

model only internally validated

Autorisatiedatum en geldigheid

Laatst beoordeeld  : 15-10-2024

Laatst geautoriseerd  : 15-10-2024

Geplande herbeoordeling  : 15-10-2029

Initiatief en autorisatie

Initiatief:
  • Nederlandse Vereniging voor Heelkunde
Geautoriseerd door:
  • Nederlandse Internisten Vereniging
  • Nederlandse Orthopaedische Vereniging
  • Nederlandse Vereniging voor Dermatologie en Venereologie
  • Nederlandse Vereniging voor Heelkunde
  • Nederlandse Vereniging voor Medische Oncologie
  • Nederlandse Vereniging voor Nucleaire geneeskunde
  • Nederlandse Vereniging voor Pathologie
  • Nederlandse Vereniging voor Radiologie
  • Nederlandse Vereniging voor Radiotherapie en Oncologie
  • Patiëntenfederatie Nederland
  • Stichting Patiëntenplatform Sarcomen

Algemene gegevens

De ontwikkeling/herziening van deze richtlijnmodule werd ondersteund door het Kennisinstituut van de Federatie Medisch Specialisten (www.demedischspecialist.nl/kennisinstituut) en werd gefinancierd uit de Kwaliteitsgelden Medisch Specialisten (SKMS).

De financier heeft geen enkele invloed gehad op de inhoud van de richtlijnmodule.

Samenstelling werkgroep

Voor het ontwikkelen van de richtlijnmodule is in 2022 een multidisciplinaire werkgroep ingesteld, bestaande uit vertegenwoordigers van alle relevante specialismen (zie hiervoor de Samenstelling van de werkgroep) die betrokken zijn bij de zorg voor patiënten met wekedelentumoren.

 

Werkgroep

Dr. D.J. (Dirk) Grünhagen (voorzitter), oncologisch chirurg, NVvH

Drs. A. (Ana) Navas Cañete, radioloog, NVvR

Drs. E. (Evelyne) Roets, patiëntvertegenwoordiger, Stichting Patiëntenplatform Sarcomen

Dr. F.G.M. (Floortje) Verspoor, oncologisch orthopedisch chirurg, NOV

Prof. dr. J.V.M.G (Judith) Bovee, patholoog, NVVP

Prof. dr. M.A.J. (Michiel) van de Sande, oncologisch (kinder)orthopedisch chirurg, NOV

Dr. R.M.L. (Rick) Haas, radiotherapeut-oncoloog, NVRO

Dr. R.R. (Renate) van den Bos, dermatoloog, NVDV

Dr. W.J. (Winan) van Houdt, chirurg-oncoloog, NVvH

Prof. dr. W.T.A. (Winette) van der Graaf, internist-oncoloog, NIV

 

Met ondersteuning van

Dr. S.N. (Stefanie) Hofstede, senior adviseur, Kennisinstituut van de Federatie Medisch Specialisten

Dr. L.M.P. (Linda) Wesselman, adviseur, Kennisinstituut van de Federatie Medisch Specialisten

Drs. A.E. (Amber) van der Meij, adviseur, Kennisinstituut van de Federatie Medisch Specialisten

Belangenverklaringen

De Code ter voorkoming van oneigenlijke beïnvloeding door belangenverstrengeling is gevolgd. Alle werkgroepleden hebben schriftelijk verklaard of zij in de laatste drie jaar directe financiële belangen (betrekking bij een commercieel bedrijf, persoonlijke financiële belangen, onderzoeksfinanciering) of indirecte belangen (persoonlijke relaties, reputatiemanagement) hebben gehad. Gedurende de ontwikkeling of herziening van een module worden wijzigingen in belangen aan de voorzitter doorgegeven. De belangenverklaring wordt opnieuw bevestigd tijdens de commentaarfase.

Een overzicht van de belangen van werkgroepleden en het oordeel over het omgaan met eventuele belangen vindt u in onderstaande tabel. De ondertekende belangenverklaringen zijn op te vragen bij het secretariaat van het Kennisinstituut van de Federatie Medisch Specialisten.

 

Werkgroeplid

Functie

Nevenfuncties

Gemelde belangen

Ondernomen actie

Dirk Grünhagen (voorzitter)

Erasmus MC

lid DB DSG

Extern gefinancierd onderzoek: Hanarth fonds (hoofdaanvragen radiologie Erasmus MC)

Geen restricties

Ana Navas Canete

Radioloog

LUMC

Geen

Geen

Geen restricties

Evelyne Roets

Antoni van Leeuwenhoek zielenhuis

Functie: Arts-onderzoeker

Vrijwilliger bij patiëntenplatform sarcomen

Geen

Geen restricties

Floortje Verspoor

Oncologisch orthopedisch chirurg, Amsterdam UMC, betaald

Voorzitter Werkgroep Bot Tumoren (WeBoT), Nederlandse Orthopedische Vereniging, onbetaald

Reviewen van artikelen voor wetenschappelijke tijdschriften, onbetaald

Geen

Geen restricties

Judith Bovee

hoogleraar pathologie: patholoog en klinisch moleculair bioloog in de pathologie

Leids Universitair Medisch Centrum

Geen direct persoonlijke financiele belangen.

Wel betaald (aan LUMC) voor recent eenmalige adviseurschappen voor Bayer, Boehringer Ingelheim, InHbrx (betaald aan LUMC) en voor royalties van UptoDate en van boekbijdragen (Sternberg histopathology en de ARP atlas voor bone and soft tissue tumors)

Extern gefinancierd onderzoek: Tracon Pharmaceuticals: exploring the immune microenvironment in soft tissue sarcoma. Rol als

projectleider: ja

Geen deelname aan adviesraden gedurende ontwikkeling van de richtlijn. Geen restricties t.a.v. door de industrie gefinancierd onderzoek, middel wordt niet behandeld in de richtlijn.

Michiel van de Sande

Orthopedisch chirurg LUMC

Ja advisory board Synox Tangent trial paid

* Vice president European Musculoskeletal Oncology Society, onbetaald

* Penningmeester bestuur Dutch sarcoma Group, onbetaald

Extern gefinancierd onderzoek: Ja

KWF PI Restricted GRANT PERSARC en PERSARC IMP STS predictie

St EVA PI Unrestricted grant EWING onderzoek Fluoricentie geleide chirurgie bij Ewing

Carbofix PI Restricted Grant Carbofiximplant  registry

Implantcast PI Unrestricted grant voor MORE implant registry

Geen restricties t.a.v. door de industrie gefinancierd onderzoek, valt buiten bestek van de richtlijn. Geen financieel voordeel bij gebruik van PERSARC predictiemodel, deze is gratis te gebruiken.

Renate van den Bos

(onco-) dermatoloog

Erasmus MC Rotterdam

lid werkgroep Mohs chirurgie NVDV, lid Dutch Rare Cancer Platform (onbetaald)

Geen

Geen restricties

Rick Haas

NKI-AvL

radiotherapeut LUMC

Geen

Geen restricties

Winan van Houdt

Chirurg Oncoloog in Antoni van leeuwenhoek Ziekenhuis

Geen

Extern gefinancierd onderzoek:

KWF project translationeel onderzoek sarcomen

KWF

translationeel onderzoek sarcomen

Geen restricties

Winette van der Graaf

internist oncoloog, NKI-AVl Amsterdam 80%, betaald

hoogleraar interne oncologie ErasmusMC Rotterdam 20%, betaald

Voorzitter bestuur AYA 'Jong en Kanker' Zorgnetwerk, onbetaald

President European Organisation for Research and Treatment of Cancer (EORTC) onbetaald

Voorzitter bestuur Dutch sarcoma Group, onbetaald, tot juni 2024

Geen patenten

Advisory board Agenus vergoeding naar AVL

Advisory board SpringworksTx, vergoeding naar AVL

Advisory Board PTC Therapeutics, vergoeding naar AVL

research project (IIS) vergoeding naar instituut waar ik werkte (Royal Marsden Hospital London sarcoma research group en naar NKI sarcomen research)

 

Extern gefinancierd onderzoek: Ja, zie onder

KWF GENAYA, co PI, vergoeding WGS bij AYA kanker ptn

Boehringer Ingelheim

Deelname aan studie met nieuw geneesmiddel bij liposarcoom

AYALA

klinische studie bij desmoid

EORTC

Tolerance studie bij oudere ptn met STS, geen farma betrokkenhied

SpringworksTx

Deelname klinische studie met nieuw geneesmiddel bij desmoid

Geen deelname aan adviesraden gedurende ontwikkeling van de richtlijn. Geen restricties t.a.v. door de industrie gefinancierd onderzoek, middel wordt niet behandeld in de richtlijn.

Inbreng patiëntenperspectief

Er werd aandacht besteed aan het patiëntenperspectief via een afgevaardigde patiëntenvereniging (Patiëntenplatform Sarcomen) in de werkgroep en de patiëntenverenigingen zijn gevraagd input te leveren voor de knelpuntenanalyse. De verkregen input is meegenomen bij het opstellen van de uitgangsvragen, de keuze voor de uitkomstmaten en bij het opstellen van de overwegingen. De conceptrichtlijn is tevens voor commentaar voorgelegd aan de Nederlandse Federatie van Kankerpatiëntenorganisaties en de Patiëntenfederatie Nederland en de eventueel aangeleverde commentaren zijn bekeken en verwerkt.

 

Kwalitatieve raming van mogelijke financiële gevolgen in het kader van de Wkkgz

Bij de richtlijnmodule is conform de Wet kwaliteit, klachten en geschillen zorg (Wkkgz) een kwalitatieve raming uitgevoerd om te beoordelen of de aanbevelingen mogelijk leiden tot substantiële financiële gevolgen. Bij het uitvoeren van deze beoordeling is de richtlijnmodule op verschillende domeinen getoetst (zie het stroomschema op de Richtlijnendatabase).

 

Module

Uitkomst raming

Toelichting

Module Risico-inschatting

geen financiële gevolgen

<5.000 patiënten

Werkwijze

AGREE

Deze richtlijnmodule is opgesteld conform de eisen vermeld in het rapport Medisch Specialistische Richtlijnen 2.0 van de adviescommissie Richtlijnen van de Raad Kwaliteit. Dit rapport is gebaseerd op het AGREE II instrument (Appraisal of Guidelines for Research & Evaluation II; Brouwers, 2010).

 

Knelpuntenanalyse en uitgangsvragen

Tijdens de voorbereidende fase inventariseerde de werkgroep de knelpunten in de zorg voor patiënten met wekedelentumoren. Tevens zijn er knelpunten aangedragen door verschillende partijen via een schriftelijke knelpuntenanalyse. Een verslag hiervan is opgenomen onder aanverwante producten.  

 

Op basis van de uitkomsten van de knelpuntenanalyse zijn door de werkgroep concept-uitgangsvragen opgesteld en definitief vastgesteld.

 

Uitkomstmaten

Na het opstellen van de zoekvraag behorende bij de uitgangsvraag inventariseerde de werkgroep welke uitkomstmaten voor de patiënt relevant zijn, waarbij zowel naar gewenste als ongewenste effecten werd gekeken. Hierbij werd een maximum van acht uitkomstmaten gehanteerd. De werkgroep waardeerde deze uitkomstmaten volgens hun relatieve belang bij de besluitvorming rondom aanbevelingen, als cruciaal (kritiek voor de besluitvorming), belangrijk (maar niet cruciaal) en onbelangrijk. Tevens definieerde de werkgroep ten minste voor de cruciale uitkomstmaten welke verschillen zij klinisch (patiënt) relevant vonden.

 

Methode literatuursamenvatting

Een uitgebreide beschrijving van de strategie voor zoeken en selecteren van literatuur is te vinden onder ‘Zoeken en selecteren’ onder Onderbouwing. Indien mogelijk werd de data uit verschillende studies gepoold in een random-effects model. Review Manager 5.4 werd gebruikt voor de statistische analyses. De beoordeling van de kracht van het wetenschappelijke bewijs wordt hieronder toegelicht.

 

Beoordelen van de kracht van het wetenschappelijke bewijs

De kracht van het wetenschappelijke bewijs werd bepaald volgens de GRADE-methode. GRADE staat voor ‘Grading Recommendations Assessment, Development and Evaluation’ (zie http://www.gradeworkinggroup.org/). De basisprincipes van de GRADE-methodiek zijn: het benoemen en prioriteren van de klinisch (patiënt) relevante uitkomstmaten, een systematische review per uitkomstmaat, en een beoordeling van de bewijskracht per uitkomstmaat op basis van de acht GRADE-domeinen (domeinen voor downgraden: risk of bias, inconsistentie, indirectheid, imprecisie, en publicatiebias; domeinen voor upgraden: dosis-effect relatie, groot effect, en residuele plausibele confounding).

GRADE onderscheidt vier gradaties voor de kwaliteit van het wetenschappelijk bewijs: hoog, redelijk, laag en zeer laag. Deze gradaties verwijzen naar de mate van zekerheid die er bestaat over de literatuurconclusie, in het bijzonder de mate van zekerheid dat de literatuurconclusie de aanbeveling adequaat ondersteunt (Schünemann, 2013; Hultcrantz, 2017).

 

GRADE

Definitie

Hoog

  • er is hoge zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is zeer onwaarschijnlijk dat de literatuurconclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Redelijk

  • er is redelijke zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • het is mogelijk dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Laag

  • er is lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • er is een reële kans dat de conclusie klinisch relevant verandert wanneer er resultaten van nieuw grootschalig onderzoek aan de literatuuranalyse worden toegevoegd.

Zeer laag

  • er is zeer lage zekerheid dat het ware effect van behandeling dichtbij het geschatte effect van behandeling ligt;
  • de literatuurconclusie is zeer onzeker.

 

Bij het beoordelen (graderen) van de kracht van het wetenschappelijk bewijs in richtlijnen volgens de GRADE-methodiek spelen grenzen voor klinische besluitvorming een belangrijke rol (Hultcrantz, 2017). Dit zijn de grenzen die bij overschrijding aanleiding zouden geven tot een aanpassing van de aanbeveling. Om de grenzen voor klinische besluitvorming te bepalen moeten alle relevante uitkomstmaten en overwegingen worden meegewogen. De grenzen voor klinische besluitvorming zijn daarmee niet één op één vergelijkbaar met het minimaal klinisch relevant verschil (Minimal Clinically Important Difference, MCID). Met name in situaties waarin een interventie geen belangrijke nadelen heeft en de kosten relatief laag zijn, kan de grens voor klinische besluitvorming met betrekking tot de effectiviteit van de interventie bij een lagere waarde (dichter bij het nuleffect) liggen dan de MCID (Hultcrantz, 2017).

 

Overwegingen (van bewijs naar aanbeveling)

Om te komen tot een aanbeveling zijn naast (de kwaliteit van) het wetenschappelijke bewijs ook andere aspecten belangrijk en worden meegewogen, zoals aanvullende argumenten uit bijvoorbeeld de biomechanica of fysiologie, waarden en voorkeuren van patiënten, kosten (middelenbeslag), aanvaardbaarheid, haalbaarheid en implementatie. Deze aspecten zijn systematisch vermeld en beoordeeld (gewogen) onder het kopje ‘Overwegingen’ en kunnen (mede) gebaseerd zijn op expert opinion. Hierbij is gebruik gemaakt van een gestructureerd format gebaseerd op het evidence-to-decision framework van de internationale GRADE Working Group (Alonso-Coello, 2016a; Alonso-Coello 2016b). Dit evidence-to-decision framework is een integraal onderdeel van de GRADE methodiek.

 

Formuleren van aanbevelingen

De aanbevelingen geven antwoord op de uitgangsvraag en zijn gebaseerd op het beschikbare wetenschappelijke bewijs en de belangrijkste overwegingen, en een weging van de gunstige en ongunstige effecten van de relevante interventies. De kracht van het wetenschappelijk bewijs en het gewicht dat door de werkgroep wordt toegekend aan de overwegingen, bepalen samen de sterkte van de aanbeveling. Conform de GRADE-methodiek sluit een lage bewijskracht van conclusies in de systematische literatuuranalyse een sterke aanbeveling niet a priori uit, en zijn bij een hoge bewijskracht ook zwakke aanbevelingen mogelijk (Agoritsas, 2017; Neumann, 2016). De sterkte van de aanbeveling wordt altijd bepaald door weging van alle relevante argumenten tezamen. De werkgroep heeft bij elke aanbeveling opgenomen hoe zij tot de richting en sterkte van de aanbeveling zijn gekomen.

In de GRADE-methodiek wordt onderscheid gemaakt tussen sterke en zwakke (of conditionele) aanbevelingen. De sterkte van een aanbeveling verwijst naar de mate van zekerheid dat de voordelen van de interventie opwegen tegen de nadelen (of vice versa), gezien over het hele spectrum van patiënten waarvoor de aanbeveling is bedoeld. De sterkte van een aanbeveling heeft duidelijke implicaties voor patiënten, behandelaars en beleidsmakers (zie onderstaande tabel). Een aanbeveling is geen dictaat, zelfs een sterke aanbeveling gebaseerd op bewijs van hoge kwaliteit (GRADE gradering HOOG) zal niet altijd van toepassing zijn, onder alle mogelijke omstandigheden en voor elke individuele patiënt.

 

Implicaties van sterke en zwakke aanbevelingen voor verschillende richtlijngebruikers

 

 

Sterke aanbeveling

Zwakke (conditionele) aanbeveling

Voor patiënten

De meeste patiënten zouden de aanbevolen interventie of aanpak kiezen en slechts een klein aantal niet.

Een aanzienlijk deel van de patiënten zouden de aanbevolen interventie of aanpak kiezen, maar veel patiënten ook niet. 

Voor behandelaars

De meeste patiënten zouden de aanbevolen interventie of aanpak moeten ontvangen.

Er zijn meerdere geschikte interventies of aanpakken. De patiënt moet worden ondersteund bij de keuze voor de interventie of aanpak die het beste aansluit bij zijn of haar waarden en voorkeuren.

Voor beleidsmakers

De aanbevolen interventie of aanpak kan worden gezien als standaardbeleid.

Beleidsbepaling vereist uitvoerige discussie met betrokkenheid van veel stakeholders. Er is een grotere kans op lokale beleidsverschillen. 

 

Organisatie van zorg

In de knelpuntenanalyse en bij de ontwikkeling van de richtlijnmodule is expliciet aandacht geweest voor de organisatie van zorg: alle aspecten die randvoorwaardelijk zijn voor het verlenen van zorg (zoals coördinatie, communicatie, (financiële) middelen, mankracht en infrastructuur). Randvoorwaarden die relevant zijn voor het beantwoorden van deze specifieke uitgangsvraag zijn genoemd bij de overwegingen. Meer algemene, overkoepelende, of bijkomende aspecten van de organisatie van zorg worden behandeld in de module Organisatie van zorg.

 

Commentaar- en autorisatiefase

De conceptrichtlijnmodule werd aan de betrokken (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd ter commentaar. De commentaren werden verzameld en besproken met de werkgroep. Naar aanleiding van de commentaren werd de conceptrichtlijnmodule aangepast en definitief vastgesteld door de werkgroep. De definitieve richtlijnmodule werd aan de deelnemende (wetenschappelijke) verenigingen en (patiënt) organisaties voorgelegd voor autorisatie en door hen geautoriseerd dan wel geaccordeerd.

 

Literatuur

Agoritsas T, Merglen A, Heen AF, Kristiansen A, Neumann I, Brito JP, Brignardello-Petersen R, Alexander PE, Rind DM, Vandvik PO, Guyatt GH. UpToDate adherence to GRADE criteria for strong recommendations: an analytical survey. BMJ Open. 2017 Nov 16;7(11):e018593. doi: 10.1136/bmjopen-2017-018593. PubMed PMID: 29150475; PubMed Central PMCID: PMC5701989.

 

Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Rada G, Rosenbaum S, Morelli A, Guyatt GH, Oxman AD; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016 Jun 28;353:i2016. doi: 10.1136/bmj.i2016. PubMed PMID: 27353417.

Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, Treweek S, Mustafa RA, Vandvik PO, Meerpohl J, Guyatt GH, Schünemann HJ; GRADE Working Group. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016 Jun 30;353:i2089. doi: 10.1136/bmj.i2089. PubMed PMID: 27365494.

 

Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, Fervers B, Graham ID, Grimshaw J, Hanna SE, Littlejohns P, Makarski J, Zitzelsberger L; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010 Dec 14;182(18):E839-42. doi: 10.1503/cmaj.090449. Epub 2010 Jul 5. Review. PubMed PMID: 20603348; PubMed Central PMCID: PMC3001530.

 

Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, Alper BS, Meerpohl JJ, Murad MH, Ansari MT, Katikireddi SV, Östlund P, Tranæus S, Christensen R, Gartlehner G, Brozek J, Izcovich A, Schünemann H, Guyatt G. The GRADE Working Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017 Jul;87:4-13. doi: 10.1016/j.jclinepi.2017.05.006. Epub 2017 May 18. PubMed PMID: 28529184; PubMed Central PMCID: PMC6542664.

 

Medisch Specialistische Richtlijnen 2.0 (2012). Adviescommissie Richtlijnen van de Raad Kwalitieit. http://richtlijnendatabase.nl/over_deze_site/over_richtlijnontwikkeling.html

 

Neumann I, Santesso N, Akl EA, Rind DM, Vandvik PO, Alonso-Coello P, Agoritsas T, Mustafa RA, Alexander PE, Schünemann H, Guyatt GH. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol. 2016 Apr;72:45-55. doi: 10.1016/j.jclinepi.2015.11.017. Epub 2016 Jan 6. Review. PubMed PMID: 26772609.

 

Schünemann H, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html.

Zoekverantwoording

Zoekacties zijn opvraagbaar. Neem hiervoor contact op met de Richtlijnendatabase.

Volgende:
Behandeling