Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
reference							
Sherman	Anesthesia & Analgesia	<u>Type of study:</u>	Goal and scope ¹ :	An LCA was conducted to	1. Climate Change	Overall desflurane has the	Authors conclusion
(2012)		LCA	To compare the	compare the environmental	The results on climate	greatest impact on the	The results reiterate previous
	Journal information		environmental impacts of	impact of 5 types of	change are only graphically	outcome climate change.	published data, while providing
	The "The Global Standard	<u>Objective:</u>	5 anaesthetic drugs to	anaesthetic drugs –	reported in Figure 1	Propofol is the best choice	the life cycle data on the
	in Anesthesiology,"	To perform an initial life	inform clinicians in drug	sevoflurane, desflurane,	(Sherman, 2012). The figure	considering this outcome. The	anaesthetic drugs. Clinicians
	provides practice-	cycle assessment on 5	selection.	isoflurane, N ₂ O and propofol	shows two graphs, whereas	admixture of O ₂ /air instead of	should consider the full
	oriented, clinical research	anesthetic drugs –		 to inform clinician drug 	panel A shows the results on	NO_2/O_2 is the better	environmental and human
	you need to keep current	sevoflurane, desflurane,	<u>Functional unit(s)²:</u>	selection on this basis. The	the life cycle (as mentioned	environmental choice.	health impacts from
	and provide optimal care	isoflurane, N₂O and	1 minimum alveolar	functional unit was 1	before) of the drug, agent		anaesthetic use.
	to your patients. Brings	propofol – to inform	concentration (MAC), or	minimum alveolar	release and N ₂ O release and	The biggest hotspot of the GHG	
	peer reviewed articles on	clinician drug selection on	MAC-equivalent for	concentration (MAC), or	panel B shows nonwasted	emissions is the N ₂ O release,	Limitations study
	the latest advances in	this basis.	propofol, for maintenance	MAC-equivalent for propofol,	anaesthetic gas emissions	followed by agent release and	There is uncertainty regarding
	drugs, preoperative		anesthesia for an average	for maintenance anesthesia	(life cycle) from drug	lastly the life cycle of the agent.	the synthesis of propofol and
	preparation, patient	LCA-method:	70 kg adult patient for 1	for an average 70 kg adult	manufacturing, transport,	When choosing for the O ₂ /air	the volatile drugs and results
	monitoring, pain	Attributional LCA	hour (1 MAC-h)	patient for 1 hour (1 MAC-h).	drug delivery and disposal.	admixture, desflurane has the	should be carefully interpreted.
	management,			Included stages in the life		greatest impact followed by	It is not clear whether the
	pathophysiology, and	Setting and country:	System boundaries:	cycle of the drug were raw	Considering the N ₂ O/O ₂	isoflurane and sevoflurane. The	manufacturing process of the
	many other timely topics.	Hospital in the US	Cradle to grave	material extraction,	admixture, desflurane has	change in impact between	disposables used for propofol
				production, transport (to	the biggest impact with	isoflurane and sevoflurane	administration is included in
	Critical review:	<u>Facility</u> :	Included stages:	health care facilities), drug	approximately 56,000 g	when using the O ₂ /air mixture	the analysis.
	Peer reviewed, not a	Yale-New Haven Hospital	Raw material extraction,	delivery (to the patient) and	CO ₂ e including agent release	instead of NO ₂ /O ₂ is	
	specific LCA journal.		production, transport,	disposal. Besides that, the	and N ₂ O release, followed	attributable to the higher GWP	
		Years of data collection:	drug delivery, disposal	waste gas of the agent in the	by sevoflurane with 46,000	for isoflurane and conversely	
		-		atmosphere and N ₂ O release	g CO ₂ e, isoflurane 24,000 g	the higher gas flow	
			Stated excluded	were considered (O ₂ /air	CO ₂ e and propofol. The	requirements for sevoflurane	
		Surgical discipline(s):	<u>components</u> :	admixture and N ₂ O/O ₂	emissions of propofol can	when using N_2O/O_2 (more N_2O	
		Anaesthesia	Baseline energy	admixture for administration	not be depicted from the	is used).	
			requirement for the	were considered). Data	figure (too small). When		
		Funding and conflict of	anaesthesia machine	collection on transport, drug	choosing for the O_2 /air	Considering the lifecycle of the	
		interest:	(considered to be constant	transportation, energy	admixture, desflurane has	agents, for desflurane the	
		No funding mentioned.	for all drugs), basic	requirements and disposal	the greatest impact	greatest hotspot is the agent	
		The authors state no	disposables (such as:	was specific to the Yale-New	followed by isoflurane and	manufacturing, followed by	
		conflicts of interest.	endotracheal tubes,	Haven Hospital. Ecolnvent	sevoflurane.	delivery of the drug to the	
			circuits, CO ₂ absorbents)	was used as primary data		patient (electricity required for	
			were considered to be	source. When data regarding	Regarding the life cycle,	volatilization) and N ₂ O	
			equivalent.	the drugs was unavailable in	desflurane has the biggest	manufacturing. Sevoflurane	
				Ecolnvent, proxies that best	impact of 700 g CO ₂ e,	and isoflurane have more	
			Inventory database:	matched the production	tollowed by sevoflurane	similar profiles, with the	
			Ecolnvent	characteristics of the drug	(430 g CO ₂ <i>e</i>), isoflurane (200	greatest hotspot being N ₂ O	
			Allocation: No	were used.	g CO_2e) and propotol (25 g	manufacturing, followed by	
			Normalization &		CO_2e).	agent manufacturing and	
			<u>Weighting</u> : No	Characterization methods:		packaging. GHG impacts of	

Appendix 1. Evidence table for LCA studies

Appendix 1. Evidence table for LCA studies bij module anesthesie van de Leidraad Duurzaamheid Deel B: Vijf inhoudelijke duurzaamheidsmodules November 2023

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
reference							
			Impacts reported: Yes	Sulbaeck et al. 2010, IPCC	2. Waste	propofol are comparatively	
			Contribution analysis: Yes		No results in this study.	quite small and most of it is	
			Scenario analysis: Yes		3. Medicine residue in water	attributable to the drug	
			Comparative analysis: Yes		No results in this study.	delivery to the patient (energy	
			Sensitivity analysis: No		4. Human toxicity	needed to operate the syringe	
			Uncertainty analysis: No		No results in this study.	pump) and waste	
			variance analysis: No		5. Ozone Depletion	management.	
Th: 1 (2010)	A sector of the sector (D.). Its	The field	Cost and cost of		No results in this study.	Malattle and attacks to a	A the second size of
Thiel (2018)	American Journal of Public	Type of study:	Goal and scope-:	A hybrid LCA was conducted	<u>1 Climate Change</u>	volatile anaestnetics nave a	Authors conclusion
	Health (AJPH)	LCA	To examine the emcacy of	to examine the emcacy of	The baseline case is an	greater environmental impact	Available interventions can be
		Ohiostina	CLC emissions in the OP	sustainable interventions to	average of the combination	compared to intravenous	used with promising results to
	Journal Information	Objective:	GHG emissions in the OR	reduce GHG emissions in the	of anaestnetic approaches	in an aesthetics. The use of N ₂ O	reduce the carbon footprint.
	The American Journal of	to determine the carbon	with the goal to improve	OR. Baseline emissions for	used in each of the 17	increases this impact and	Lincitation and the
	Public Health is a peer-	footprint of various	the emission rate of the	laparoscopic hysterectomy	laparoscopic	should be avoided if possible. If	Limitations study
	reviewed public health	sustainability	healthcare sector and	were calculated from an	nysterectomies. This	a volatile anaestnetic should be	Uncertainty due to limited or
	Journal published by the	Interventions used for	thereby numan health.	average of 17 hysterectomies	resulted with anaestnesia in	used, sevonurane seems to be	lack of LCA data in healthcare.
	American Public Health	laparoscopic	$\Gamma_{\rm constraint}$	extracted from a previous	562 kg CO ₂ e and without	the most environmentally	
	Association that covers	nysterectomy.	Functional unit(s)-:	study in the USA (Thiel,	anaestnesia in 402 kg CO ₂ e.	sound choice.	calculations, poor
	health The journals'	ICA mathed	bustarastemu	2017). Further data was	Using desilurane only,		generalizability. More
	stated mission is "to	Lica-method:	hysterectomy	Coolevent Life evels CLCs			interventions possible than
	advance public health	Hybrid-LCA	System boundaries:	were calculated for	with NO in 757 kg CO a		studied.
	research policy practice	Sotting and country	Cradle to grave	interventions regarding	with $NO_2 III / 57 \text{ kg } CO_2 e$,		
	and adjustion"	Setting and country.	intrapporative pariod	analytic time of	sevolutatie with $NO_2 = 1410$		
		hospital 05A		anaesthetic) surgical	A10 kg CO a and propofel		
	Critical roviow:	Facility:	Included stages:	materials and energy To	and $kg CO_2e$ and proportion		
	Boor roviewed not a	Magoo Womons Hospital	Broduction transport	model apposition	0111y 111 402 kg CO2E.		
	specific LCA journal	of the University of	energy use	interventions an average	2 Waste		
	specific LCA journal.	Pittsburgh Medical Center	nharmaceuticals reuse	anaesthetic duration of 150	No results in this study		
		(LIPMC)	disposal	minutes was assumed The	3 Medicine residue in water		
		(or we)	disposal	outcome measure was	No results in this study		
		Years of data collection:	Stated excluded	climate change	4 Human toxicity		
		2016	components:	ennate enange.	No results in this study		
		2010	Infrastructure including	Characterization methods:	5 Ozone Depletion		
		Surgical discipline(s):	machines and building	TRACI	No results in this study		
		Obstetrics & Gynaecology	chemical manufacturing		No results in this study.		
		Anaesthesiology	and cleaning of products:				
			hot water use				
		Funding and conflict of					
		interest:	Inventory database:				
		None stated.	Ecolnvent, USLCI				
			Allocation: Impacts of				
			resuable materials and				

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
reference			aguinment were				
			apportioned based on				
			estimated				
			lifespan/number of uses.				
			Normalization &				
			Weighting: No				
			Impacts reported: Yes				
			Contribution analysis: Yes				
			<u>Scenario analysis</u> : Yes				
			Comparative analysis: Yes				
			Sensitivity analysis: No				
			Uncertainty analysis: No				
Magain	A south a state s	The state of	Variance analysis: No			The state share stated	
NICGain (2021)	Anestnesiology	Type of study:	Goal and scope-:	An LCA was conducted to	<u>1. Climate Change</u>	introveneus encosthesia has	Authors conclusion
(2021)	lournal information	LCA	carbon dioxido oquivalent		700 mg/b will result in loss	the lowest environmental	carbon tootprints for knee
		Objective:	emissions of general and	associated with general	than 50 g $CO_{2}e$	impact compared to general	(general spinal combined)
	official journal of the	To examine the carbon	spinal and combined	anaesthesia (propofol and		anaesthesia with sevoflurane	were similar with significant
	American Society of	dioxide equivalent	anaesthesia to reduce	sevoflurane), spinal	The average/mean duration	spinal anaesthesia and the two	overlap between the Cls.
	Anesthesiologists. Their	emissions associated with	GHG production and	anaesthesia and combined	of spinal and combined	combined. The latter are	
	mission is promoting	general anaesthesia, spinal	reduce the threat of	(general and spinal)	anaesthesia were	comparable. Great contributors	Limitations study
	scientific discovery and	anaesthesia and combined	climate change in	anaesthesia during total knee	approximately 40 and 30	are the agent itself, single-use	Small study with 30 samples,
	knowledge in	(general and spinal)	healthcare.	replacement. The functional	minutes more than general.	products and energy-use.	however possibly not more
	perioperative, critical care	anaesthesia during total		unit was all anaesthesia for a	This leads to increased	International comparisons	needed. One centre, difficult to
	and pain medicine to	knee replacement.	Functional unit(s) ² :	total knee replacement.	energy use (0.8 and 0.6 kg	show reusables are a good	generalize results. Lack of other
	advance patient care.		All anaesthesia for a total	Anaesthesia data were	CO ₂ e) and oxygen use (0.6	alternative for single-use	anaesthetics (e.g. desflurane,
		LCA-method:	knee replacement.	obtained from 30 patients	kg CO ₂ e). Spinal anaesthetic	products when using a	intravenous anaesthesia
	Critical review:	Attributional LCA		undergoing total knee	of shorter duration will	renewable energy sources (e.g.	separately).
	Peer reviewed, not a		System boundaries:	replacement in an Australian	result in a decrease of 1.4 kg	nuclear/wind/solar energy).	
	specific LCA journal.	Setting and country:	Cradle to grave	hospital. Data from literature	CO_2e .		
		Hospital Australia	Included stages	and databases such as	The total emissions of		
		Facility	Row motorial extraction	Cycle Inventory were used	rhe total emissions of		
		Williamstown Hospital	production transport	The outcome measures were	$14.9 \text{ kg} (\Omega_{2} \text{ e}) (95\% \text{ CL}) 9.7 \text{ to}$		
		Western Health	drug usage phase, disposal	climate change and waste.	22.5): spinal anaesthesia		
		Melbourne, Australia			16.9 kg CO ₂ e (95% Cl. 13.2		
			Stated excluded	Characterization methods:	to 20.5); and combination		
		Years of data collection:	components:	-	anaesthesia 18.5 kg CO ₂ e		
		2019	HVAC and surgical		(95% Cl, 12.5 to 27.3). The		
			equipment data.		average anaesthesia		
		Surgical discipline(s):			duration times were:		
		Anaesthesia	Inventory database:		general 161 (113 to 193)		
					min, spinal 200 (168 to 288)		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
reference						-	
		Funding and conflict of	EcoInvent, the Australian		min, combination 189 (128		
		<u>interest:</u>	Life Cycle Inventory		to 241) min.		
		In-kind support (no cash					
		funding) was provided	Allocation: No		Electricity for the patient air		
		solely from Western	Normalization &		warmer was responsible for		
		Health Anaesthesia	<u>Weighting</u> : No		at least 2.46 kg CO ₂ e for all		
		Department sources	Impacts reported: Yes		approaches. Total single-use		
		(Melbourne, Australia).	Contribution analysis: Yes		plastics, glass and so forth		
		The authors declare no	<u>Scenario analysis</u> : No		were responsible for 3.5		
		conflict of interest.	Comparative analysis: Yes		(general), 3.4 (spinal) and		
			Sensitivity analysis: Yes		4.3 (combination) CO₂e. The		
			Uncertainty analysis: Yes,		majority was from single-		
			Monte Carlo analysis		use plastics.		
			<u>Variance analysis:</u> No		Pharmaceuticals beyond		
					gases were responsible for		
					1.2 to 1.3 CO ₂ e (7 to 8%).		
					For general anaesthesia,		
					sevoflurane was responsible		
					for an average of 4.7 kg		
					CO_2e (32%), range 2.7 to 8.6		
					kg CO ₂ e. The patient who		
					received propotol		
					represented the minimum		
					of 8.4 kg CO ₂ e in the general		
					combination group		
					sevoflurane contributed for		
					$3.1 \text{ kg } (\Omega_2 e (17\%) \text{ range } 0.6$		
					to 10 kg CO ₂ e		
					Fro spinal and combination		
					anesthesia, washing an		
					sterilizing reusable gowns.		
					plastic spinal travs and so		
					forth contributed for 4.5 kg		
					and 4.0 kgCO ₂ e,		
					respectively. Oxygen use		
					was important for spinal,		
					resulting in 2.8 kg CO ₂ e		
					(16%) with flow rates from 6		
					to 10 l/min (compared to		
					0.5 to 3.1 l/min for general		
					and combination).		

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
reference							
					International comparisons		
					were made by changing		
					energy sources. Australia		
					and China are more coal		
					reliant, where the European		
					Union (and UK) are more		
					dependent on nuclear and		
					hydro/wind/solar sources.		
					This modelling changed the		
					CO ₂ e for washing and		
					sterilizing reusable		
					equipment and electricity		
					for patient warming. In the		
					EU spinal anaesthesia has a		
					carbon footprint of		
					approximately 60%		
					(9.9/16.9 CO ₂ e) of that in		
					Australia. The general		
					anaesthesia in Australia		
					(total intravenous) is less		
					than the EU average (8.4 kg		
					vs. 11.9 kg CO₂ <i>e</i>). The		
					minimum for spinal		
					anaesthesia in Australia is		
					higher than the EU average		
					(14.7 vs 9.9 kg CO ₂ e), due to		
					high carbon intensity		
					electricity required to clean		
					reusable anaesthesia		
					equipment.		
					2. Waste		
					The total masses of single-		
					use equipment were:		
					general anaesthesia (mean		
					996 g; interquartile range		
					873 to 1,033 g; range 725 to		
					1,392 g), spinal anaesthesia		
					(mean 997 g; interquartile		
					range 934 to 1,076 g; range		
					885 to 1,184 g) and		
					combination anaesthesia		
					(mean 1,237g; interquartile		

Study reference	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
					range 1,100 to 1,285 g; range 1,009 to 1,678 g). The majority of the waste was from total plastics: average for general anaesthesia 783/996 g (78%); spinal 729/997 g (73%); and combination 932/1,237 (75%). Glass was the next most discarded material. <u>3. Medicine residue in water</u> No results in this study. <u>4. Human toxicity</u> No results in this study. <u>5. Ozone Depletion</u>		
Hu (2021)	Resources, conservation & recycling Journal information Contributions from research, which consider sustainable management and conservation of resources. The journal emphasizes the transformation processes involved in a transition toward more sustainable production and consumption systems. Emphasis is upon technological, economic, institutional and policy aspects of specific resource management practices. <u>Critical review:</u> Peer reviewed article, LCA mentioned in scope of	Type of study: LCA Objective: To estimate the carbon footprint of sevoflurane, isoflurane, desflurane and intravenous propofol and to provide evidence of the potential impact of Vapour Capture Technology. LCA-method: Attributional LCA Setting and country: UK Facility: - Years of data collection: 2018 Surgical discipline(s): Anaesthesia	Goal and scope ¹ : The carbon footprint of general anaesthetics at the national level is presented to inform policy. <u>Functional unit(s)²:</u> 1 minimum alveolar concentration hour (MAC-h), or MAC-h equivalent for propofol. <u>System boundaries:</u> Cradle to grave <u>Included stages:</u> Raw material extraction, manufacturing, packaging, use, waste gases <u>Stated excluded</u> <u>components</u> : Transport, energy consumptions of using	A life cycle inventory was conducted to calculate the carbon footprint of general anaesthetics. Thereby the potential impact of Vapour Capture Technology was provided. The functional unit for the general anaesthetics in the LCI analysis was 1 minimum alveolar concentration hour (MAC-h), or MAC-h equivalent for propofol. Values of 2.2%, 1.2% and 6.7% respectively for sevoflurane, isoflurane and desflurane were used as basis of the modelling. Raw material extraction, manufacturing, packaging, transport, use and disposal were included in the analysis. Ecoinvent was used as an inventory database. Since information on	No results in this study. <u>1. Climate Change</u> The results on climate change are graphically shown in figure 2-4 (Hu, 2021). Three different scenarios are studied: 1. Fresh gas flow of 1L (UK) or 2L (US)/min, % gas flow $O_2/N_2O = 40/60$ 2. Fresh gas flow of 1L (UK) or 2L (US)/min, % gas flow $O_2/N_2O = 100/0$ 3. Fresh gas flow of 0.5L/min, % gas flow $O_2/N_2O = 100/0$ Desflurane has the highest carbon footprint in all scenarios, however sevoflurane is close in scenario 1. Propofol has the lowest carbon footprint, half of this is due to energy used to manufacturing the syringes. Scenario 2 (eliminating NO ₂) leads to	Propofol use results in a low carbon footprint. It can be reduced by using renewable energy in the manufacturing process. Influence from propofol drug waste (e.g. urine excretion in sewerage water) has not been studied. Desflurane has the highest GWP and leads to a high carbon footprint compared to isoflurane and sevoflurane. Using low fresh gas flow rates, avoid using tetrafluoroethylene as raw material to synthesize IAGs and to avoid using NO ₂ for isoflurane and sevoflurane leads to a lower carbon footprint. Sevoflurane has a lower carbon footprint compared to isoflurane when using method-	Authors conclusion Both isoflurane and sevoflurane have a smaller life- cycle carbon footprint compared to desflurane in all scenarios. It is optimal to use a low fresh gas flow rate, avoid using tetrafluoroethylene as raw material to synthesize IAGs and to avoid using NO ₂ when using isoflurane or sevoflurane. VCT reduces carbon footprint of IAGs. Limitations study Not all inventory data was available, so assumptions has been made and data should be interpreted with caution.

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
reference							
		Funding and conflict of	OR, disposables from	anaesthesic agents was not	isoflurane and sevoflurane	process (avoid using	
		interest:	inhalational anaesthetic	publicly available, two	compared to scenario 1,	tetrafluoroethylene) and using	1
		HX, TT and MK were	gases (IAG) use (assumed	methods were modelled for	however desflurane	low fresh gas flow rates (0.5 or	1
		funded from the Innovate	to be equal). Waste from	the manufacturing process of	increases due to the high	1 L/min).	1
		UK to the University of	propofol use.	the drugs. Method 'A':	GWP. In scenario 3 the		1
		Exeter and SageTech		relatively older processes and	carbon footprint is lowest		1
		Medical Equipment Ltd.	Inventory database:	method 'B': newer processes	for all IAGs. The		1
		The study was conducted	EcoInvent	in manufacturing. Synthesis	manufacturing process with		1
		independently and		of propofol liquid was	method-B (lower impact)		1
		without the intervention	Allocation:	included. Transportation was	has a lower carbon footprint		1
		of SageTech Medical	No	assumed to be similar, and	compared to method-A		1
		Equipment Ltd.	Normalization &	therefore excluded from the	(higher impact) for all three		1
			<u>Weighting</u> : No	analysis, as was energy	anaesthetic gases.		1
			Impacts reported: Yes	consumption for using	Reduction of the carbon		1
			Contribution analysis: Yes	general anaesthetics in the	footprint for the production		1
			<u>Scenario analysis</u> : Yes	OR, the use of disposables	of sevoflurane can be		1
			Comparative analysis: Yes	and propofol end of life	achieved by avoiding the		1
			<u>Sensitivity analysis</u> : No	waste. For the Vapour	use of tetrafluoroethylene		1
			Uncertainty analysis: No	Capture Technology effect, it	(84% reduction). For		1
			<u>Variance analysis</u> : No	was assumed that IAG can	isoflurane and desflurane		1
				only be recycled once. Two	these differences are		1
				stages were employed: 1) IAG	smaller. For sevoflurane and		1
				is used for 1 MAC-h, 70% is	isoflurane scenario 3, with		1
				recycled and 2) recycled drug	method-B results in the		1
				with manufactured drug is	lowest carbon footprint.		1
				used for another MAC-h.	Using method-A in all		1
				Results are shown for US and	scenarios leads to a higher		1
				UK scenarios; general	carbon footprint for		1
				scenario where NO ₂ is used as	sevoflurane compared to		1
				a carrier gas and two	isoflurane, which is		1
				scenarios were it is not used.	attributable to the		1
				The outcome measure was	manufacturing process. The		1
				climate change.	US method (fresh gas flow		1
				Characterization matheday	of 2L/min), leads to a higher		1
				characterization methods:	impact for sevonurane		1
				-	When changing this to		1
					11 /min or 0.51 /min		1
					combined with method-B		1
					the carbon footprint of		1
					sevoflurane is lower than		1
					that of isoflurane Using		1
					Vapour Capture Technology		ł

Study	Journal	Study characteristics	Methods	Data collection	Outcomes	Interpretation	Comments
reference							
					(VCT) results in lower		
					carbon footprints for all		
					anaesthetic gases. When		
					using a fresh gas flow rate of		
					0.5L/min, with method-B as		
					the manufacturing process,		
					the carbon footprint is		
					comparable to that of		
					propofol. However, when		
					the manufacturer of		
					propofol uses renewable		
					energy the carbon footprint		
					can be cut by half. Overall,		
					the biggest hotspot for		
					desflurane and isoflurane is		
					the waste IAG, for		
					sevoflurane the		
					manufacturing process and		
					for propofol drug		
					administration.		
					2. Waste		
					No results in this study.		
					3. Medicine residue in water		
					No results in this study.		
					<u>4. Human toxicity</u>		
					No results in this study.		
					5. Ozone Depletion		
			1		No results in this study.		

¹Goals and scope: 'Phase of life cycle assessment in which the aim of the study, and in relation to that, the breadth and depth of the study is established' ²Functional unit: Quantified description of the function of a product or process that serves as the reference basis for all calculations regarding impact assessment.